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SUB-SOLUTIONS AND MEAN-VALUE OPERATORS
FOR ULTRAPARABOLIC EQUATIONS ON

LIE GROUPS

CHIARA CINTI

Abstract

The aim of this paper is to provide a theory of sub-solutions for a class of hypoelliptic ultraparabolic
operators L , by using mean-value operators on the level sets of the fundamental solution of L .

1. Introduction

In this paper we investigate several questions in Potential Theory related to
a class of hypoelliptic ultraparabolic operators L with underlying homogen-
eous Lie group structures. Our class is contained in the one of the Hörmander
operators and was singled out by Kogoj and Lanconelli in [9]. It contains, e.g.,
the heat operators on Carnot groups and the Kolmogorov type operators stud-
ied in [12]. We are mainly interested in a characterization of L -subharmonic
functions in terms of suitable mean-value operators and in representation for-
mulas. We also characterize the bounded-above L -subharmonic functions in
RN+1 and their related L -Riesz measures. These results extend to our class of
operators several theorems proved by Watson in [14], [15], [16] for temper-
atures and subtemperatures. They also extend some results first proved in [7],
[8] for classical parabolic operators with smooth coefficients.

We consider operators of the following type

(1.1) L =
m∑

j=1

X2
j + X0 − ∂t in RN+1,

where the Xj ’s are smooth vector fields on RN , i.e. denoting z = (x, t) the
point in RN+1

Xj(x) =
N∑

k=1

ak
j (x)∂xk

, j = 0, . . . , m,
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where any ak
j is a C∞ function. For our purposes, in the sequel we also consider

the Xj ’s as vector fields in RN+1. We denote by Y the vector field in RN+1

Y := X0 − ∂t ,

and by L0 the operator in RN

L0 :=
m∑

j=1

X2
j + X0.

We next state our main assumptions:

(H.1) there exists a homogeneous Lie group L = (RN+1, ◦, dλ) such that
(i) X1, . . . , Xm, Y are left invariant on L;

(ii) X1, . . . , Xm are dλ-homogeneous of degree one and Y is dλ-
homogeneous of degree two;

(H.2) for every (x, t), (ξ, τ ) ∈ RN+1 with t > τ , there exists an L -
admissible path η : [0, T ] −→ RN+1 such that η(0) = (x, t),
η(T ) = (ξ, τ ). The curve η is called L -admissible if it is absolutely
continuous and satisfies

η′(s) =
m∑

j=1

λj (s)Xj (η(s)) + λ0(s)Y (η(s)), a.e. in [0, T ],

for suitable piecewise constant real functions λ0, λ1, . . . λm, λ0 ≥ 0.

The operators of the form (1.1) with the assumptions (H.1) and (H.2) have
been introduced by Kogoj and Lanconelli in [9].

The aim of this paper is to provide a theory of L -subharmonic functions
by using mean-value operators on the level sets of �, the fundamental solution
of L . More precisely, the contents of the paper are the following ones. After
collecting in Section 2 some basic results of Potential Theory for L , in Sec-
tion 3 we recall some mean-value representation formulas and we present some
properties of L -harmonic functions with respect to mean-value integral oper-
ators Mr and Mr . In Section 4, we show some results on upper semi-continuous
functions satisfying solid sub-mean property. In Section 5, we prove some char-
acterizations of L -subharmonic functions in terms of averaging operators Mr

and Mr . Finally, in Section 6 we give a characterization of the bounded-above
L -subharmonic functions in RN+1 and their related L -Riesz measures.
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2. Basic potential theory for L

We first recall some consequences of hypotheses (H.1) and (H.2). One of these
is the Hörmander condition:

rank Lie{X1, . . . , Xm, Y }(z) = N + 1, ∀ z ∈ RN+1;
hence L and L0 are hypoelliptic operators in RN+1 and in RN respectively (see
[9, Proposition 10.1]). From (H.1) and (H.2) it follows also that the composition
law ◦ is euclidean in the “time” variable, i.e.

(x, t) ◦ (ξ, τ ) = (S(x, t, ξ, τ ), t + τ)

for a suitable smooth function S, and the dilation dλ takes the following form

dλ(x, t) = (Dλ(x), λ2t) = (λσ1x1, . . . , λ
σN xN, λ2t).

The natural number

Q =
N∑

k=1

σk + 2

is the homogeneous dimension of L. We shall assume that Q ≥ 5 so that
Q − 2, the homogeneous dimension of RN with respect to Dλ, will be ≥ 3.
We shall denote by | · | a fixed dλ-homogeneous norm on L, that is a function
| · | : RN+1 −→ [0, ∞[ with the following properties: | · | ∈ C∞(RN+1 \
{(0, 0)}) ∩ C(RN+1), |dλ(z)| = λ|z|, |z−1| = |z|, |z| = 0 iff z = 0.

In [9] it is proved that L has a global fundamental solution � ∈ C∞(RN+1 \
{(0, 0)}) such that L � = −δ. Moreover �(x, t) > 0 iff t > 0. If we put

�(z, ζ ) := �(ζ−1 ◦ z),

since L is left translation invariant, we have L �(·, ζ ) = −δζ for every
ζ ∈ RN+1.

Integrating � with respect to the t variable one obtains a fundamental solu-
tion γ with pole at x = 0 for the operator L0 (see [9, Section 3]):

γ (x) :=
∫ ∞

0
�(x, t) dt;

γ is smooth and strictly positive out of the origin.
Throughout the paper, � will always denote an open subset of RN+1, even

if we do not mention this. We call L -harmonic in � every smooth function
u : � −→ R such that L u = 0. We shall denote by H L (�) the linear space
of L -harmonic functions in �.
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We say that a bounded open set V ⊂ RN+1 is L -regular if for any ϕ ∈
C(∂V ) there exists a unique function HV

ϕ ∈ H L (V ) such that

lim
z→z0

HV
ϕ (z) = ϕ(z0), for every z0 ∈ ∂V,

and HV
ϕ ≥ 0 whenever ϕ ≥ 0, as the classical Picone’s maximum principle

holds for L (see [9, Proposition 2.1]). Then, if V is L -regular, for every fixed
z ∈ V the map

C(∂V ) � ϕ �→ HV
ϕ (z) ∈ R

defines a linear positive functional on C(∂V ). As a consequence, there exists
a Radon measure μV

z supported in ∂V , such that

HV
ϕ (z) =

∫
∂V

ϕ(ζ ) dμV
z (ζ ), for every ϕ ∈ C(∂V ).

We call μV
z the L -harmonic measure related to V and z.

We say that u : � −→ [−∞, ∞[ is L -subharmonic in � (u ∈ S L
(�)) if

u is upper semi-continuous (u.s.c.), u > −∞ in a dense subset of �, and for
every open L -regular set V ⊂ V ⊂ � and for every z ∈ V ,

u(z) ≤
∫

∂V

u(ζ ) dμV
z (ζ ).

It is easy to prove that a function u : � −→ [−∞, ∞[ u.s.c. and finite in a
dense subset of � is L -subharmonic in � if

u ≤ HV
ϕ in V,

for every V open L -regular set, V ⊂ �, and for every ϕ ∈ C(∂V ) such that
ϕ ≥ u|∂V . Proceeding as in [13, Theorem 1], we can obtain the following
further characterization of L -subharmonic functions.

Proposition 2.1. Let u : � −→ [−∞, ∞[ be an u.s.c. function. Then, if
u ∈ S L

(�), we have u ∈ L1
loc(�) and L u ≥ 0 in the distribution sense.

Remark 2.2. By Proposition 2.1, if u ∈ S L
(�) then there exists a Radon

measure μ in � such that L u = μ. We shall call μ the L -Riesz measure
related to u.

We obviously have S L
(�) ∩ (−S L

(�)) = H L (�).
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In the sense of the abstract Potential Theory (see, e.g., [6]), the map RN+1 ⊇
� �→ H L (�) is a harmonic sheaf and (RN+1, H L ) is a �-harmonic space.
The second statement is a consequence of the following properties:

– the L -regular sets form a basis of the Euclidean topology (see [5, Co-
rollary 5.2]);

– H L satisfies the Doob convergence property, i.e. the pointwise limit
of any increasing sequence of L -harmonic functions on any open set is
L -harmonic whenever it is finite on a dense set (see [9, Proposition 7.4]);

– for every fixed ζ = (ξ, τ ) ∈ RN+1, the functions z �→ −�(ζ−1 ◦ z)

and (x, t) �→ −γ (ξ−1 ◦ x) are L -subharmonic in RN+1 and it easy to
show that the families {z �→ −�(ζ−1 ◦ z) | ζ ∈ RN+1}, {(x, t) �→
−γ (ξ−1 ◦ x) | ξ ∈ RN } separate the points of RN+1.

3. Mean-value formulas and L -harmonic functions

Given z ∈ RN+1 and r > 0, we define the L -ball of center z and radius r as
follows:

�r(z) :=
{
ζ ∈ RN+1

∣∣∣∣ �(ζ−1 ◦ z) >
1

rQ−2

}
.

Obviously, �r(z) = z◦�r(0). The properties of the L -balls stated in the next
proposition directly follow from the properties of the fundamental solution �

proved in [9].

Proposition 3.1. For every z ∈ RN+1, the L -balls centered in z have the
following properties:

(i) for every r > 0, �r(z) is a bounded nonempty set;

(ii) �r(z) shrinks to {z} as r goes to 0, that is
⋂

r>0 �r(z) = {z};
(iii) if we denote by |�r(z)| the Lebesgue measure of �r(z), then

lim
r→0+

|�r(z)|
rQ−2

= 0;

(iv) for almost every r > 0, ∂�r(z) is a N -dimensional C∞ manifold;

(v) if z = (x, t), then
⋃

r>0 �r(z) = RN × ]−∞, t[.

If � ⊆ RN+1 is an open set containing 0, and v ∈ C2(�), we have

(3.1) v(0) = Mr (v)(0) − Nr (L v)(0), for every �r(0) ⊆ �;
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where

Mr (v)(0) :=
∫

∂�r (0)

K (ζ )v(ζ ) dσ(ζ ), with K (ζ ) := |∇L �(0, ζ )|2
|∇ζ�(0, ζ )| ;

Nr (L v)(0) :=
∫

�r(0)

(
�(0, ζ ) − 1

rQ−2

)
L v(ζ ) dζ.

Hereafter we denote by ∇L the vector valued differential operator

∇L = (X1, . . . , Xm),

and ∇x = (∂x1 , . . . , ∂xN
).

Formula (3.1) is a particular version of the Green representation theorem for
L . In order to get it, we proceed as in [11, Theorem 1.5], using the properties
of fundamental solution � showed in [9], in particular the inequality (5.1) and
the identity (6.1), and writing L in the following divergence form

L = div(A∇x) + Y,

where A is a suitable N × N matrix, and Y is divergence free.
Let z ∈ RN+1. We apply (3.1) at the function vz(ζ ) = u(z ◦ ζ ), and using

the invariance of L w.r.t. the left translations on L we get
(3.2)

u(z) =
∫

∂�r (0)

K (ζ )u(z ◦ ζ ) dσ(ζ ) −
∫

�r(z)

(
�(ζ−1 ◦ z) − 1

rQ−2

)
L u(ζ ) dζ

=: Mr (u)(z) − Nr (L u)(z), for every �r(z) ⊆ z ◦ �.

Setting r = l in (3.2), multiplying both sides by lQ−3 and integrating between
0 and r give

(3.3) u(z)
rQ−2

Q − 2
=

∫ r

0
lQ−3Ml(u)(z) dl −

∫ r

0
lQ−3Nl(L u)(z) dl,

then, by means of Federer’s co-area formula, we obtain
(3.4)

u(z) = 1

rQ−2

∫
�r(z)

K(ζ−1 ◦ z)u(ζ ) dζ − Q − 2

rQ−2

∫ r

0
lQ−3Nl(L u)(z) dl

=: Mr(u)(z) − Nr(L u)(z), for every �r(z) ⊆ z ◦ �,

where
K(ζ−1 ◦ z) = K(z, ζ ) := |∇L �(z, ζ )|2

�2(z, ζ )
.
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We explicitly note that the kernel K is invariant w.r.t. the left translation on L,
unlike K . Let z = (x, t) be fixed. We have K(z, ·) ≥ 0 in RN+1, K(z, ·) ∈
C∞({(ξ, τ ) ∈ RN+1 | τ < t}). By [9, Lemma 7.3], the set

� := {ζ = (ξ, τ ) ∈ RN+1 | τ < t, K(z, ζ ) = 0}
does not contain interior points.

Now, let � ⊆ RN+1 be an arbitrary open set. By comparing (3.3) with (3.4),
we deduce that, if u ∈ C2(�),
(3.5)

Mr(u)(z) = Q − 2

rQ−2

∫ r

0
lQ−3Ml(u)(z) dl, for every �r(z) ⊆ �.

We stress that, by a standard argument of approximation, (3.5) also holds if u

is u.s.c.
Moreover, from (3.2) and (3.4) it follows that any L -harmonic function in

� satisfies the mean value formulas

u(z) = Mr (u)(z) and u(z) = Mr(u)(z),

for every z ∈ � and r > 0 such that �r(z) ⊆ �. If u ∈ C(�), also the converse
implication of this result is true. Indeed we have the following generalization
to the classical Koebe theorem.

Theorem 3.2. Let u ∈ C(�) be such that

(3.6) u(z) = Mr (u)(z), for every �r(z) ⊆ �.

Then u ∈ C∞(�) and L u = 0. An analogous result holds if

(3.7) u(z) = Mr(u)(z), for every �r(z) ⊆ �.

In order to prove this theorem, we need a lemma. Let J ∈ C∞
0 (RN+1),

J ≥ 0 be such that supp J ⊆ B(0, 1) and
∫

RN+1 J = 1. Let � ⊆ RN+1 be an
open set, and let u ∈ L1

loc(�). For ε > 0, we define the ε-L -mollified of u in
� as follows

uε : D�
ε → R

z �→
∫

�

u(ζ )J
(
dε−1(z ◦ ζ−1)

)
ε−Q dζ,

where D�
ε = {

ζ ∈ RN+1
∣∣ B(ζ−1, ε) ⊂ �−1

}
. It is a standard matter to show

that uε ∈ C∞(D�
ε ), and uε −→ u in L1

loc(�) as ε → 0. We next prove the so
called solid sub-mean property of uε (see Section 4).
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Lemma 3.3. Let u : � −→ [−∞, ∞[ be an u.s.c. function, u ∈ L1
loc(�).

If u(z) ≤ Mr(u)(z) for every �r(z) ⊆ �, then uε(z) ≤ Mr(uε)(z) for every
�r(z) ⊆ D�

ε .

Proof. For �r(z) ⊆ D�
ε , we have

Mr(uε)(z)

=
∫

B(0,ε)

J (dε−1(η)) ε−Q

(
1

rQ−2

∫
�r(z)

K(ζ−1 ◦ z)u(η−1 ◦ ζ ) dζ

)
dη

=
∫

B(0,ε)

J (dε−1(η))ε−QMr(u)(η−1 ◦ z) dη

(�r(η
−1 ◦ z) ⊆ B(0, ε) ◦ D�

ε ⊆ �)

≥
∫

B(0,ε)

J (dε−1(η))ε−Qu(η−1 ◦ z) dη = uε(z),

and the assertion follows.

Proof of Theorem 3.2. It easily follows from (3.5) that (3.6) is equivalent
to (3.7). Now, if u ∈ C∞(�) satisfies (3.6), then from (3.2) we obtain

0 = Nr (L u)(z) =
∫

�r(z)

(
�(ζ−1 ◦ z) − 1

rQ−2

)
L u(ζ ) dζ,

and so L u = 0. Then, it suffices to prove that u is smooth. If we show
that L u = 0 in the distribution sense on �, the assertion follows from the
hypoellipticity of L . From (3.7) and Lemma 3.3, we get uε(z) = Mr(uε)(z)

for every �r(z) ⊆ D�
ε . So the sequence of (1/n)-L -mollified {u1/n}n is such

that L u1/n = 0 in D�
1/n and u1/n −→ u per n → ∞ uniformly on compact

subsets of �. For every ϕ ∈ C∞
0 (�), we have

∫
�

u(ζ )L ∗ϕ(ζ ) dζ = lim
n→∞

∫
D�

1/n∩supp ϕ

L u1/n(ζ )ϕ(ζ ) dζ = 0,

and the smoothness of u is proved.

We also show another property of the ε-L -mollified.

Proposition 3.4. Let u ∈ S L
(�). Then uε is L -subharmonic in D�

ε .

Proof. Since uε ∈ C∞(D�
ε ), it is enough to prove that L uε ≥ 0 in the
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weak sense of distribution. Let ϕ ∈ C∞
0 (D�

ε ), ϕ ≥ 0. We have

〈L uε, ϕ〉 =
∫

D�
ε

uε(z)L
∗ϕ(z) dz

=
∫

B(0,ε)

(∫
D�

ε

u(η−1 ◦ z)L ∗ϕ(z) dz

)
J (dε−1(η))ε−Q dη

=
∫

B(0,ε)

(∫
�

u(ζ )L ∗[ϕ(η ◦ ζ )] dζ

)
J (dε−1(η))ε−Q dη ≥ 0,

and the assertion is proved.

As a straightforward consequence, we have the following smoothing result.

Corollary 3.5. Let u ∈ S L
(�). There exists a sequence of smooth

L -subharmonic functions which tends to u in L1
loc(�).

4. Sub-mean functions

We say that an u.s.c. function u : � −→ [−∞, ∞[ satisfies the surface (solid)
sub-mean property if

u(z) ≤ Mr (u)(z)
(
u(z) ≤ Mr(u)(z)

)
, for every �r(z) ⊆ �.

Next theorem shows that solid sub-mean functions satisfy a weak maximum
principle.

Theorem 4.1. Let u : � −→ [−∞, ∞[ be an u.s.c. function satisfying the
solid sub-mean property. We have:

(i) if � is bounded and lim sup��z→ζ u(z) ≤ 0 for every ζ ∈ ∂� then
u ≤ 0 in �;

(ii) if � is unbounded and

lim sup
��z→ζ

u(z) ≤ 0 for every ζ ∈ ∂�, lim sup
z∈�,|z|→∞

u(z) ≤ 0,

then u ≤ 0 in �.

Proof. (i) Let z0 ∈ � be such that sup� u = sup�∩V u for every V ∈ Uz0 ,
where Uz0 is the set of all the neighborhoods of z0. If z0 ∈ ∂�, by the hypothesis
we have

0 ≥ lim sup
��z→z0

u(z) = inf
V ∈Uz0

sup
�∩(V \{z0})

u = inf
V ∈Uz0

sup
�∩V

u = sup
�

u,

whence u ≤ 0 on �.



92 chiara cinti

Let us suppose z0 ∈ �. By the upper semicontinuity of u, u(z0) =
infV ∈Uz0

sup�∩V u = sup� u, whence u(z0) = max� u. We may consider
u(z0) �= −∞, otherwise the claim is obvious. Since � is an open set, there
exists r > 0 such that �r(z0) ⊆ �. By the solid sub-mean property of u,

(4.1) 0 ≤ 1

rQ−2

∫
�r(z0)

(u(ζ ) − u(z0))K(ζ−1 ◦ z0) dζ.

Thus, as K(z0, ·) ≥ 0 in RN+1 and u(ζ ) ≤ u(z0),

K(ζ−1 ◦ z0)(u(ζ ) − u(z0)) = 0 a.e. in �r(z0).

On the other hand, K(z0, ·) > 0 in a dense open subset of {(x, t) ∈ RN+1 |
t < t0} and u is a u.s.c. function which attains in z0 the maximum on �. This
yields

(4.2) u ≡ u(z0) on �r(z0), for every �r(z0) ⊆ �.

As � is bounded and by (4.2), it is easy to show that there exists r0 ∈ ]0, ∞[
such that u ≡ u(z0) on �r0(z0) ⊆ �, with �r0(z0) � �. Hence, for ζ ∈
�r0(z0) ∩ ∂�, we have

0 ≥ lim sup
��z→ζ

u(z) ≥ lim sup
�r0 (z0)�z→ζ

u(z) = u(z0) = max
�

u,

and this prove (i).
(ii) By the hypothesis, for every ε > 0 there exists Rε > 0 such that

(4.3) sup
�\B(0,R)

u ≤ ε, for every R ≥ Rε.

We consider the bounded open set �R := � ∩ B(0, R) for R ≥ Rε + 1,
and let ζ ∈ ∂�R . If ζ ∈ ∂� ∩ B(0, R), it follows from the hypothesis that
lim sup�R�z→ζ u(z) ≤ ε. Otherwise, if ζ ∈ ∂B(0, R) ∩ �, recalling (4.3) we
obtain

lim sup
�R�z→ζ

u(z) = inf
V ∈Uζ

sup
V ∩�R

u ≤ sup
(�\B(0,Rε))∩�R

u ≤ ε.

Now, applying (i) at the function u − ε on �R , it follows u ≤ ε on � so that,
letting ε → 0, (ii) is proved.

We shall prove next proposition by using the properties of the kernel K .

Proposition 4.2. Let u : RN+1 −→ [−∞, ∞[ be an u.s.c. function satis-
fying the solid sub-mean property. If u is finite at z0 = (x0, t0), then u > −∞
in a dense subset of {(x, t) ∈ RN+1 | t < t0}.
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Proof. Let z0 ∈ RN+1 be such that u(z0) > −∞. By contradiction we
assume that E := {(x, t) ∈ RN+1 | t < t0, u(x, t) = −∞} has non-empty
interior. Then, there exists r > 0 and an open set � ⊆ E such that � ⊆ �r(z0).
Since K(z0, ·) > 0 in a dense open subset of {(x, t) ∈ RN+1 | t < t0} and
by the continuity of K , we deduce that there exists an open set �′ ⊆ � with
K(z0, ·) > 0 on �′. But this is in contradiction with

−∞ < u(z0) ≤ Mr(u)(z0) = 1

rQ−2

∫
�r(z0)

K(ζ−1 ◦ z0)u(ζ ) dζ,

and the assertion follows.

5. Some characterizations of L -subharmonic functions

The aim of this section is to give some characterizations of L -subharmonic
functions in terms of the averaging operators Mr and Mr .

For any Radon measure μ in RN+1, we define the L -potential �μ of μ by

�μ(z) := −
∫

RN+1
�(ζ−1 ◦ z) dμ(ζ ), z ∈ RN+1.

If �μ > −∞ in a dense subset of RN+1, using [9, Theorem 2.7-(vi)] we easily
get

L �μ = μ, in the weak sense of distributions.

An application for Fubini’s theorem shows that �μ is L -subharmonic in RN+1.
Moreover, we have �μ ∈ H L (RN+1 \ supp μ). Then, Remark 2.2 and the
hypoellipticity of L yield the following theorem.

Theorem 5.1. Let u ∈ S L
(�) and let μ = L u be its L -Riesz measure.

For every bounded open set V ⊆ V ⊆ � there exists h ∈ H L (V ) such that,
for almost every z ∈ V ,

(5.1) u(z) = −
∫

V

�(ζ−1 ◦ z) dμ(ζ ) + h(z).

In order to extend formula (3.4) to the class of L -subharmonic functions in
RN+1, first we give a weak result holding almost everywhere. For this purpose,
we proceed as in [11, Theorem 1.6], by using the inequality (5.1) of [9],
Theorem 5.1 and Corollary 3.5.

Theorem 5.2 (Poisson-Jensen-type formula). Let u ∈ S L
(�) and let

μ = L u be its related L -Riesz measure. For almost every z ∈ � and r > 0
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with �r(z) ⊆ �, we have
(5.2)

u(z) = Mr(u)(z) − Q − 2

rQ−2

∫ r

0
lQ−3

(∫
�l(z)

(
�(ζ−1 ◦ z) − 1

lQ−2

)
dμ(ζ )

)
dl.

We will see later that (5.1) and (5.2) hold for all points of �. Now we can
state our main characterization of L -subharmonic functions.

Theorem 5.3. Let u : � −→ [−∞, ∞[ be an u.s.c. function finite in a
dense subset of �. Then, the following statements are equivalent:

(i) u ∈ S L
(�);

(ii) u satisfies the surface sub-mean property;

(iii) u satisfies the solid sub-mean property.

Proof. (i)⇒(iii): If u ∈ C(�), we get the assertion by formula (5.2) and by
μ = L u ≥ 0. If u is just L -subharmonic, the claim follows from a standard
approximation argument.

(i)⇒(ii): Let z ∈ � be such that (5.2) holds, and let �r(z) ⊆ � for a
suitable r > 0. As in the proof of [8, Theorem 1.6], we differentiate (5.2):
(5.3)

d

dr
Mr(u)(z) = − (Q − 2)2

rQ−1

∫ r

0
lQ−3

(∫
�l(z)

(
�(ζ−1 ◦ z) − l2−Q

)
dμ(ζ )

)
dl

+ Q − 2

r

∫
�r(z)

(
�(ζ−1 ◦ z) − r2−Q

)
dμ(ζ ).

By Tonelli’s theorem,

∫ r

0
lQ−3

(∫
�l(z)

(
�(ζ−1 ◦ z) − l2−Q

)
dμ(ζ )

)
dl

=
∫

�r(z)

(∫ r

(�(ζ−1◦z))
1

2−Q

lQ−3
(
�(ζ−1 ◦ z) − l2−Q

)
dl

)
dμ(ζ )

=
∫

�r(z)

[
�(ζ−1 ◦ z)

lQ−2

Q − 2
− ln l

]l=r

l=(�(ζ−1◦z))
1

2−Q

dμ(ζ )

= 1

Q − 2

(
rQ−2

∫
�r(z)

�(ζ−1 ◦ z) dμ(ζ )

−
∫

�r(z)

dμ(ζ ) −
∫

�r(z)

ln
(
rQ−2�(ζ−1 ◦ z)

)
dμ(ζ )

)
.
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We insert this result in (5.3) and simplify, obtaining

d

dr
Mr(u)(z) = Q − 2

rQ−1

∫
�r(z)

ln
(
rQ−2�(ζ−1 ◦ z)

)
dμ(ζ ) ≥ 0.

Hence, for a.e. z ∈ �, the function r �→ Mr(u)(z) is monotone non-decreasing.
As z �→ Mr(u)(z) is continuous, Mr(u)(z) is non-decreasing w.r.t. r for every
z ∈ �. On the other hand, by (3.5) we see that r �→ Mr(u)(z) is locally
absolutely continuous for r > 0. Thus,
(5.4)

for every z ∈ �, and r > 0 with �r(z) ⊆ �,
d

dr
Mr(u)(z) exists and is ≥ 0.

As a consequence, using again (3.5) we get

d

dr
Mr(u)(z) = − (Q − 2)2

rQ−1

∫ r

0
lQ−3Ml(u)(z) dl + Q − 2

r
Mr (u)(z),

whence, by (5.4),

Mr(u)(z) ≤ Mr (u)(z), for every z ∈ �.

The assertion follows from the previous implication (i)⇒(iii).
(ii)⇒(iii): We suppose u(z) ≤ Mr (u)(z) for every �r(z) ⊆ �. By a direct

integration and (3.5),

u(z) ≤ Q − 2

rQ−2

∫ r

0
lQ−3Ml(u)(z) dl = Mr(u)(z).

(iii)⇒(i): Let V ⊂ V ⊂ � be an open L -regular set and ϕ ∈ C(∂V ) with
ϕ ≥ u|∂V . Then the function u−HV

ϕ is u.s.c. and it satisfies the solid sub-mean
property. Moreover, lim supV �z→ζ∈∂V (u − HV

ϕ )(z) ≤ 0. Thus we can apply

Theorem 4.1-(i) and we get u ≤ HV
ϕ on V , so that u ∈ S L

(�).

We also provide another characterization of L -subharmonicity.

Theorem 5.4. Let u : � −→ [−∞, ∞[ be an u.s.c. function finite in a
dense subset of �. The following statements are equivalent:

(i) u ∈ S L
(�);

(ii) for every z ∈ �, r �→ Mr(u)(z) is monotone non-decreasing for 0 <

r < sup{ρ > 0 | �ρ(z) ⊆ �} and

(5.5) u(z) = lim
r→0+

Mr(u)(z).
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Proof. (i)⇒(ii): The first statement follows from (5.4). However, the proof
is analogous to that of [11, Corollary 1.7].

(ii)⇒(i): Since r �→ Mr(u)(z) is monotone non-decreasing and from (5.5),
we get

u(z) ≤ Mr(u)(z) if 0 < r < sup{ρ > 0 | �ρ(z) ⊆ �}.
Then u satisfies the solid sub-mean property so that, by Theorem 5.3, u ∈
S L

(�).

As a remarkable consequence of the property (ii) in the previous theorem,
we have:

Theorem 5.5. Let u, v ∈ S L
(�). If u ≤ v almost everywhere in �, then

u ≤ v in �. Consequently, if u = v at all points where both functions are
finite, then u ≡ v.

Proof. Let �r(z) ⊆ �. By integrating the inequality u ≤ v which holds
a.e. in �r(z), we get Mr(u)(z) ≤ Mr(v)(z), whence u(z) = limr→0+ Mr(u)(z)

≤ limr→0+ Mr(v)(z) = v(z). The second assertion is a consequence of the first
one, recalling that u, v ∈ L1

loc(�).

Now we can prove that the statement of Theorem 5.1 holds for every z ∈ �.

Theorem 5.6 (Riesz’s Representation for S L
(�)). Let u ∈ S L

(�) and
let μ = L u be the L -Riesz measure related to u. For every bounded open set
V ⊆ V ⊆ �, there exists h ∈ H L (V ) such that

(5.6) u(z) = −
∫

V

�(ζ−1 ◦ z) dμ(ζ ) + h(z), z ∈ V.

Moreover the couple (μ, h) is unique in V .

With Theorem 5.6 in hand, proceeding in the same way we have obtained
Theorem 5.2 (see the proof of [11, Theorem 1.6]), we show that the Poisson-
Jensen-type formula (5.2) is valid at every point z. For sake of clearness, we
state the following

Theorem 5.7 (Poisson-Jensen’s formula). Let u ∈ S L
(�) and let μ =

L u be its related L -Riesz measure. For every z ∈ � and r > 0 with �r(z) ⊆
�, we have
(5.7)

u(z) = Mr(u)(z) − Q − 2

rQ−2

∫ r

0
lQ−3

(∫
�l(z)

(
�(ζ−1 ◦ z) − 1

lQ−2

)
dμ(ζ )

)
dl.
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We end this section with a proposition which says that the least L -harmonic
majorant of a L -potential �μ is the zero function.

Proposition 5.8. Let μ be a Radon measure in RN+1, and let �μ be finite
in a dense subset of RN+1. If h ∈ H L (RN+1) is such that h ≤ −�μ, then
h ≤ 0 in RN+1. In particular, supRN+1 �μ = 0.

Proof. We consider a sequence {Kj }j of compact sets with Kj ⊆ Kj+1 and⋃
j Kj = RN+1. Since μ|Kj

is a compactly supported Radon measure, �μ|Kj
is

finite a.e. in RN+1, so �μ|RN+1\Kj
= �μ −�μ|Kj

> −∞ in a dense subset of RN+1

and it is L -subharmonic. Then,

S L
(RN+1) � v(z) := h(z) + �μ|RN+1\Kj

(z)

≤ −�μ|Kj
(z) ≤ μ(Kj) · sup

ζ∈Kj

�(ζ−1 ◦ z) −→ 0

as |z| → ∞, by [9, Proposition 2.8-(ii)]. Theorem 4.1-(ii) now gives v ≤ 0 in
RN+1, whence

(5.8) h(z) ≤
∫

RN+1
χRN+1\Kj

(ζ ) �(ζ−1 ◦ z) dμ(ζ ), z ∈ RN+1.

For every z in the dense set where �μ is finite, by dominated convergence from
(5.8) it follows that h(z) ≤ 0. As h is L -harmonic and so continuous in RN+1,
we have h ≤ 0 everywhere.

Finally we show that m := infRN+1(−�μ) = 0. Obviously m ≤ −�μ and
the constant function h ≡ m is L -harmonic in RN+1. From the first part of the
proof we get m ≤ 0, and the claim is proved.

6. Bounded-above L -subharmonic functions in RN+1

Let u ∈ S L
(RN+1) be such that u(z0) > −∞ for a suitable z0 ∈ RN+1 and

μ = L u be its related L -Riesz measure. From the solid sub-mean property of
u in z0 and the Poisson-Jensen formula (5.7), we get

∫ r

0 lQ−3
(∫

�l(z0)
(�(ζ−1 ◦

z0) − l2−Q) dμ(ζ )
)

dl < ∞ for r > 0, whence

(6.1)

∫
�l(z0)

(
�(ζ−1 ◦ z0) − l2−Q

)
dμ(ζ ) < ∞, for every l > 0.

If u and μ are as above and we set

n(z0, t) :=
∫

�t (z0)

dμ(ζ ),
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we obtain
(6.2)∫

{ζ |0<�(ζ−1◦z0)
1

2−Q <l}

(
�(ζ−1 ◦z0)− l2−Q

)
dμ(ζ ) =

∫ l

0
(t2−Q − l2−Q) dn(z0, t).

As
{
ζ ∈ RN+1 | 0 < �(ζ−1 ◦ z0)

1
2−Q < l

} = �l(z0), by (6.2) and (6.1),

(6.3)

∫ l

0
(t2−Q − l2−Q) dn(z0, t) < ∞, for every l > 0.

Now, integrating by parts,
(6.4)∫ l

0
(t2−Q − l2−Q) dn(z0, t)

= lim
ε→0+

(
−(ε2−Q − l2−Q)n(z0, ε) −

∫ l

ε

(2 − Q)t1−Qn(z0, t) dt

)

= (Q − 2)

∫ l

0

n(z0, t)

tQ−1
dt.

Indeed, by dominated convergence we have

n(z0, 0+) := lim
t→0+

n(z0, t) =
∫

RN+1
lim
t→0+

χ�t (z0)(ζ ) dμ(ζ ) = 0,

so that

(ε2−Q − l2−Q) n(z0, ε) = (ε2−Q − l2−Q) (n(z0, ε) − n(z0, 0+))

= (ε2−Q − l2−Q) lim
t→0+

∫ ε

t

dn(z0, t)

=
∫ ε

0
(ε2−Q − l2−Q) dn(z0, t)

≤
∫ ε

0
(t2−Q − l2−Q) dn(z0, t) −→ 0 as ε → 0+,

where in the last limit we have used (6.3). Then, using (6.2) and (6.4) in the
last term of (5.7), we obtain

(6.5)
Q − 2

rQ−2

∫ r

0
lQ−3

(∫
�l(z0)

(
�(ζ−1 ◦ z0) − 1

lQ−2

)
dμ(ζ )

)
dl

= (Q − 2)2

rQ−2

∫ r

0
lQ−3

(∫ l

0

n(z0, t)

tQ−1
dt

)
dl.
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Now, replacing (6.5) in Poisson-Jensen’s formula (5.7) we immediately get
the following representation formula for L -subharmonic functions in RN+1.

Theorem 6.1. Let u ∈ S L
(RN+1) be such that u(z0) > −∞ for a suitable

z0 ∈ RN+1 and μ = L u be its related L -Riesz measure. Then, for every
R > 0, we have

(6.6) u(z0) = MR(u)(z0) − (Q − 2)2
∫ 1

0
τQ−3

(∫ R τ

0

n(z0, t)

tQ−1
dt

)
dτ.

Now we are ready to prove our main result.

Theorem 6.2. Let μ be a Radon measure in RN+1 and let n(z, t) be defined
as follows

n(z, t) :=
∫

�t (z)

dμ(ζ ), z ∈ RN+1.

Then, a necessary and sufficient condition for μ to be the L -Riesz measure
related to a bounded-above L -subharmonic function u in RN+1 is that the
following condition holds

(6.7)

∫ ∞

1

n(z, t)

tQ−1
dt < ∞,

for every z in a dense subset of RN+1. If this condition is satisfied, then there
exists h ∈ H L (RN+1), h ≤ 0, such that

(6.8) u(z) = U −
∫

RN+1
�(ζ−1 ◦ z) dμ(ζ ) + h(z), z ∈ RN+1,

where U < ∞ is the least upper bound of u.

Proof. We prove the first statement of the theorem, beginning with the
necessity part. Let u ∈ S L

(RN+1) be such that supRN+1 u = U < ∞, and we
choose z0 ∈ RN+1 satisfying u(z0) > −∞. If we define u+ := max{u, 0} and
u− := max{−u, 0}, then for every R > 0 the following inequality holds

MR(u+)(z0) ≤ max {U, 0} · MR(1)(z0) = max{U, 0}.
From representation formula (6.6) we obtain

(Q − 2)2
∫ 1

0
τQ−3

(∫ Rτ

τ

n(z0, t)

tQ−1
dt

)
dτ = MR(u+)(z0) − M1(u

+)(z0)

+ M1(u
−)(z0) − MR(u−)(z0) ≤ max {U, 0} + M1(u

−)(z0),
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so that, by Beppo Levi’s theorem,

(Q − 2)2
∫ 1

0
τQ−3

( ∫ ∞

τ

n(z0, t)

tQ−1
dt

)
dτ < ∞.

Hence, we get
∫ ∞

1 t1−Q n(z0, t) dt < ∞ and, as the L -subharmonic function
u is finite in a dense subset of RN+1, we obtain also (6.7).

Let us now prove the sufficiency part. Let μ be a Radon measure on RN+1

satisfying (6.7) and consider the function

u(z) := −
∫

RN+1
�(ζ−1 ◦ z) dμ(ζ ) = �μ(z), z ∈ RN+1.

It is enough to prove that u ∈ S L
(RN+1), L u = μ in RN+1 and supRN+1 u = 0.

If we show that u is finite in a dense subset of RN+1, then the first two statements
immediately follow from what we have seen at the beginning of Section 5, and
Proposition 5.8 yields supRN+1 u = 0.

We consider z0 = (x0, t0) satisfying (6.7). For every fixed R > 0, we split
u as follows

u(z) = −
∫

{ζ |�(ζ−1◦z0)
1

2−Q ≤R}
�(ζ−1 ◦ z) dμ(ζ )

−
∫

{ζ |R<�(ζ−1◦z0)
1

2−Q <+∞}
�(ζ−1 ◦ z) dμ(ζ )

−
∫

{ζ |�(ζ−1◦z0)=0}
�(ζ−1 ◦ z) dμ(ζ )

=: u
R,z0
1 (z) + u

R,z0
2 (z) + u

z0
3 (z).

The function u
R,z0
1 is L -subharmonic in RN+1 and the same property holds for

u
R,z0
λ (z) := −

∫
{ζ |R<�(ζ−1◦z0)

1
2−Q <λ}

�(ζ−1 ◦ z) dμ(ζ ), λ > R.

We have u
R,z0
λ ↓ u

R,z0
2 as λ ↑ ∞, hence u

R,z0
2 is a u.s.c. function. Since u

R,z0
λ

satisfies the solid sub-mean property and using Beppo Levi’s theorem, we get

u
R,z0
2 (z) ≤ Mr(u

R,z0
2 )(z), for every r > 0 and z ∈ RN+1.
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Moreover

u
R,z0
λ (z0) = −

∫ λ

R

t2−Q dn(z0, t)

= −λ2−Qn(z0, λ) + R2−Qn(z0, R) − (Q − 2)

∫ λ

R

n(z0, t)

tQ−1
dt

≥ −(Q − 2)

∫ ∞

R

n(z0, t)

tQ−1
dt.

Indeed, as the function n(z0, ·) is non-decreasing we have

λ2−Q n(z0, λ) ≤ (Q − 2)

∫ ∞

λ

n(z0, t)

tQ−1
dt.

Then, by (6.7), u
R,z0
2 (z0) = limλ→∞ u

R,z0
λ (z0) > −∞, so that, by Proposi-

tion 4.2, u
R,z0
2 > −∞ in a dense subset of {(x, t) ∈ RN+1 | t < t0}. On the

other hand, since � is supported in a half space, we have

u
z0
3 (x, t) = 0 in RN × ]−∞, t0].

Thus the function u is finite in a dense subset of {(x, t) ∈ RN+1 | t < t0},
so that, by hypothesis (6.7), u > −∞ in a dense subset of RN+1. The first
assertion of the theorem is so proved.

Now, let us consider a function v ∈ S L
(RN+1) such that supRN+1 v = U <

∞. Let μ = L v be its related L -Riesz measure. By the first part of the
theorem, also the function

u(z) := U + �μ(z), z ∈ RN+1

is L -subharmonic in RN+1 with least upper bound U and related L -Riesz
measure μ. Then in the weak sense of distributions we have L (v − u) = 0.
Since L is hypoelliptic, there exists a function h, L -harmonic in RN+1, such
that h = v − u almost everywhere in RN+1. So, we get h ≤ −�μ a.e. in RN+1,
hence everywhere as a consequence of Theorem 5.5. Now Proposition 5.8
yields h ≤ 0 in RN+1. This completes the proof of the theorem.

Remark 6.3. We note that the hypotheses L h = 0 in RN+1 and h ≤ 0 in
the previous Theorem 6.2 do not imply that h is a constant function, unlike the
case of sub-Laplacians on Carnot groups. Indeed, for example, the function

u(x, t) = − exp(x1 + · · · + xN + Nt), x ∈ RN, t ∈ R,

is non positive, non constant and satisfies the classical heat equation∑N
j=1 ∂2

xj
u − ∂tu = 0 in RN+1.
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If we suppose for |u| a suitable growth condition that enable us to get a
Liouville-type theorem for L (see [10]), we obtain a global representation
formula exactly analogous to (7.7) of [4].

Corollary 6.4. Let u be a bounded-above L -subharmonic function in
RN+1, and μ = L u be its related L -Riesz measure. If we suppose

|u(0, t)| = O(tm) as t −→ ∞
for some m ≥ 0, then

u(z) = U −
∫

RN+1
�(ζ−1 ◦ z) dμ(ζ ), z ∈ RN+1,

where U < ∞ is the least upper bound of u.

Proof. From (6.8) of Theorem 6.2 it follows that

u(z) = U + �μ(z) + h(z), z ∈ RN+1,

whereh ≤ 0 is L -harmonic in RN+1. By Proposition 5.8 we have supRN+1 �μ =
0, so that −h ≤ U − u in RN+1. In particular,

0 ≤ −h(0, t) ≤ U − u(0, t) = O(tm) as t −→ ∞.

Then, by [10, Theorem 1.1], h = const. in RN+1. But, since

sup
RN+1

(U + �μ + h) = sup
RN+1

u = U = sup
RN+1

(U + �μ),

we have h ≡ 0, and the assertion follows.
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