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IRRATIONALITY MEASURES FOR CERTAIN
q-MATHEMATICAL CONSTANTS

PETER BUNDSCHUH and WADIM ZUDILIN

(To our friend Keijo Väänänen on the occasion of his sixtieth birthday)

Abstract

We prove sharp irrationality measures for a q-analogue ofπ and related q-series, and indicate open
problems on linear and algebraic independence of the series that might be viewed as q-analogues
of some classical mathematical constants.

1. Introduction and main results

Almost sixty years ago, Banerjee [1] considered the difference

E(n) := #{d ∈ N : d|n, d ≡ 1 (mod 4)} − #{d ∈ N : d|n, d ≡ 3 (mod 4)}
for n ∈ N := {1, 2, . . .}, and proved, inter alia,

(1)
∞∑
n=1

E(n)

qn
=

∞∑
m=1

sin(mπ/2)

qm − 1
=

∞∑
n=1

(−1)n−1

q2n−1 − 1
=: −fq(1),

where q ∈ C satisfies |q| > 1. The series on the right-hand side of (1) is
connected with the following q-analogue of π ,

(2) πq := 1 + 4
∞∑
n=1

(−1)n−1

q2n−1 − 1
,

see [5]. Surprisingly, several other q-series appearing as q-analogues of cer-
tain mathematical constants also play a rôle of generating series for classical
arithmetic functions (see Section 6 below). It is this circumstance that was
used in the first proofs of the irrationality of πq for integral values of q, by
Chowla [6] and Erdős [8].

Recently in [5] we deduced, as a particular case of a more general situation, a
fairly weak irrationality measure for the value of (2) in the case q ∈ Z\{0,±1}.
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The main aim of the present note is to considerably improve on this measure
for πq and deduce new measures for the q-mathematical constants

(3) λq :=
∞∑
n=1

1

q2n−1 − 1
and βq :=

∞∑
n=1

(−1)n−1

qn + 1
,

again in the case of integers q.
For the sake of completeness, let us note that the irrationality exponent

μ(ω) of a real irrational number ω is defined by

μ(ω) := inf

{
μ ∈ R : the inequality

∣∣∣∣ω − P

Q

∣∣∣∣ ≤ Q−μ

has only finitely many solutions (P,Q) ∈ Z × N
}
.

Hence we have μ(ω) ≥ 2 for every ω ∈ R \ Q and, in these terms, our earlier
result in [5] states μ(πq) ≤ 10.31789 . . . . In contrast to this, our new result
reads as

Theorem 1. For q ∈ Z\{0,±1}, the irrationality exponent of πq is at most
6.50379809 . . . .

Remark. In fact, our method below allows us to prove the existence of an
absolute effective constant γ > 0 such that for every (P,Q) ∈ Z2 withQ ≥ 3
the following inequality holds:∣∣∣∣πq − P

Q

∣∣∣∣ ≥ Q−6.50379809...−γ (log logQ)/
√

logQ.

It is curious that the new irrationality measure for πq is sharper than the known
one for π due to M. Hata [11].

Sinceπq = 1−4fq(1), both numbersπq and fq(1) obviously have the same
irrationality exponent, and we may restrict ourselves from now on to the in-
vestigation of fq(1). To estimateμ(fq(1)) from above, we proceed as follows.
First we analytically construct (in Section 2) good approximations to fq(1) as
‘very small’ linear forms in 1 and fq(1) with rational coefficients. Whereas,
in [5], we mostly adopted for this the hypergeometric construction from [13],
we now apply Borwein’s method [2] using only a few and elementary complex
analysis. To transform these linear forms into ‘small’ linear forms with integer
coefficients, we need very careful arithmetic considerations (compare Lem-
mas 5 and 7 in Section 3) to find a ‘sufficiently small’ common denominator of
the original rational coefficients. Having small linear forms with not too large
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integer coefficients, we use a Chudnovsky-type lemma (Lemma 8 in Section 4)
for our final conclusion.

Our further results for the q-constants in (3) are the following.

Theorem 2. For q ∈ Z \ {0,±1}, the irrationality exponent of λq is at
most 3.89810036 . . . .

Theorem 3. For q ∈ Z\{0,±1}, the irrationality exponent of βq is at most
18π2/(7π2 − 24) = 3.94020382 . . . .

We sketch their proofs in Section 5 and discuss open problems on q-mathe-
matical constants in Section 6.

2. Analytic construction

We define the function

(4) fq(z) :=
∞∑
n=1

(−1)n

q2n−1 − z
,

which is meromorphic in the whole complex plane; compare also the definition
at z = 1 on the right-hand side of (1). Evidently fq(z) satisfies a simple linear
q-functional equation of order 1, which we do not need explicitly, but which
is at the bottom of the following formula
(5)

fq(q
−2n) = (−1)nq2n

(
fq(1)−

n∑
ν=1

(−1)ν

q2ν−1 − 1

)
for n ∈ N0 := N∪{0}.

(Empty sums or products should always be interpreted as 0 or 1, respectively.)
Furthermore, we will require later the Taylor coefficients of fq(z) at the origin:

(6)
f (ν)q (0)

ν!
= − qν+1

q2(ν+1) + 1
, where ν ∈ N0.

We next introduce the following auxiliary integral

(7) J (L,M,N) := 1

2πi

∮
|z|=1

∏L
l=1(z− q2l−1)

zM
∏N
n=1(1 − q2nz)

fq(z) dz,

where L,M,N ∈ N are parameters to be specified later, and the integration is



irrationality measures for certain q-mathematical constants 107

positively oriented. From the residue theorem we immediately see

J (L,M,N) = −
N∑
n=1

q2Mn ∏L
l=1(q

−2n − q2l−1)∏N
ν=1
ν 	=n

(1 − q2(ν−n))
· fq(q

−2n)

q2n

+
∑

(κ,μ,ν)∈N3
0

κ+μ+ν=M−1

1

κ!

(
d

dz

)κ L∏
l=1

(z− q2l−1)

∣∣∣∣
z=0

× 1

μ!

(
d

dz

)μ N∏
n=1

(1 − q2nz)−1

∣∣∣∣
z=0

· f
(ν)(0)

ν!
.

This and (5), (6) yield

J (L,M,N) = (−1)N+1
N∑
n=1

q2(M−L)n+n(n−1) ∏L
l=1(1 − q2l+2n−1)∏n−1

ν=1(q
2ν − 1) · ∏N−n

ν=1 (q
2ν − 1)

(8)

×
(
fq(1)−

n∑
ν=1

(−1)ν

q2ν−1 − 1

)
+

∑
κ+μ+ν=M−1

Pκ,μ,ν

q2(ν+1) + 1

with certain Pκ,μ,ν ∈ Z[q] not to be specified in more detail.
Next we would like to control the size of the factor

(9) Q∗(L,M,N) := (−1)N+1
N∑
n=1

q2(M−L)n+n(n−1) ∏L
l=1(1 − q2l+2n−1)∏n−1

ν=1(q
2ν − 1) · ∏N−n

ν=1 (q
2ν − 1)

appearing in (8) as the coefficient of fq(1).

Lemma 1. For q ∈ C, |q| > 1, we have

(10) |Q∗(L,M,N)| = |q|L2+2MN+O(1),

where the constant in O(1) depends on q at most.

Proof. The quotient of two successive summands in (9) is absolutely
bounded by γ1|q|−2M . (The letter γ1, as well as γ2, γ3, . . . later, depends
only on q but not on L,M,N .) Furthermore, the absolute value of the sum-
mand in (9) corresponding to n = N is gripped between γ2|q|L2+2MN and
γ3|q|L2+2MN , hence we get the required assertion.
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Lemma 2. Suppose M +N > L. Then, for q ∈ C, |q| > 1, we have

(11) |J (L,M,N)| = |q|−(2L+1)(M+N−L)−N(N+2)+O(M+N),

where the constant in O( · ) depends on q only.

Proof. If |z| > 1, the integrand in (7) has its poles at the points q2n−1,
n = L+ 1, L+ 2, . . .. For R ∈ N, R ≥ L, we see that the difference

(12)
1

2πi

∮
|z|=|q|2R

∏L
l=1(z− q2l−1)

zM
∏N
n=1(1 − q2nz)

fq(z) dz− J (L,M,N)

is equal to the sum of the residues at q2n−1, where n = L + 1, . . . , R, of
the integrand. Taking the estimate |fq(z)| ≤ γ4R|q|−2R on |z| = |q|2R into
account, we deduce∣∣∣∣ 1

2πi

∮
|z|=|q|2R

∏L
l=1(z− q2l−1)

zM
∏N
n=1(1 − q2nz)

fq(z) dz

∣∣∣∣ ≤ γ5R|q|2R(L−M−N)−N2−N .

Recalling our assumption M + N > L, the integral in (12) tends to 0 as
R → ∞ and we get

(13) J (L,M,N) =
∞∑

n=L+1

(−1)n
∏L
l=1(q

2n−1 − q2l−1)

q(2n−1)M
∏N
ν=1(1 − q2n+2ν−1)

.

Here the quotient of two successive summands is absolutely bounded by
≤ γ6|q|−2(M+N−L), and the first summand equals absolutely to

|q|−(2L+1)(M+N−L)−N(N+2),

up to a factor bounded above and below by two γ ’s. Thus, from (13) we
conclude with estimate (11).

Remark. By (10) and (11), Q∗ is large and J is small. Hence

P ∗(L,M,N) := Q∗(L,M,N)fq(1)− J (L,M,N)

satisfies the same asymptotic equality (10) as Q∗(L,M,N).
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3. Arithmetic constituents

As one sees from (9) and (8), both expressions Q∗(L,M,N) and
(14)
P ∗(L,M,N)

= (−1)N
N∑
n=1

q2(M−L)n+n(n−1) ∏L
l=1(1 − q2l+2n−1)∏n−1

ν=1(q
2ν − 1) · ∏N−n

ν=1 (q
2ν − 1)

n∑
ν=1

(−1)ν

q2ν−1 − 1

−
∑

κ+μ+ν=M−1

Pκ,μ,ν

q2(ν+1) + 1

are contained in Z(q). Our nearest aim is the search of a sufficiently small
common denominator of the rational approximants P ∗ and Q∗ constructed
above.

Let x be an indeterminate. Recall that cyclotomic polynomials

	l(x) :=
l∏

k=1
(k,l)=1

(x − e2πik/l), degx 	l(x) = ϕ(l) := l
∏
p|l

(
1 − 1

p

)
,

and only they appear as irreducible (over Q) factors of the polynomials xn−1:

(15) xn − 1 =
∏
l|n
	l(x), n ∈ N.

One of the ‘arithmetic’consequences of formula (15) is the fact that the product∏n
l=1	l(x) realizes the least common multiple of the polynomialsx−1, x2−1,

. . . , xn − 1, and this multiple is much better than the trivial one
∏n
l=1(x

l − 1)
since

degx

n∏
l=1

	l(x) =
n∑
l=1

ϕ(l) = 3

π2
n2 +O(n log n) as n → ∞

by classical Mertens’ formula. In what follows we will also require its vari-
ations (see, e.g., [13]):
(16)

n∑
μ=1

ϕ(2μ− 1) = 8

π2
n2 +O(n log n),

n∑
μ=1

ϕ(2μ) = 4

π2
n2 +O(n log n)

as n → ∞.
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Lemma 3. For any n = 0, 1, . . . , N and j = 1, . . . , n, we have

(17)

∏L
l=1(x

2(l+n)−1 − 1)

x2j−1 − 1
·

∏N
ν=1	2ν−1(x)∏L

ν=1	2ν−1(x)[L/(2ν−1)]
∈ Z[x].

Proof. It follows from the inclusions

(18)

∏L
l=1(x

2(l+n)−1 − 1)∏L
ν=1	2ν−1(x)[L/(2ν−1)]

=
∏L+n
μ=1(x

2μ−1 − 1)∏L
ν=1	2ν−1(x)[L/(2ν−1)] · ∏n

μ=1(x
2μ−1 − 1)

∈ Z[x].

and the fact that
x2j−1 − 1 =

∏
(2ν−1)|(2j−1)

	2ν−1(x)

divides
∏N
ν=1	2ν−1(x). In order to demonstrate (18), note that all irreducible

divisors of the factors x2μ−1−1,μ = 1, 2, . . . , L+n, have the form	2ν−1(x).
Since, for any integer K ,

ord	2ν−1(x)

K∏
μ=1

(x2μ−1 − 1) =
[
K + ν − 1

2ν − 1

]
,

the polynomial 	2ν−1(x) enters the fraction (18) with exponent[
L+ n+ ν − 1

2ν − 1

]
−

[
L

2ν − 1

]
−

[
n+ ν − 1

2ν − 1

]
≥ 0,

and the lemma follows.

Lemma 4. Let N ≥ L. For each v = 1, 2, . . . ,M , we have
(19) ∏N

k=1(x
k − 1)∏L

ν=1	2ν−1(x)[L/(2ν−1)]
·
∏N
k=1(x

k + 1) · ∏M
μ=[N/2]+1	2μ(x

2)

x2v + 1
∈ Z[x].

Proof. The assumption N ≥ L implies

(20)

∏N
k=1(x

k − 1)∏L
ν=1	2ν−1(x)[L/(2ν−1)]

∈ Z[x].

Indeed,
N∏
k=1

(xk − 1) =
N∏
μ=1

	μ(x)
[N/μ]
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and the latter product is divisible by the denominator in (20). This shows that
the first factor in (19) lies in Z[x]. Furthermore, all cyclotomic polynomials
	2μ(x

2) for μ = 1, . . . , [N/2] divides
∏N
k=1(x

k + 1), and∏M
μ=1	2μ(x

2)

x2v + 1
∈ Z[x].

This completes the proof.

From Lemmas 3, 4 and the estimate

−(
2(M − L)n+ n(n− 1)

)
≤ e(L,M,N) :=

{ 0 if M ≥ L,

(L−M)(L−M + 1) if M ≤ L,

for n = 0, 1, . . . , N , it follows that our choice for the denominators of (9) and
(14) can be

(21) D(L,M,N)

:= qe(L,M,N) ·
∏N
k=1(q

2k − 1)∏L
ν=1	2ν−1(q)[L/(2ν−1)]

·
N∏
ν=1

	2ν−1(q) ·
M∏

μ=[N/2]+1

	2μ(q
2),

provided N ≥ L. Namely, we obtain

Lemma 5. If N ≥ L, then with the choice given in (21)

(22) D(L,M,N)Q∗(L,M,N) ∈ Z[q]

and D(L,M,N)P ∗(L,M,N) ∈ Z[q].

To compute the asymptotic behaviour of |D(L,M,N)| (equivalently, of
the degree of (21)) we will require

Lemma 6. For large N ∈ N one has

(23)
N∑
ν=1

[
N

2ν − 1

]
ϕ(2ν − 1) = N2

3
+O(N log2 N).

Proof. Define K = [N/ log2 N ] ∈ N, hence K−1 = o(1) and K = o(N)
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as N → ∞. We clearly have

N∑
ν=1

[
N

2ν − 1

]
ϕ(2ν − 1) =

∞∑
ν=1

[
N

2ν − 1

]
ϕ(2ν − 1)

=
∞∑
k=1

k
∑

N/(k+1)<2ν−1≤N/k
ϕ(2ν − 1) =

∞∑
k=1

∑
2ν−1≤N/k

ϕ(2ν − 1)

=
K∑
k=1

∑
2ν−1≤N/k

ϕ(2ν − 1)+
∞∑

k=K+1

∑
2ν−1≤N/k

ϕ(2ν − 1) =: �1 +�2.

In �2 we estimate trivially each inner sum by
∑

ν≤N/k(2ν − 1) ≤ (N/k)2,
hence

�2 ≤ N2
∞∑

k=K+1

1

k2
= O

(
N2

K

)
= O(N log2 N) as N → ∞.

In contrast to this, �1 produces the main term. Indeed, from the first relation
in (16) we deduce

�1 =
K∑
k=1

∑
ν≤(N+k)/(2k)

ϕ(2ν − 1) =
K∑
k=1

(
8

π2

(
N + k

2k

)2

+O

(
N

k
log

N

k

))

= 2N2

π2

K∑
k=1

1

k2
+O

(
N(logK)(logN)

)
= 2N2

π2

∞∑
k=1

1

k2
+O

(
N2

K

)
+O

(
N(logK)(logN)

)
= 2N2

π2
ζ(2)+O(N log2 N)

that, in view of evaluation ζ(2) = π2/6, gives the desired result.

Lemma 7. Let L = N and M = [αN ] for certain real α > 0. Then

(24)

degq D(L,M,N) = degq D(N, [αN ], N)

=
(
χ(α)+ 2

3
+ 6 + 8α2

π2

)
N2 +O(N log2 N)
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as N → ∞, where

χ(α) :=
{

0 if α ≥ 1,

(1 − α)2 if α ≤ 1.

Proof. From definition (21), Lemma 6 and asymptotic formulae (16) we
obtain

degq D(N, [αN ], N)

= e(N, [αN ], N)+N(N + 1)−
N∑
ν=1

[
N

2ν − 1

]
ϕ(2ν − 1)

+
N∑
ν=1

ϕ(2ν − 1)+ 2
[αN]∑

μ=[N/2]+1

ϕ(2μ)

=
(
χ(α)+ 1 − 1

3
+ 8

π2
+ 8

π2
α2 − 8

π2
· 1

4

)
N2 +O(N log2 N)

that after clear reduction becomes (24).

4. Integer linear forms and irrationality measures

Our next lemma provides us with upper bounds for irrationality exponents. Sev-
eral such lemmas can be found in the literature (compare, e.g., Chudnovsky [7]
or Hata [10]). Of course, it depends highly on the information available in any
concrete situation, which one is the most appropriate to be applied. For our
purpose, the following lemma is very convenient.

Lemma 8. Given ω ∈ R, there exists an infinite sequence of pairs (P (N),
Q(N)) ∈ Z × N with

(25) |Q(N)ω − P(N)| = e−ψ(N), N = 1, 2, . . . ,

where the function ψ : N → R+ satisfies the following conditions:

(i) ψ(N) → ∞ as N → ∞;

(ii) lim sup
N→∞

ψ(N + 1)

ψ(N)
≤ 1;

(iii) ρ := lim sup
N→∞

logQ(N)

ψ(N)
> 0.

Then ω is irrational and μ(ω) ≤ 1 + ρ holds.
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Remark 1. Clearly, condition (i) is enough to guarantee ω /∈ Q, whereas
(ii) and (iii) are needed for the main quantitative part of the assertion. Note
also that μ(ω) ≥ 2 implies a posteriori ρ ≥ 1 in (iii).

Remark 2. Most lemmas of this kind proved usually deal with the case,
whenψ(N) linearly depends onN . In contrast to this, our functionψ is rather
unrestricted, except for condition (ii), which says that it should not increase
too fast: everything polynomial-like is right.

Proof of Lemma 8. Let (P,Q) ∈ Z × N be given with Q large enough.
Define N as smallest positive integer satisfying 2Q ≤ eψ(N). From

|(Qω − P)Q(N)| = |Q(Q(N)ω − P(N))+ (QP (N)− PQ(N))|
we see that

|(Qω − P)Q(N)| ≥
{

1 −Qe−ψ(N) if QP(N) 	= PQ(N),

Qe−ψ(N) if QP(N) = PQ(N),

where we used (25). Hence in both cases we find∣∣∣∣ω − P

Q

∣∣∣∣ ≥ 1

Q(N)eψ(N)
≥ 1

e(1+ρ+ε/2)ψ(N) ≥ 1

e(1+ρ+ε)ψ(N−1)

using hypotheses (ii) and (iii). These inequalities yield∣∣∣∣ω − P

Q

∣∣∣∣ ≥ (2Q)−1−ρ−ε,

hence μ(ω) ≤ 1 + ρ + ε. But since ε ∈ R+ was arbitrary we have the truth of
our claim.

Proof of Theorem 1. As in Lemma 7, we take L = N and M = [αN ],
and omit the dependence on the arguments L,M for linear forms J and their
coefficientsQ∗ and P ∗. (In order to simplify our ‘theoretic’ considerations we
omit the choice L = [α′N ] for real α′ ranging in the interval 0 < α′ < 1,
since it always leads to a worse quantitative result.) Lemmas 1 and 2 become

(26) |J (N)| = |q|−(1+2α)N2+O(N), |Q∗(N)| = |q|(1+2α)N2+O(1),

and we have to transform the linear forms in 1 and fq(1),

J (N) = Q∗(N)fq(1)− P ∗(N),
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into linear forms with coefficients in Z[q] by multiplying them by D(N) :=
D(N, [αN ], N) from (21). By Lemma 7 we find that

(27) |D(N)| = |q|(χ(α)+2/3+(6+8α2)/π2)N2+O(N log2 N),

while Lemma 5 guarantees that Q(N) := D(N)Q∗(N) ∈ Z[q] and P(N) :=
D(N)P ∗(N) ∈ Z[q]. With these rational integers P(N),Q(N) we see from
(26) and (27) that

(28) |Q(N)| = |q|(5/3+2α+χ(α)+(6+8α2)π−2)N2+O(N log2 N)

and

(29)
|Q(N)fq(1)− P(N)| = |D(N)J (N)|

= |q|−(1/3+2α−χ(α)−(6+8α2)π−2)N2+O(N log2 N).

Hence we may apply Lemma 8 with

ψ(N) :=
(

1

3
+ 2α − χ(α)− 6 + 8α2

π2

)
N2 log |q| +O(N log2 N)

and

ρ := 5/3 + 2α + χ(α)+ (6 + 8α2)π−2

1/3 + 2α − χ(α)− (6 + 8α2)π−2

to prove

μ(fq(1)) ≤ 2(1 + 2α)

1/3 + 2α − χ(α)− (6 + 8α2)π−2
.

Choosing simply α = 1 we obtain

μ(fq(1)) ≤ 18π2

7(π2 − 6)
= 6.55854710 . . . ,

while the optimal choice

α = 1

2

√
96 + 35π2

3(8 + π2)
− 1

2
= 0.93478179 . . .

leads us to the estimate given in Theorem 1.

Using (28) and (29) more directly we can easily get the assertion indicated
in the remark after Theorem 1.
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5. Irrationality measures for λq and βq

In this section we sketch our proofs of Theorems 2 and 3.
Proof of Theorem 2. Replace the function fq(z) in the analytic construc-

tion by

f̃q(z) :=
∞∑
n=1

1

q2n−1 − z
.

Since

f̃q(q
−2n) = q2n

(
f̃q(1)−

n∑
ν=1

1

q2ν−1 − 1

)
for n ∈ N0

and
f̃ (ν)q (0)

ν!
= qν+1

q2(ν+1) − 1
for ν ∈ N0,

we obtain the linear forms

Q̃∗(L,M,N)f̃q(1)− P̃ ∗(L,M,N) := J̃ (L,M,N)

:= 1

2πi

∮
|z|=1

∏L
l=1(z− q2l−1)

zM
∏N
n=1(1 − q2nz)

f̃q(z) dz

of about the same shapes as before, in (9) and (14). The estimates of Lemmas 1
and 2 remain valid for the tilded objects, but the denominator choice is different
(cf. (21)):

D̃(L,M,N)

:= qe(L,M,N) ·
∏N
k=1(q

2k − 1)∏L
ν=1	2ν−1(q)[L/(2ν−1)]

·
N∏
ν=1

	2ν−1(q) ·
M∏

μ=N+1

	2μ(q)

provided L ≤ N and M ≤ 2N . Then

degq D̃(N, [αN ], N) =
(
χ(α)+ 2

3
+ 4(1 + α2)

π2

)
N2 +O(N log2 N)

as N → ∞, hence

μ(λq) = μ(f̃q(1)) ≤ 1 + ρ := 2(1 + 2α)

1/3 + 2α − χ(α)− 4(1 + α2)π−2
.

The simplest choice α = 1 gives

μ(λq) ≤ 18π2

7π2 − 24
= 3.94020382 . . . ,
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while taking α = √
5/4 + π2/6−1/2 = 1.20145057 . . . decreases the estim-

ate to 3.89810036 . . . .

Proof of Theorem 3. To investigate βq arithmetically via Borwein’s
method, we consider the meromorphic function

hq(z) :=
∞∑
n=1

(−1)n

qn + z

with the property hq(1) = −βq , and use the integral

(30) J (L,M,N) := 1

2πi

∮
|z|=1

∏L
l=1(z+ ql)

zM
∏N
n=1(1 − qnz)

hq(z) dz.

Then we find as in (8) that
(31)
J (L,M,N)

= (−1)N+1
N∑
n=1

q(M−L)n+n(n−1)/2 ∏L
l=1(q

l+n + 1)∏n−1
ν=1(q

ν − 1) · ∏N−n
ν=1 (q

ν − 1)

(
hq(1)−

n∑
ν=1

(−1)ν

qν + 1

)
+

∑
κ+μ+ν=M−1

Pκ,μ,ν

qν+1 + 1

with certain Pκ,μ,ν ∈ Z[q]. From

(32) Q∗(L,M,N) := (−1)N+1
N∑
n=1

q(M−L)n+n(n−1)/2 ∏L
l=1(q

l+n + 1)∏n−1
ν=1(q

ν − 1) · ∏N−n
ν=1 (q

ν − 1)

we get, by the usual considerations,

(33) |Q∗(L,M,N)| = |q|L(L+1)/2+MN+O(1).

In |z| > 1, the integrand in (30) has its (simple) poles exactly at z = −qn for
n > L. Hence letting R ∈ N, R ≥ L, we find

(34)
1

2πi

∮
|z|=|q|R+1/2

· · · − J (L,M,N) =
R∑

n=L+1

(−1)n
∏L
l=1(q

l − qn)

(−qn)M ∏N
ν=1(1 + qn+ν)

with the same integrand as in (30). Since on |z| = |q|R+1/2 we have |hq(z)| 

R|q|−R , we estimate∣∣∣∣ 1

2πi

∮
|z|=|q|R+1/2

· · ·
∣∣∣∣ 
 R|q|(R+1/2)(L−M−N)−N(N+1)/2
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to deduce from (34) (assuming M +N > L)

J (L,M,N) = (−1)M+1
∞∑

n=L+1

(−1)n
∏L
l=1(q

l − qn)

qMn
∏N
ν=1(1 + qn+ν)

yielding

(35) |J (L,M,N)| = |q|−N(N+1)/2−(L+1)(M+N−L)+O(1).

With Q∗(L,M,N) defined in (32), formula (31) can be written as

J (L,M,N) = Q∗(L,M,N)hq(1)− P ∗(L,M,N),

where
(36)

P ∗(L,M,N) = (−1)N+1
N∑
n=1

q(M−L)n+n(n−1)/2 ∏L
l=1(q

l+n + 1)∏n−1
ν=1(q

ν − 1) · ∏N−n
ν=1 (q

ν − 1)

n∑
ν=1

(−1)ν

qν + 1

−
∑

κ+μ+ν=M−1

Pκ,μ,ν

qν+1 + 1
.

We now do a “denominator search” for Q∗(L,M,N) and P ∗(L,M,N).

Lemma 9. For each t ∈ N we have

t∏
s=1

(qs + 1) =
∏

(i,j)∈N0×(2N0+1)

	21+i j (q)
[(t+2i j )/(2i+1j)].

Remark. Note that [(t + 2ij )/(2i+1j)] = 0 if and only if 2ij > t .

Proof. Let e(s) ∈ N0 denote the multiplicity of 2 in s. Then we have

qs + 1 =
∏
j |s

s/j odd

	2j (q) =
∏

j |(s/2e(s))
	21+e(s)j (q).

From this, putting I (t) := [(log t)/(log 2)], we deduce

t∏
s=1

(qs + 1) =
t∏
s=1

∏
j :2e(s)j |s

	21+e(s)j (q) =
I (t)∏
i=0

t∏
s=1
e(s)=i

∏
j :2i j |s

	21+i j (q),
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where we note that j is automatically odd. This formula can be continued as

t∏
s=1

(qs + 1) =
I (t)∏
i=0

∏
j∈2N0+1
j≤t/2i

	21+i j (q)
[t/(21+i j )+1/2]

since the number of k ∈ N0 satisfying 2ij (2k+1) ≤ t is just [t/(21+ij )+1/2].

From Lemma 9 we see that

(37)
L∏
l=1

(ql+n + 1) =
∏
(i,j)

	21+i j (q)
[(L+n)/(21+i j )+1/2]−[n/(21+i j )+1/2]

forn = 1, . . . , N , and every exponent here is at least [L/(21+ij )] by [x]−[y] ≥
[x − y] for any x, y ∈ R. On the other hand, we know

n−1∏
ν=1

(qν − 1) ·
N−n∏
ν=1

(qν − 1) =
n−1∏
d=1

	d(q)
[(n−1)/d] ·

N−n∏
d=1

	d(q)
[(N−n)/d](38)

=
N−1∏
d=1

	d(q)
[(n−1)/d]+[(N−n)/d]

for n = 1, . . . , N . Note that in the last product the dth exponent is at most
[(N − 1)/d].

Assuming M ≥ L (implying our earlier assumption M + N > L) and
L ≥ N−1, we therefore see from (32) that we can get rid of the denominators
in Q∗(L,M,N) by multiplying with

(39)
N−1∏
d=1
d odd

	d(q)
[(N−1)/d].

Namely, if d < N is even, we can write it uniquely as d = 21+ij with
(i, j) ∈ N0 ×(2N0 +1) and see from (37), (38) and the corresponding remarks
that all cyclotomic polynomials	d(q) with even d cancel automatically from
the denominator in the summands of Q∗(L,M,N) in (32).

To get rid of all denominators in (36), we see after our last considerations
that it is enough to multiplyP ∗(L,M,N) apart from (39) by the least common
multiple of qν + 1, where ν = 1, 2, . . . ,max(M,N) = M , which is exactly
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j=1	2j (q). Denoting

D(L,M,N) :=
N−1∏
d=1
d odd

	d(q)
[(N−1)/d] ·

M∏
j=1

	2j (q)

we deduce from Lemma 6

(40) |D(L,M,N)| = |q|(1/3+(2α/π)2)N2+O(N log2 N)

supposing M = [αN ] with some fixed real α ≥ 1.
Assuming finally L = N , we obtain from (33) and (40)

|Q| := |DQ∗| = |q|(1/2+α+1/3+(2α/π)2)N2+O(N log2 N)

and from (35) and (40)

|DJ | = |q|−(1/2+α−1/3−(2α/π)2)N2+O(N log2 N).

Lemma 8 leads to

μ(βq) = μ(hq(1)) ≤ 1 + 2α

1/6 + α − (2α/π)2
=: χ(α),

and χ(α) is strictly increasing in α ≥ 1, hence Theorem 3 follows with the
choice α = 1.

6. Some open problems

In this section, we will assume that a complex number q satisfies |q| < 1 (i.e.,
we replace the old values of q by 1/q).

The series

(41) ζq(k) :=
∞∑
n=1

nk−1 qn

1 − qn
=

∞∑
m=1

σk−1(m)q
m,

where σk−1(n) :=
∑
d|n
dk−1,

which are strongly connected with the modular world for even integers k ≥ 4,
may be considered as natural q-analogues of the values of Riemann’s zeta
function ζ(k). This analogy motivates arithmetic investigations of the values
of ζq(k), for instance, if 1/q ∈ Z \ {0,±1} or 1/q is a Pisot or Salem number;
several results in this direction may be found in [3], [4], [12]. An interesting
problem is to investigate arithmetic properties ofq-zeta values (41) as functions
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of q. The last news concerning the problem [14] is the linear independence
over C(q) of all series in (41) (k = 1, 2, . . .) and algebraic independence over
C(q) of the series in the following collections: {ζq(1), ζq(k)}, where k ≥ 2
is arbitrary, and {ζq(1), ζq(2), ζq(4), ζq(6)}. Another curious object is the q-
analogue of Catalan’s constant

Gq :=
∞∑
n=1

(−1)n−1q2n−1

(1 − q2n−1)2
,

on which we are unaware of any arithmetic information for its values at algeb-
raic points q with 0 < |q| < 1.

It is also interesting to look for linear independence results on the above q-
mathematical constants with different values of the parameter q, for instance,
to prove linear independence of

∞∑
n=1

1

2n − 1
and

∞∑
n=1

1

3n − 1
.

Such problems are closely related to elliptic zeta values introduced in [9]:

ζq,r (k) =
∞∑
n=1

nk−1 qn − (−1)krn

(1 − qn)(1 − rn)
, |q| < 1, |r| < 1,

especially for odd k ≥ 1 (since ζq,r (k) = ζq(k) − ζr(k) for even k). These
functions admit very nice functional equations. Even getting arithmetic results
for the elliptic harmonic series (k = 1)

ζq,r (1) =
∞∑
n=1

qn + rn

(1 − qn)(1 − rn)
= ζq(1)+ ζr(1)+ 2

∞∑
a,b=1
(a,b)=1

ζqarb (1)

is of interest.
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