SUB-SOLUTIONS AND MEAN-VALUE OPERATORS FOR ULTRAPARABOLIC EQUATIONS ON LIE GROUPS

CHIARA CINTI

Abstract

The aim of this paper is to provide a theory of sub-solutions for a class of hypoelliptic ultraparabolic operators \mathcal{L} , by using mean-value operators on the level sets of the fundamental solution of \mathcal{L} .

1. Introduction

In this paper we investigate several questions in Potential Theory related to a class of hypoelliptic ultraparabolic operators \mathscr{L} with underlying homogeneous Lie group structures. Our class is contained in the one of the Hörmander operators and was singled out by Kogoj and Lanconelli in [9]. It contains, e.g., the heat operators on Carnot groups and the Kolmogorov type operators studied in [12]. We are mainly interested in a characterization of \mathscr{L} -subharmonic functions in terms of suitable mean-value operators and in representation formulas. We also characterize the bounded-above \mathscr{L} -subharmonic functions in \mathbb{R}^{N+1} and their related \mathscr{L} -Riesz measures. These results extend to our class of operators several theorems proved by Watson in [14], [15], [16] for temperatures and subtemperatures. They also extend some results first proved in [7], [8] for classical parabolic operators with smooth coefficients.

We consider operators of the following type

(1.1)
$$\mathscr{L} = \sum_{j=1}^{m} X_j^2 + X_0 - \partial_t \quad \text{in } \mathbf{R}^{N+1},$$

where the X_j 's are smooth vector fields on \mathbb{R}^N , i.e. denoting z = (x, t) the point in \mathbb{R}^{N+1}

$$X_j(x) = \sum_{k=1}^N a_j^k(x) \partial_{x_k}, \qquad j = 0, \dots, m,$$

Received August 29, 2005.

where any a_j^k is a C^{∞} function. For our purposes, in the sequel we also consider the X_j 's as vector fields in \mathbb{R}^{N+1} . We denote by Y the vector field in \mathbb{R}^{N+1}

$$Y := X_0 - \partial_t,$$

and by \mathscr{L}_0 the operator in R^N

$$\mathscr{L}_0 := \sum_{j=1}^m X_j^2 + X_0.$$

We next state our main assumptions:

- (H.1) there exists a homogeneous Lie group $L = (\mathbb{R}^{N+1}, \circ, d_{\lambda})$ such that (i) X_1, \ldots, X_m, Y are left invariant on L;
 - (ii) X_1, \ldots, X_m are d_{λ} -homogeneous of degree one and Y is d_{λ} -homogeneous of degree two;
- (H.2) for every $(x, t), (\xi, \tau) \in \mathbb{R}^{N+1}$ with $t > \tau$, there exists an \mathscr{L} -admissible path $\eta : [0, T] \longrightarrow \mathbb{R}^{N+1}$ such that $\eta(0) = (x, t), \eta(T) = (\xi, \tau)$. The curve η is called \mathscr{L} -admissible if it is absolutely continuous and satisfies

$$\eta'(s) = \sum_{j=1}^{m} \lambda_j(s) X_j(\eta(s)) + \lambda_0(s) Y(\eta(s)),$$
 a.e. in [0, T],

for suitable piecewise constant real functions $\lambda_0, \lambda_1, \dots, \lambda_m, \lambda_0 \ge 0$.

The operators of the form (1.1) with the assumptions (H.1) and (H.2) have been introduced by Kogoj and Lanconelli in [9].

The aim of this paper is to provide a theory of \mathscr{L} -subharmonic functions by using mean-value operators on the level sets of Γ , the fundamental solution of \mathscr{L} . More precisely, the contents of the paper are the following ones. After collecting in Section 2 some basic results of Potential Theory for \mathscr{L} , in Section 3 we recall some mean-value representation formulas and we present some properties of \mathscr{L} -harmonic functions with respect to mean-value integral operators \mathscr{M}_r and \mathscr{M}_r . In Section 4, we show some results on upper semi-continuous functions satisfying solid sub-mean property. In Section 5, we prove some characterizations of \mathscr{L} -subharmonic functions in terms of averaging operators \mathscr{M}_r and \mathscr{M}_r . Finally, in Section 6 we give a characterization of the bounded-above \mathscr{L} -subharmonic functions in \mathbb{R}^{N+1} and their related \mathscr{L} -Riesz measures.

2. Basic potential theory for \mathscr{L}

We first recall some consequences of hypotheses (H.1) and (H.2). One of these is the Hörmander condition:

rank Lie{
$$X_1, \ldots, X_m, Y$$
} $(z) = N + 1, \quad \forall z \in \mathbb{R}^{N+1};$

hence \mathscr{L} and \mathscr{L}_0 are hypoelliptic operators in \mathbb{R}^{N+1} and in \mathbb{R}^N respectively (see [9, Proposition 10.1]). From (H.1) and (H.2) it follows also that the composition law \circ is euclidean in the "time" variable, i.e.

$$(x,t) \circ (\xi,\tau) = (S(x,t,\xi,\tau),t+\tau)$$

for a suitable smooth function S, and the dilation d_{λ} takes the following form

$$d_{\lambda}(x,t) = (D_{\lambda}(x), \lambda^2 t) = (\lambda^{\sigma_1} x_1, \dots, \lambda^{\sigma_N} x_N, \lambda^2 t).$$

The natural number

$$Q = \sum_{k=1}^{N} \sigma_k + 2$$

is the *homogeneous dimension* of L. We shall assume that $Q \ge 5$ so that Q - 2, the homogeneous dimension of \mathbb{R}^N with respect to D_λ , will be ≥ 3 . We shall denote by $|\cdot|$ a fixed d_λ -homogeneous norm on L, that is a function $|\cdot| : \mathbb{R}^{N+1} \longrightarrow [0, \infty[$ with the following properties: $|\cdot| \in C^{\infty}(\mathbb{R}^{N+1} \setminus \{(0,0)\}) \cap C(\mathbb{R}^{N+1}), |d_\lambda(z)| = \lambda |z|, |z^{-1}| = |z|, |z| = 0$ iff z = 0.

In [9] it is proved that \mathscr{L} has a global fundamental solution $\Gamma \in C^{\infty}(\mathbb{R}^{N+1} \setminus \{(0,0)\})$ such that $\mathscr{L} \Gamma = -\delta$. Moreover $\Gamma(x, t) > 0$ iff t > 0. If we put

$$\Gamma(z,\zeta) := \Gamma(\zeta^{-1} \circ z),$$

since \mathscr{L} is left translation invariant, we have $\mathscr{L}\Gamma(\cdot, \zeta) = -\delta_{\zeta}$ for every $\zeta \in \mathbf{R}^{N+1}$.

Integrating Γ with respect to the *t* variable one obtains a fundamental solution γ with pole at x = 0 for the operator \mathcal{L}_0 (see [9, Section 3]):

$$\gamma(x) := \int_0^\infty \Gamma(x, t) \, \mathrm{d}t;$$

 γ is smooth and strictly positive out of the origin.

Throughout the paper, Ω will always denote an open subset of \mathbb{R}^{N+1} , even if we do not mention this. We call \mathscr{L} -harmonic in Ω every smooth function $u : \Omega \longrightarrow \mathbb{R}$ such that $\mathscr{L}u = 0$. We shall denote by $\mathscr{H}^{\mathscr{L}}(\Omega)$ the linear space of \mathscr{L} -harmonic functions in Ω .

CHIARA CINTI

We say that a bounded open set $V \subset \mathbb{R}^{N+1}$ is \mathscr{L} -regular if for any $\varphi \in C(\partial V)$ there exists a unique function $H^V_{\omega} \in \mathscr{H}^{\mathscr{L}}(V)$ such that

$$\lim_{z \to z_0} H_{\varphi}^V(z) = \varphi(z_0), \quad \text{for every} \quad z_0 \in \partial V,$$

and $H_{\varphi}^{V} \geq 0$ whenever $\varphi \geq 0$, as the classical Picone's maximum principle holds for \mathscr{L} (see [9, Proposition 2.1]). Then, if V is \mathscr{L} -regular, for every fixed $z \in V$ the map

$$C(\partial V) \ni \varphi \mapsto H^V_{\varphi}(z) \in \mathsf{R}$$

defines a linear positive functional on $C(\partial V)$. As a consequence, there exists a Radon measure μ_z^V supported in ∂V , such that

$$H_{\varphi}^{V}(z) = \int_{\partial V} \varphi(\zeta) \, \mathrm{d} \mu_{z}^{V}(\zeta), \qquad \text{for every} \quad \varphi \in C(\partial V).$$

We call μ_z^V the \mathscr{L} -harmonic measure related to V and z.

We say that $u : \Omega \longrightarrow [-\infty, \infty[$ is \mathscr{L} -subharmonic in Ω ($u \in \mathscr{L}^{\mathscr{L}}(\Omega)$) if u is upper semi-continuous (u.s.c.), $u > -\infty$ in a dense subset of Ω , and for every open \mathscr{L} -regular set $V \subset \overline{V} \subset \Omega$ and for every $z \in V$,

$$u(z) \leq \int_{\partial V} u(\zeta) \,\mathrm{d}\mu_z^V(\zeta).$$

It is easy to prove that a function $u : \Omega \longrightarrow [-\infty, \infty[$ u.s.c. and finite in a dense subset of Ω is \mathscr{L} -subharmonic in Ω if

$$u \leq H_{\varphi}^V$$
 in V ,

for every *V* open \mathscr{L} -regular set, $\overline{V} \subset \Omega$, and for every $\varphi \in C(\partial V)$ such that $\varphi \geq u|_{\partial V}$. Proceeding as in [13, Theorem 1], we can obtain the following further characterization of \mathscr{L} -subharmonic functions.

PROPOSITION 2.1. Let $u : \Omega \longrightarrow [-\infty, \infty]$ be an u.s.c. function. Then, if $u \in \underline{\mathscr{G}}^{\mathscr{L}}(\Omega)$, we have $u \in L^{1}_{loc}(\Omega)$ and $\mathscr{L}u \geq 0$ in the distribution sense.

REMARK 2.2. By Proposition 2.1, if $u \in \underline{\mathscr{L}}^{\mathscr{L}}(\Omega)$ then there exists a Radon measure μ in Ω such that $\mathscr{L}u = \mu$. We shall call μ the \mathscr{L} -Riesz measure related to u.

We obviously have $\underline{\mathscr{S}}^{\mathscr{L}}(\Omega) \cap (-\underline{\mathscr{S}}^{\mathscr{L}}(\Omega)) = \mathscr{H}^{\mathscr{L}}(\Omega).$

In the sense of the abstract Potential Theory (see, e.g., [6]), the map $\mathbb{R}^{N+1} \supseteq \Omega \mapsto \mathscr{H}^{\mathscr{L}}(\Omega)$ is a *harmonic sheaf* and $(\mathbb{R}^{N+1}, \mathscr{H}^{\mathscr{L}})$ is a \mathfrak{B} -harmonic space. The second statement is a consequence of the following properties:

- the *L*-regular sets form a basis of the Euclidean topology (see [5, Corollary 5.2]);
- $\mathscr{H}^{\mathscr{L}}$ satisfies *the Doob convergence property*, i.e. the pointwise limit of any increasing sequence of \mathscr{L} -harmonic functions on any open set is \mathscr{L} -harmonic whenever it is finite on a dense set (see [9, Proposition 7.4]);
- for every fixed $\zeta = (\xi, \tau) \in \mathbb{R}^{N+1}$, the functions $z \mapsto -\Gamma(\zeta^{-1} \circ z)$ and $(x, t) \mapsto -\gamma(\xi^{-1} \circ x)$ are \mathscr{L} -subharmonic in \mathbb{R}^{N+1} and it easy to show that the families $\{z \mapsto -\Gamma(\zeta^{-1} \circ z) \mid \zeta \in \mathbb{R}^{N+1}\}$, $\{(x, t) \mapsto -\gamma(\xi^{-1} \circ x) \mid \xi \in \mathbb{R}^N\}$ separate the points of \mathbb{R}^{N+1} .

3. Mean-value formulas and \mathscr{L} -harmonic functions

Given $z \in \mathbb{R}^{N+1}$ and r > 0, we define the \mathscr{L} -ball of center z and radius r as follows:

$$\Omega_r(z) := \left\{ \zeta \in \mathbf{R}^{N+1} \mid \Gamma(\zeta^{-1} \circ z) > \frac{1}{r^{\mathcal{Q}-2}} \right\}.$$

Obviously, $\Omega_r(z) = z \circ \Omega_r(0)$. The properties of the \mathscr{L} -balls stated in the next proposition directly follow from the properties of the fundamental solution Γ proved in [9].

PROPOSITION 3.1. For every $z \in \mathbb{R}^{N+1}$, the \mathscr{L} -balls centered in z have the following properties:

- (i) for every r > 0, $\Omega_r(z)$ is a bounded nonempty set;
- (ii) $\Omega_r(z)$ shrinks to $\{z\}$ as r goes to 0, that is $\bigcap_{r>0} \overline{\Omega}_r(z) = \{z\}$;
- (iii) if we denote by $|\Omega_r(z)|$ the Lebesgue measure of $\Omega_r(z)$, then

$$\lim_{r \to 0^+} \frac{|\Omega_r(z)|}{r^{Q-2}} = 0;$$

(iv) for almost every r > 0, $\partial \Omega_r(z)$ is a N-dimensional C^{∞} manifold;

(v) if z = (x, t), then $\bigcup_{r>0} \Omega_r(z) = \mathbb{R}^N \times]-\infty, t[.$

If $\Omega \subseteq \mathbf{R}^{N+1}$ is an open set containing 0, and $v \in C^2(\Omega)$, we have

(3.1)
$$v(0) = \mathcal{M}_r(v)(0) - \mathcal{N}_r(\mathcal{L}v)(0), \quad \text{for every} \quad \overline{\Omega}_r(0) \subseteq \Omega;$$

where

$$\mathcal{M}_{r}(v)(0) := \int_{\partial\Omega_{r}(0)} \mathcal{H}(\zeta)v(\zeta) \,\mathrm{d}\sigma(\zeta), \quad \text{with} \quad \mathcal{H}(\zeta) := \frac{|\nabla_{\mathscr{L}}\Gamma(0,\zeta)|^{2}}{|\nabla_{\zeta}\Gamma(0,\zeta)|};$$
$$\mathcal{N}_{r}(\mathscr{L}v)(0) := \int_{\Omega_{r}(0)} \left(\Gamma(0,\zeta) - \frac{1}{r^{\mathcal{Q}-2}}\right) \mathscr{L}v(\zeta) \,\mathrm{d}\zeta.$$

Hereafter we denote by $\nabla_{\!\mathscr{L}}$ the vector valued differential operator

$$\nabla_{\mathscr{L}} = (X_1, \ldots, X_m),$$

and $\nabla_x = (\partial_{x_1}, \ldots, \partial_{x_N}).$

Formula (3.1) is a particular version of the Green representation theorem for \mathscr{L} . In order to get it, we proceed as in [11, Theorem 1.5], using the properties of fundamental solution Γ showed in [9], in particular the inequality (5.1) and the identity (6.1), and writing \mathscr{L} in the following divergence form

$$\mathscr{L} = \operatorname{div}(A\nabla_x) + Y,$$

where A is a suitable $N \times N$ matrix, and Y is divergence free.

Let $z \in \mathbb{R}^{N+1}$. We apply (3.1) at the function $v_z(\zeta) = u(z \circ \zeta)$, and using the invariance of \mathscr{L} w.r.t. the left translations on L we get (3.2)

$$u(z) = \int_{\partial\Omega_r(0)} \mathscr{K}(\zeta) u(z \circ \zeta) \, \mathrm{d}\sigma(\zeta) - \int_{\Omega_r(z)} \left(\Gamma(\zeta^{-1} \circ z) - \frac{1}{r^{Q-2}} \right) \mathscr{L}u(\zeta) \, \mathrm{d}\zeta$$

=: $\mathscr{M}_r(u)(z) - \mathscr{N}_r(\mathscr{L}u)(z)$, for every $\overline{\Omega}_r(z) \subseteq z \circ \Omega$.

Setting r = l in (3.2), multiplying both sides by l^{Q-3} and integrating between 0 and r give

(3.3)
$$u(z)\frac{r^{Q-2}}{Q-2} = \int_0^r l^{Q-3}\mathcal{M}_l(u)(z) \,\mathrm{d}l - \int_0^r l^{Q-3}\mathcal{N}_l(\mathscr{L}u)(z) \,\mathrm{d}l,$$

then, by means of Federer's co-area formula, we obtain (3.4)

$$u(z) = \frac{1}{r^{Q-2}} \int_{\Omega_r(z)} K(\zeta^{-1} \circ z) u(\zeta) \, \mathrm{d}\zeta - \frac{Q-2}{r^{Q-2}} \int_0^r l^{Q-3} \mathcal{N}_l(\mathscr{L}u)(z) \, \mathrm{d}z$$
$$=: M_r(u)(z) - N_r(\mathscr{L}u)(z), \qquad \text{for every} \quad \overline{\Omega}_r(z) \subseteq z \circ \Omega,$$

where

$$K(\zeta^{-1} \circ z) = K(z,\zeta) := \frac{|\nabla_{\mathscr{L}} \Gamma(z,\zeta)|^2}{\Gamma^2(z,\zeta)}.$$

We explicitly note that the kernel *K* is invariant w.r.t. the left translation on L, unlike \mathcal{K} . Let z = (x, t) be fixed. We have $K(z, \cdot) \ge 0$ in \mathbb{R}^{N+1} , $K(z, \cdot) \in C^{\infty}(\{(\xi, \tau) \in \mathbb{R}^{N+1} | \tau < t\})$. By [9, Lemma 7.3], the set

$$\Sigma := \{ \zeta = (\xi, \tau) \in \mathbf{R}^{N+1} \mid \tau < t, K(z, \zeta) = 0 \}$$

does not contain interior points.

Now, let $\Omega \subseteq \mathbb{R}^{N+1}$ be an arbitrary open set. By comparing (3.3) with (3.4), we deduce that, if $u \in C^2(\Omega)$, (3.5)

$$M_r(u)(z) = \frac{Q-2}{r^{Q-2}} \int_0^r l^{Q-3} \mathcal{M}_l(u)(z) \, \mathrm{d}l, \qquad \text{for every} \quad \overline{\Omega}_r(z) \subseteq \Omega.$$

We stress that, by a standard argument of approximation, (3.5) also holds if *u* is u.s.c.

Moreover, from (3.2) and (3.4) it follows that any \mathscr{L} -harmonic function in Ω satisfies the mean value formulas

$$u(z) = \mathcal{M}_r(u)(z)$$
 and $u(z) = M_r(u)(z)$,

for every $z \in \Omega$ and r > 0 such that $\overline{\Omega}_r(z) \subseteq \Omega$. If $u \in C(\Omega)$, also the converse implication of this result is true. Indeed we have the following generalization to the classical Koebe theorem.

THEOREM 3.2. Let $u \in C(\Omega)$ be such that

(3.6)
$$u(z) = \mathcal{M}_r(u)(z), \quad \text{for every} \quad \Omega_r(z) \subseteq \Omega.$$

Then $u \in C^{\infty}(\Omega)$ and $\mathcal{L}u = 0$. An analogous result holds if

(3.7)
$$u(z) = M_r(u)(z), \quad \text{for every } \Omega_r(z) \subseteq \Omega.$$

In order to prove this theorem, we need a lemma. Let $J \in C_0^{\infty}(\mathbb{R}^{N+1})$, $J \ge 0$ be such that supp $J \subseteq B(0, 1)$ and $\int_{\mathbb{R}^{N+1}} J = 1$. Let $\Omega \subseteq \mathbb{R}^{N+1}$ be an open set, and let $u \in L^1_{loc}(\Omega)$. For $\varepsilon > 0$, we define the ε - \mathscr{L} -mollified of u in Ω as follows

$$u_{\varepsilon}: D_{\varepsilon}^{\Omega} \to \mathsf{R}$$
$$z \mapsto \int_{\Omega} u(\zeta) J \big(d_{\varepsilon^{-1}}(z \circ \zeta^{-1}) \big) \varepsilon^{-Q} \, \mathrm{d}\zeta,$$

where $D_{\varepsilon}^{\Omega} = \{ \zeta \in \mathbb{R}^{N+1} \mid \overline{B}(\zeta^{-1}, \varepsilon) \subset \Omega^{-1} \}$. It is a standard matter to show that $u_{\varepsilon} \in C^{\infty}(D_{\varepsilon}^{\Omega})$, and $u_{\varepsilon} \longrightarrow u$ in $L_{loc}^{1}(\Omega)$ as $\varepsilon \to 0$. We next prove the so called solid sub-mean property of u_{ε} (see Section 4).

CHIARA CINTI

LEMMA 3.3. Let $u : \Omega \longrightarrow [-\infty, \infty[$ be an u.s.c. function, $u \in L^1_{loc}(\Omega)$. If $u(z) \leq M_r(u)(z)$ for every $\overline{\Omega}_r(z) \subseteq \Omega$, then $u_{\varepsilon}(z) \leq M_r(u_{\varepsilon})(z)$ for every $\overline{\Omega}_r(z) \subseteq D^{\Omega}_{\varepsilon}$.

PROOF. For $\overline{\Omega}_r(z) \subseteq D_{\varepsilon}^{\Omega}$, we have

and the assertion follows.

PROOF OF THEOREM 3.2. It easily follows from (3.5) that (3.6) is equivalent to (3.7). Now, if $u \in C^{\infty}(\Omega)$ satisfies (3.6), then from (3.2) we obtain

$$0 = \mathcal{N}_r(\mathscr{L}u)(z) = \int_{\Omega_r(z)} \left(\Gamma(\zeta^{-1} \circ z) - \frac{1}{r^{\mathcal{Q}-2}} \right) \mathscr{L}u(\zeta) \, \mathrm{d}\zeta,$$

and so $\mathscr{L}u = 0$. Then, it suffices to prove that u is smooth. If we show that $\mathscr{L}u = 0$ in the distribution sense on Ω , the assertion follows from the hypoellipticity of \mathscr{L} . From (3.7) and Lemma 3.3, we get $u_{\varepsilon}(z) = M_r(u_{\varepsilon})(z)$ for every $\overline{\Omega}_r(z) \subseteq D_{\varepsilon}^{\Omega}$. So the sequence of (1/n)- \mathscr{L} -mollified $\{u_{1/n}\}_n$ is such that $\mathscr{L}u_{1/n} = 0$ in $D_{1/n}^{\Omega}$ and $u_{1/n} \longrightarrow u$ per $n \to \infty$ uniformly on compact subsets of Ω . For every $\varphi \in C_0^{\infty}(\Omega)$, we have

$$\int_{\Omega} u(\zeta) \mathscr{L}^* \varphi(\zeta) \, \mathrm{d}\zeta = \lim_{n \to \infty} \int_{D_{1/n}^{\Omega} \cap \mathrm{supp}\,\varphi} \mathscr{L} u_{1/n}(\zeta) \varphi(\zeta) \, \mathrm{d}\zeta = 0,$$

and the smoothness of u is proved.

We also show another property of the ε - \mathscr{L} -mollified.

PROPOSITION 3.4. Let
$$u \in \underline{\mathscr{L}}^{\mathscr{L}}(\Omega)$$
. Then u_{ε} is \mathscr{L} -subharmonic in D_{ε}^{Ω} .
PROOF. Since $u_{\varepsilon} \in C^{\infty}(D_{\varepsilon}^{\Omega})$, it is enough to prove that $\mathscr{L}u_{\varepsilon} \geq 0$ in the

weak sense of distribution. Let $\varphi \in C_0^{\infty}(D_{\varepsilon}^{\Omega}), \varphi \ge 0$. We have

$$\begin{aligned} \langle \mathscr{L}u_{\varepsilon},\varphi\rangle &= \int_{D_{\varepsilon}^{\Omega}} u_{\varepsilon}(z)\mathscr{L}^{*}\varphi(z) \,\mathrm{d}z \\ &= \int_{\overline{B}(0,\varepsilon)} \left(\int_{D_{\varepsilon}^{\Omega}} u(\eta^{-1}\circ z)\mathscr{L}^{*}\varphi(z) \,\mathrm{d}z \right) J(d_{\varepsilon^{-1}}(\eta))\varepsilon^{-\mathcal{Q}} \,\mathrm{d}\eta \\ &= \int_{\overline{B}(0,\varepsilon)} \left(\int_{\Omega} u(\zeta)\mathscr{L}^{*}[\varphi(\eta\circ\zeta)] \,\mathrm{d}\zeta \right) J(d_{\varepsilon^{-1}}(\eta))\varepsilon^{-\mathcal{Q}} \,\mathrm{d}\eta \geq 0, \end{aligned}$$

and the assertion is proved.

As a straightforward consequence, we have the following smoothing result.

COROLLARY 3.5. Let $u \in \underline{\mathscr{L}}^{\mathscr{L}}(\Omega)$. There exists a sequence of smooth \mathscr{L} -subharmonic functions which tends to u in $L^1_{loc}(\Omega)$.

4. Sub-mean functions

We say that an u.s.c. function $u : \Omega \longrightarrow [-\infty, \infty[$ satisfies the *surface (solid) sub-mean property* if

$$u(z) \leq \mathcal{M}_r(u)(z) \quad (u(z) \leq M_r(u)(z)), \quad \text{for every} \quad \overline{\Omega}_r(z) \subseteq \Omega.$$

Next theorem shows that solid sub-mean functions satisfy a weak maximum principle.

THEOREM 4.1. Let $u : \Omega \longrightarrow [-\infty, \infty]$ be an u.s.c. function satisfying the solid sub-mean property. We have:

- (i) if Ω is bounded and $\limsup_{\Omega \ni z \to \zeta} u(z) \leq 0$ for every $\zeta \in \partial \Omega$ then $u \leq 0$ in Ω ;
- (ii) if Ω is unbounded and

$$\limsup_{\Omega \ni z \to \zeta} u(z) \le 0 \quad for \ every \ \zeta \in \partial \Omega, \qquad \limsup_{z \in \Omega, |z| \to \infty} u(z) \le 0,$$

then $u \leq 0$ in Ω .

PROOF. (i) Let $z_0 \in \overline{\Omega}$ be such that $\sup_{\Omega} u = \sup_{\Omega \cap V} u$ for every $V \in \mathcal{U}_{z_0}$, where \mathcal{U}_{z_0} is the set of all the neighborhoods of z_0 . If $z_0 \in \partial \Omega$, by the hypothesis we have

$$0 \geq \limsup_{\Omega \ni z \to z_0} u(z) = \inf_{V \in \mathscr{U}_{z_0}} \sup_{\Omega \cap (V \setminus \{z_0\})} u = \inf_{V \in \mathscr{U}_{z_0}} \sup_{\Omega \cap V} u = \sup_{\Omega} u,$$

whence $u \leq 0$ on Ω .

CHIARA CINTI

Let us suppose $z_0 \in \Omega$. By the upper semicontinuity of u, $u(z_0) = \inf_{V \in \mathscr{U}_{z_0}} \sup_{\Omega \cap V} u = \sup_{\Omega} u$, whence $u(z_0) = \max_{\Omega} u$. We may consider $u(z_0) \neq -\infty$, otherwise the claim is obvious. Since Ω is an open set, there exists r > 0 such that $\overline{\Omega}_r(z_0) \subseteq \Omega$. By the solid sub-mean property of u,

(4.1)
$$0 \le \frac{1}{r^{Q-2}} \int_{\Omega_r(z_0)} (u(\zeta) - u(z_0)) K(\zeta^{-1} \circ z_0) \, \mathrm{d}\zeta.$$

Thus, as $K(z_0, \cdot) \ge 0$ in \mathbb{R}^{N+1} and $u(\zeta) \le u(z_0)$,

$$K(\zeta^{-1} \circ z_0)(u(\zeta) - u(z_0)) = 0$$
 a.e. in $\Omega_r(z_0)$

On the other hand, $K(z_0, \cdot) > 0$ in a dense open subset of $\{(x, t) \in \mathbb{R}^{N+1} | t < t_0\}$ and *u* is a u.s.c. function which attains in z_0 the maximum on Ω . This yields

(4.2)
$$u \equiv u(z_0)$$
 on $\Omega_r(z_0)$, for every $\overline{\Omega}_r(z_0) \subseteq \Omega$.

As Ω is bounded and by (4.2), it is easy to show that there exists $r_0 \in [0, \infty[$ such that $u \equiv u(z_0)$ on $\Omega_{r_0}(z_0) \subseteq \Omega$, with $\overline{\Omega}_{r_0}(z_0) \notin \Omega$. Hence, for $\zeta \in \overline{\Omega}_{r_0}(z_0) \cap \partial \Omega$, we have

$$0 \ge \limsup_{\Omega \ni z \to \zeta} u(z) \ge \limsup_{\Omega_{r_0}(z_0) \ni z \to \zeta} u(z) = u(z_0) = \max_{\Omega} u,$$

and this prove (i).

(ii) By the hypothesis, for every $\varepsilon > 0$ there exists $R_{\varepsilon} > 0$ such that

(4.3)
$$\sup_{\Omega \setminus B(0,R)} u \leq \varepsilon, \quad \text{for every} \quad R \geq R_{\varepsilon}.$$

We consider the bounded open set $\Omega_R := \Omega \cap B(0, R)$ for $R \ge R_{\varepsilon} + 1$, and let $\zeta \in \partial \Omega_R$. If $\zeta \in \partial \Omega \cap \overline{B}(0, R)$, it follows from the hypothesis that $\limsup_{\Omega_R \ni z \to \zeta} u(z) \le \varepsilon$. Otherwise, if $\zeta \in \partial B(0, R) \cap \overline{\Omega}$, recalling (4.3) we obtain

 $\limsup_{\Omega_R\ni z\to \zeta} u(z) = \inf_{V\in \mathscr{U}_{\zeta}} \sup_{V\cap \Omega_R} u \leq \sup_{(\Omega\setminus B(0,R_{\varepsilon}))\cap \Omega_R} u \leq \varepsilon.$

Now, applying (i) at the function $u - \varepsilon$ on Ω_R , it follows $u \le \varepsilon$ on Ω so that, letting $\varepsilon \to 0$, (ii) is proved.

We shall prove next proposition by using the properties of the kernel K.

PROPOSITION 4.2. Let $u : \mathbb{R}^{N+1} \longrightarrow [-\infty, \infty[$ be an u.s.c. function satisfying the solid sub-mean property. If u is finite at $z_0 = (x_0, t_0)$, then $u > -\infty$ in a dense subset of $\{(x, t) \in \mathbb{R}^{N+1} \mid t < t_0\}$.

PROOF. Let $z_0 \in \mathbb{R}^{N+1}$ be such that $u(z_0) > -\infty$. By contradiction we assume that $E := \{(x, t) \in \mathbb{R}^{N+1} \mid t < t_0, u(x, t) = -\infty\}$ has non-empty interior. Then, there exists r > 0 and an open set $\Omega \subseteq E$ such that $\Omega \subseteq \Omega_r(z_0)$. Since $K(z_0, \cdot) > 0$ in a dense open subset of $\{(x, t) \in \mathbb{R}^{N+1} \mid t < t_0\}$ and by the continuity of K, we deduce that there exists an open set $\Omega' \subseteq \Omega$ with $K(z_0, \cdot) > 0$ on Ω' . But this is in contradiction with

$$-\infty < u(z_0) \le M_r(u)(z_0) = \frac{1}{r^{Q-2}} \int_{\Omega_r(z_0)} K(\zeta^{-1} \circ z_0) u(\zeta) \, \mathrm{d}\zeta,$$

and the assertion follows.

5. Some characterizations of \mathscr{L} -subharmonic functions

The aim of this section is to give some characterizations of \mathscr{L} -subharmonic functions in terms of the averaging operators \mathscr{M}_r and M_r .

For any Radon measure μ in \mathbb{R}^{N+1} , we define the \mathscr{L} -potential Γ_{μ} of μ by

$$\Gamma_{\mu}(z) := -\int_{\mathbf{R}^{N+1}} \Gamma(\zeta^{-1} \circ z) \, \mathrm{d}\mu(\zeta), \qquad z \in \mathbf{R}^{N+1}$$

If $\Gamma_{\mu} > -\infty$ in a dense subset of \mathbb{R}^{N+1} , using [9, Theorem 2.7-(vi)] we easily get

 $\mathscr{L}\Gamma_{\mu} = \mu$, in the weak sense of distributions.

An application for Fubini's theorem shows that Γ_{μ} is \mathscr{L} -subharmonic in \mathbb{R}^{N+1} . Moreover, we have $\Gamma_{\mu} \in \mathscr{H}^{\mathscr{L}}(\mathbb{R}^{N+1} \setminus \operatorname{supp} \mu)$. Then, Remark 2.2 and the hypoellipticity of \mathscr{L} yield the following theorem.

THEOREM 5.1. Let $u \in \underline{\mathscr{L}}^{\mathscr{L}}(\Omega)$ and let $\mu = \mathscr{L}u$ be its \mathscr{L} -Riesz measure. For every bounded open set $V \subseteq \overline{V} \subseteq \Omega$ there exists $h \in \mathcal{H}^{\mathscr{L}}(V)$ such that, for almost every $z \in V$,

(5.1)
$$u(z) = -\int_{\overline{V}} \Gamma(\zeta^{-1} \circ z) \,\mathrm{d}\mu(\zeta) + h(z).$$

In order to extend formula (3.4) to the class of \mathscr{L} -subharmonic functions in \mathbb{R}^{N+1} , first we give a weak result holding almost everywhere. For this purpose, we proceed as in [11, Theorem 1.6], by using the inequality (5.1) of [9], Theorem 5.1 and Corollary 3.5.

THEOREM 5.2 (Poisson-Jensen-type formula). Let $u \in \underline{\mathscr{L}}^{\mathscr{L}}(\Omega)$ and let $\mu = \mathscr{L}u$ be its related \mathscr{L} -Riesz measure. For almost every $z \in \Omega$ and r > 0

with
$$\Omega_r(z) \subseteq \Omega$$
, we have
(5.2)
$$u(z) = M_r(u)(z) - \frac{Q-2}{r^{Q-2}} \int_0^r l^{Q-3} \left(\int_{\Omega_l(z)} \left(\Gamma(\zeta^{-1} \circ z) - \frac{1}{l^{Q-2}} \right) \mathrm{d}\mu(\zeta) \right) \mathrm{d}l.$$

We will see later that (5.1) and (5.2) hold for all points of Ω . Now we can state our main characterization of \mathscr{L} -subharmonic functions.

THEOREM 5.3. Let $u : \Omega \longrightarrow [-\infty, \infty]$ be an u.s.c. function finite in a dense subset of Ω . Then, the following statements are equivalent:

- (i) $u \in \underline{\mathscr{G}}^{\mathscr{L}}(\Omega);$
- (ii) u satisfies the surface sub-mean property;
- (iii) u satisfies the solid sub-mean property.

PROOF. (i) \Rightarrow (iii): If $u \in C(\Omega)$, we get the assertion by formula (5.2) and by $\mu = \mathcal{L}u \geq 0$. If u is just \mathcal{L} -subharmonic, the claim follows from a standard approximation argument.

(i) \Rightarrow (ii): Let $z \in \Omega$ be such that (5.2) holds, and let $\overline{\Omega}_r(z) \subseteq \Omega$ for a suitable r > 0. As in the proof of [8, Theorem 1.6], we differentiate (5.2): (5.3)

$$\frac{\mathrm{d}}{\mathrm{d}r}M_{r}(u)(z) = -\frac{(Q-2)^{2}}{r^{Q-1}}\int_{0}^{r}l^{Q-3}\left(\int_{\Omega_{l}(z)} \left(\Gamma(\zeta^{-1}\circ z) - l^{2-Q}\right)\mathrm{d}\mu(\zeta)\right)\mathrm{d}l^{2} + \frac{Q-2}{r}\int_{\Omega_{r}(z)} \left(\Gamma(\zeta^{-1}\circ z) - r^{2-Q}\right)\mathrm{d}\mu(\zeta).$$

By Tonelli's theorem,

$$\begin{split} \int_{0}^{r} l^{Q-3} & \left(\int_{\Omega_{l}(z)} \left(\Gamma(\zeta^{-1} \circ z) - l^{2-Q} \right) d\mu(\zeta) \right) dl \\ &= \int_{\Omega_{r}(z)} \left(\int_{(\Gamma(\zeta^{-1} \circ z))^{\frac{1}{2-Q}}}^{r} l^{Q-3} \left(\Gamma(\zeta^{-1} \circ z) - l^{2-Q} \right) dl \right) d\mu(\zeta) \\ &= \int_{\Omega_{r}(z)} \left[\Gamma(\zeta^{-1} \circ z) \frac{l^{Q-2}}{Q-2} - \ln l \right]_{l=(\Gamma(\zeta^{-1} \circ z))^{\frac{1}{2-Q}}}^{l=r} d\mu(\zeta) \\ &= \frac{1}{Q-2} \left(r^{Q-2} \int_{\Omega_{r}(z)} \Gamma(\zeta^{-1} \circ z) d\mu(\zeta) \\ &- \int_{\Omega_{r}(z)} d\mu(\zeta) - \int_{\Omega_{r}(z)} \ln \left(r^{Q-2} \Gamma(\zeta^{-1} \circ z) \right) d\mu(\zeta) \right). \end{split}$$

We insert this result in (5.3) and simplify, obtaining

$$\frac{\mathrm{d}}{\mathrm{d}r}M_r(u)(z) = \frac{Q-2}{r^{Q-1}}\int_{\Omega_r(z)} \ln(r^{Q-2}\Gamma(\zeta^{-1}\circ z))\,\mathrm{d}\mu(\zeta) \ge 0.$$

Hence, for a.e. $z \in \Omega$, the function $r \mapsto M_r(u)(z)$ is monotone non-decreasing. As $z \mapsto M_r(u)(z)$ is continuous, $M_r(u)(z)$ is non-decreasing w.r.t. r for every $z \in \Omega$. On the other hand, by (3.5) we see that $r \mapsto M_r(u)(z)$ is locally absolutely continuous for r > 0. Thus, (5.4)

for every $z \in \Omega$, and r > 0 with $\overline{\Omega}_r(z) \subseteq \Omega$, $\frac{\mathrm{d}}{\mathrm{d}r} M_r(u)(z)$ exists and is ≥ 0 .

As a consequence, using again (3.5) we get

$$\frac{\mathrm{d}}{\mathrm{d}r} M_r(u)(z) = -\frac{(Q-2)^2}{r^{Q-1}} \int_0^r l^{Q-3} \mathcal{M}_l(u)(z) \,\mathrm{d}l + \frac{Q-2}{r} \mathcal{M}_r(u)(z),$$

whence, by (5.4),

$$M_r(u)(z) \leq \mathcal{M}_r(u)(z), \quad \text{for every} \quad z \in \Omega.$$

The assertion follows from the previous implication (i) \Rightarrow (iii).

(ii) \Rightarrow (iii): We suppose $u(z) \leq \mathcal{M}_r(u)(z)$ for every $\overline{\Omega}_r(z) \subseteq \Omega$. By a direct integration and (3.5),

$$u(z) \leq \frac{Q-2}{r^{Q-2}} \int_0^r l^{Q-3} \mathcal{M}_l(u)(z) \, \mathrm{d}l = M_r(u)(z).$$

(iii) \Rightarrow (i): Let $V \subset \overline{V} \subset \Omega$ be an open \mathscr{L} -regular set and $\varphi \in C(\partial V)$ with $\varphi \geq u|_{\partial V}$. Then the function $u - H_{\varphi}^{V}$ is u.s.c. and it satisfies the solid sub-mean property. Moreover, $\limsup_{V \ni z \to \zeta \in \partial V} (u - H_{\varphi}^{V})(z) \leq 0$. Thus we can apply Theorem 4.1-(i) and we get $u \leq H_{\varphi}^{V}$ on V, so that $u \in \mathscr{L}^{\mathscr{L}}(\Omega)$.

We also provide another characterization of \mathscr{L} -subharmonicity.

THEOREM 5.4. Let $u : \Omega \longrightarrow [-\infty, \infty]$ be an u.s.c. function finite in a dense subset of Ω . The following statements are equivalent:

- (i) $u \in \underline{\mathscr{G}}^{\mathscr{L}}(\Omega);$
- (ii) for every $z \in \Omega$, $r \mapsto M_r(u)(z)$ is monotone non-decreasing for $0 < r < \sup\{\rho > 0 \mid \overline{\Omega}_{\rho}(z) \subseteq \Omega\}$ and

(5.5)
$$u(z) = \lim_{r \to 0^+} M_r(u)(z).$$

CHIARA CINTI

PROOF. (i) \Rightarrow (ii): The first statement follows from (5.4). However, the proof is analogous to that of [11, Corollary 1.7].

(ii) \Rightarrow (i): Since $r \mapsto M_r(u)(z)$ is monotone non-decreasing and from (5.5), we get

$$u(z) \le M_r(u)(z) \qquad \text{if} \quad 0 < r < \sup\{\rho > 0 \mid \Omega_\rho(z) \subseteq \Omega\}.$$

Then *u* satisfies the solid sub-mean property so that, by Theorem 5.3, $u \in \underline{\mathscr{G}}^{\mathscr{L}}(\Omega)$.

As a remarkable consequence of the property (ii) in the previous theorem, we have:

THEOREM 5.5. Let $u, v \in \underline{\mathscr{L}}^{\mathscr{L}}(\Omega)$. If $u \leq v$ almost everywhere in Ω , then $u \leq v$ in Ω . Consequently, if u = v at all points where both functions are finite, then $u \equiv v$.

PROOF. Let $\overline{\Omega}_r(z) \subseteq \Omega$. By integrating the inequality $u \leq v$ which holds a.e. in $\Omega_r(z)$, we get $M_r(u)(z) \leq M_r(v)(z)$, whence $u(z) = \lim_{r \to 0^+} M_r(u)(z)$ $\leq \lim_{r \to 0^+} M_r(v)(z) = v(z)$. The second assertion is a consequence of the first one, recalling that $u, v \in L^1_{loc}(\Omega)$.

Now we can prove that the statement of Theorem 5.1 holds for every $z \in \Omega$.

THEOREM 5.6 (Riesz's Representation for $\underline{\mathscr{L}}^{\mathscr{L}}(\Omega)$). Let $u \in \underline{\mathscr{L}}^{\mathscr{L}}(\Omega)$ and let $\mu = \mathscr{L}u$ be the \mathscr{L} -Riesz measure related to u. For every bounded open set $V \subseteq \overline{V} \subseteq \Omega$, there exists $h \in \mathscr{H}^{\mathscr{L}}(V)$ such that

(5.6)
$$u(z) = -\int_{\overline{V}} \Gamma(\zeta^{-1} \circ z) \, \mathrm{d}\mu(\zeta) + h(z), \qquad z \in V.$$

Moreover the couple (μ, h) *is unique in V*.

With Theorem 5.6 in hand, proceeding in the same way we have obtained Theorem 5.2 (see the proof of [11, Theorem 1.6]), we show that the Poisson-Jensen-type formula (5.2) is valid at every point z. For sake of clearness, we state the following

THEOREM 5.7 (Poisson-Jensen's formula). Let $u \in \underline{\mathscr{L}}^{\mathscr{L}}(\Omega)$ and let $\mu = \mathscr{L}u$ be its related \mathscr{L} -Riesz measure. For every $z \in \Omega$ and r > 0 with $\overline{\Omega}_r(z) \subseteq \Omega$, we have

$$u(z) = M_r(u)(z) - \frac{Q-2}{r^{Q-2}} \int_0^r l^{Q-3} \left(\int_{\Omega_l(z)} \left(\Gamma(\zeta^{-1} \circ z) - \frac{1}{l^{Q-2}} \right) \mathrm{d}\mu(\zeta) \right) \mathrm{d}l.$$

We end this section with a proposition which says that the least \mathscr{L} -harmonic majorant of a \mathscr{L} -potential Γ_{μ} is the zero function.

PROPOSITION 5.8. Let μ be a Radon measure in \mathbb{R}^{N+1} , and let Γ_{μ} be finite in a dense subset of \mathbb{R}^{N+1} . If $h \in \mathscr{H}^{\mathscr{L}}(\mathbb{R}^{N+1})$ is such that $h \leq -\Gamma_{\mu}$, then $h \leq 0$ in \mathbb{R}^{N+1} . In particular, $\sup_{\mathbb{R}^{N+1}} \Gamma_{\mu} = 0$.

PROOF. We consider a sequence $\{K_j\}_j$ of compact sets with $K_j \subseteq K_{j+1}$ and $\bigcup_j K_j = \mathbb{R}^{N+1}$. Since $\mu|_{K_j}$ is a compactly supported Radon measure, $\Gamma_{\mu|_{K_j}}$ is finite a.e. in \mathbb{R}^{N+1} , so $\Gamma_{\mu|_{\mathbb{R}^{N+1}\setminus K_j}} = \Gamma_{\mu} - \Gamma_{\mu|_{K_j}} > -\infty$ in a dense subset of \mathbb{R}^{N+1} and it is \mathscr{L} -subharmonic. Then,

$$\underline{\mathscr{G}}^{\mathscr{L}}(\mathsf{R}^{N+1}) \ni v(z) := h(z) + \Gamma_{\mu|_{\mathsf{R}^{N+1}\setminus K_j}}(z)$$
$$\leq -\Gamma_{\mu|_{K_j}}(z) \leq \mu(K_j) \cdot \sup_{\zeta \in K_j} \Gamma(\zeta^{-1} \circ z) \longrightarrow 0$$

as $|z| \to \infty$, by [9, Proposition 2.8-(ii)]. Theorem 4.1-(ii) now gives $v \le 0$ in \mathbb{R}^{N+1} , whence

(5.8)
$$h(z) \leq \int_{\mathbf{R}^{N+1}} \chi_{\mathbf{R}^{N+1} \setminus K_j}(\zeta) \, \Gamma(\zeta^{-1} \circ z) \, \mathrm{d}\mu(\zeta), \qquad z \in \mathbf{R}^{N+1}.$$

For every *z* in the dense set where Γ_{μ} is finite, by dominated convergence from (5.8) it follows that $h(z) \leq 0$. As *h* is \mathscr{L} -harmonic and so continuous in \mathbb{R}^{N+1} , we have $h \leq 0$ everywhere.

Finally we show that $m := \inf_{\mathsf{R}^{N+1}}(-\Gamma_{\mu}) = 0$. Obviously $m \leq -\Gamma_{\mu}$ and the constant function $h \equiv m$ is \mathscr{L} -harmonic in R^{N+1} . From the first part of the proof we get $m \leq 0$, and the claim is proved.

6. Bounded-above \mathscr{L} -subharmonic functions in \mathbb{R}^{N+1}

Let $u \in \underline{\mathscr{L}}^{\mathscr{L}}(\mathbb{R}^{N+1})$ be such that $u(z_0) > -\infty$ for a suitable $z_0 \in \mathbb{R}^{N+1}$ and $\mu = \mathscr{L}u$ be its related \mathscr{L} -Riesz measure. From the solid sub-mean property of u in z_0 and the Poisson-Jensen formula (5.7), we get $\int_0^r l^{Q-3} (\int_{\Omega_l(z_0)} (\Gamma(\zeta^{-1} \circ z_0) - l^{2-Q}) d\mu(\zeta)) dl < \infty$ for r > 0, whence

(6.1)
$$\int_{\Omega_l(z_0)} \left(\Gamma(\zeta^{-1} \circ z_0) - l^{2-Q} \right) d\mu(\zeta) < \infty, \quad \text{for every} \quad l > 0.$$

If u and μ are as above and we set

$$n(z_0,t) := \int_{\Omega_t(z_0)} \mathrm{d}\mu(\zeta),$$

we obtain
(6.2)

$$\int_{\{\zeta \mid 0 < \Gamma(\zeta^{-1} \circ z_0)^{\frac{1}{2-Q}} < l\}} \left(\Gamma(\zeta^{-1} \circ z_0) - l^{2-Q} \right) d\mu(\zeta) = \int_0^l (t^{2-Q} - l^{2-Q}) dn(z_0, t).$$
As $\{\zeta \in \mathbb{R}^{N+1} \mid 0 < \Gamma(\zeta^{-1} \circ z_0)^{\frac{1}{2-Q}} < l\} = \Omega_l(z_0)$, by (6.2) and (6.1),
(6.3) $\int_0^l (t^{2-Q} - l^{2-Q}) dn(z_0, t) < \infty$, for every $l > 0$.

Now, integrating by parts,

(6.4)

$$\int_{0}^{l} (t^{2-Q} - l^{2-Q}) \, \mathrm{d}n(z_{0}, t)$$

$$= \lim_{\varepsilon \to 0^{+}} \left(-(\varepsilon^{2-Q} - l^{2-Q})n(z_{0}, \varepsilon) - \int_{\varepsilon}^{l} (2-Q)t^{1-Q}n(z_{0}, t) \, \mathrm{d}t \right)$$

$$= (Q-2) \int_{0}^{l} \frac{n(z_{0}, t)}{t^{Q-1}} \, \mathrm{d}t.$$

Indeed, by dominated convergence we have

$$n(z_0, 0^+) := \lim_{t \to 0^+} n(z_0, t) = \int_{\mathbf{R}^{N+1}} \lim_{t \to 0^+} \chi_{\Omega_t(z_0)}(\zeta) \, \mathrm{d}\mu(\zeta) = 0,$$

so that

$$\begin{aligned} (\varepsilon^{2-\varrho} - l^{2-\varrho}) n(z_0, \varepsilon) &= (\varepsilon^{2-\varrho} - l^{2-\varrho}) \left(n(z_0, \varepsilon) - n(z_0, 0^+) \right) \\ &= (\varepsilon^{2-\varrho} - l^{2-\varrho}) \lim_{t \to 0^+} \int_t^{\varepsilon} \mathrm{d}n(z_0, t) \\ &= \int_0^{\varepsilon} (\varepsilon^{2-\varrho} - l^{2-\varrho}) \mathrm{d}n(z_0, t) \\ &\leq \int_0^{\varepsilon} (t^{2-\varrho} - l^{2-\varrho}) \mathrm{d}n(z_0, t) \longrightarrow 0 \quad \text{as } \varepsilon \to 0^+, \end{aligned}$$

where in the last limit we have used (6.3). Then, using (6.2) and (6.4) in the last term of (5.7), we obtain

(6.5)
$$\frac{Q-2}{r^{Q-2}} \int_0^r l^{Q-3} \left(\int_{\Omega_l(z_0)} \left(\Gamma(\zeta^{-1} \circ z_0) - \frac{1}{l^{Q-2}} \right) \mathrm{d}\mu(\zeta) \right) \mathrm{d}l$$
$$= \frac{(Q-2)^2}{r^{Q-2}} \int_0^r l^{Q-3} \left(\int_0^l \frac{n(z_0,t)}{t^{Q-1}} \, \mathrm{d}t \right) \mathrm{d}l.$$

Now, replacing (6.5) in Poisson-Jensen's formula (5.7) we immediately get the following representation formula for \mathscr{L} -subharmonic functions in \mathbb{R}^{N+1} .

THEOREM 6.1. Let $u \in \underline{\mathscr{G}}^{\mathscr{L}}(\mathbf{R}^{N+1})$ be such that $u(z_0) > -\infty$ for a suitable $z_0 \in \mathbf{R}^{N+1}$ and $\mu = \mathscr{L}u$ be its related \mathscr{L} -Riesz measure. Then, for every R > 0, we have

(6.6)
$$u(z_0) = M_R(u)(z_0) - (Q-2)^2 \int_0^1 \tau^{Q-3} \left(\int_0^{R\tau} \frac{n(z_0,t)}{t^{Q-1}} \, \mathrm{d}t \right) \mathrm{d}\tau.$$

Now we are ready to prove our main result.

THEOREM 6.2. Let μ be a Radon measure in \mathbb{R}^{N+1} and let n(z, t) be defined as follows

$$n(z,t) := \int_{\Omega_t(z)} \mathrm{d}\mu(\zeta), \qquad z \in \mathsf{R}^{N+1}.$$

Then, a necessary and sufficient condition for μ to be the \mathscr{L} -Riesz measure related to a bounded-above \mathscr{L} -subharmonic function u in \mathbb{R}^{N+1} is that the following condition holds

(6.7)
$$\int_{1}^{\infty} \frac{n(z,t)}{t^{Q-1}} \, \mathrm{d}t < \infty,$$

for every z in a dense subset of \mathbb{R}^{N+1} . If this condition is satisfied, then there exists $h \in \mathcal{H}^{\mathcal{L}}(\mathbb{R}^{N+1})$, $h \leq 0$, such that

(6.8)
$$u(z) = U - \int_{\mathbf{R}^{N+1}} \Gamma(\zeta^{-1} \circ z) \, \mathrm{d}\mu(\zeta) + h(z), \qquad z \in \mathbf{R}^{N+1},$$

where $U < \infty$ is the least upper bound of u.

PROOF. We prove the first statement of the theorem, beginning with the necessity part. Let $u \in \mathscr{L}^{\mathscr{L}}(\mathbb{R}^{N+1})$ be such that $\sup_{\mathbb{R}^{N+1}} u = U < \infty$, and we choose $z_0 \in \mathbb{R}^{N+1}$ satisfying $u(z_0) > -\infty$. If we define $u^+ := \max\{u, 0\}$ and $u^- := \max\{-u, 0\}$, then for every R > 0 the following inequality holds

$$M_R(u^+)(z_0) \le \max\{U, 0\} \cdot M_R(1)(z_0) = \max\{U, 0\}.$$

From representation formula (6.6) we obtain

$$(Q-2)^{2} \int_{0}^{1} \tau^{Q-3} \left(\int_{\tau}^{R\tau} \frac{n(z_{0},t)}{t^{Q-1}} dt \right) d\tau = M_{R}(u^{+})(z_{0}) - M_{1}(u^{+})(z_{0}) + M_{1}(u^{-})(z_{0}) - M_{R}(u^{-})(z_{0}) \le \max\{U,0\} + M_{1}(u^{-})(z_{0}),$$

so that, by Beppo Levi's theorem,

$$(Q-2)^2 \int_0^1 \tau^{Q-3} \left(\int_\tau^\infty \frac{n(z_0,t)}{t^{Q-1}} \,\mathrm{d}t \right) \mathrm{d}\tau < \infty.$$

Hence, we get $\int_{1}^{\infty} t^{1-Q} n(z_0, t) dt < \infty$ and, as the \mathscr{L} -subharmonic function u is finite in a dense subset of \mathbb{R}^{N+1} , we obtain also (6.7).

Let us now prove the sufficiency part. Let μ be a Radon measure on \mathbb{R}^{N+1} satisfying (6.7) and consider the function

$$u(z) := -\int_{\mathbf{R}^{N+1}} \Gamma(\zeta^{-1} \circ z) \, \mathrm{d}\mu(\zeta) = \Gamma_{\mu}(z), \qquad z \in \mathbf{R}^{N+1}.$$

It is enough to prove that $u \in \mathscr{L}^{\mathscr{L}}(\mathsf{R}^{N+1})$, $\mathscr{L}u = \mu$ in R^{N+1} and $\sup_{\mathsf{R}^{N+1}} u = 0$. If we show that *u* is finite in a dense subset of R^{N+1} , then the first two statements immediately follow from what we have seen at the beginning of Section 5, and Proposition 5.8 yields $\sup_{\mathsf{R}^{N+1}} u = 0$.

We consider $z_0 = (x_0, t_0)$ satisfying (6.7). For every fixed R > 0, we split *u* as follows

$$u(z) = -\int_{\{\zeta \mid \Gamma(\zeta^{-1} \circ z_0)^{\frac{1}{2-Q}} \le R\}} \Gamma(\zeta^{-1} \circ z) \, d\mu(\zeta)$$

$$-\int_{\{\zeta \mid R < \Gamma(\zeta^{-1} \circ z_0)^{\frac{1}{2-Q}} < +\infty\}} \Gamma(\zeta^{-1} \circ z) \, d\mu(\zeta)$$

$$-\int_{\{\zeta \mid \Gamma(\zeta^{-1} \circ z_0) = 0\}} \Gamma(\zeta^{-1} \circ z) \, d\mu(\zeta)$$

$$=: u_1^{R, z_0}(z) + u_2^{R, z_0}(z) + u_3^{z_0}(z).$$

The function u_1^{R,z_0} is \mathscr{L} -subharmonic in \mathbb{R}^{N+1} and the same property holds for

$$u_{\lambda}^{R,z_0}(z) := -\int_{\{\zeta \mid R < \Gamma(\zeta^{-1} \circ z_0)^{\frac{1}{2-Q}} < \lambda\}} \Gamma(\zeta^{-1} \circ z) \, \mathrm{d}\mu(\zeta), \qquad \lambda > R.$$

We have $u_{\lambda}^{R,z_0} \downarrow u_2^{R,z_0}$ as $\lambda \uparrow \infty$, hence u_2^{R,z_0} is a u.s.c. function. Since u_{λ}^{R,z_0} satisfies the solid sub-mean property and using Beppo Levi's theorem, we get

$$u_2^{R,z_0}(z) \le M_r(u_2^{R,z_0})(z),$$
 for every $r > 0$ and $z \in \mathbb{R}^{N+1}$

Moreover

$$\begin{aligned} u_{\lambda}^{R,z_{0}}(z_{0}) &= -\int_{R}^{\lambda} t^{2-Q} \, \mathrm{d}n(z_{0},t) \\ &= -\lambda^{2-Q} n(z_{0},\lambda) + R^{2-Q} n(z_{0},R) - (Q-2) \int_{R}^{\lambda} \frac{n(z_{0},t)}{t^{Q-1}} \, \mathrm{d}t \\ &\geq -(Q-2) \int_{R}^{\infty} \frac{n(z_{0},t)}{t^{Q-1}} \, \mathrm{d}t. \end{aligned}$$

Indeed, as the function $n(z_0, \cdot)$ is non-decreasing we have

$$\lambda^{2-Q} n(z_0, \lambda) \le (Q-2) \int_{\lambda}^{\infty} \frac{n(z_0, t)}{t^{Q-1}} \,\mathrm{d}t.$$

Then, by (6.7), $u_2^{R,z_0}(z_0) = \lim_{\lambda \to \infty} u_{\lambda}^{R,z_0}(z_0) > -\infty$, so that, by Proposition 4.2, $u_2^{R,z_0} > -\infty$ in a dense subset of $\{(x, t) \in \mathbb{R}^{N+1} \mid t < t_0\}$. On the other hand, since Γ is supported in a half space, we have

$$u_3^{z_0}(x,t) = 0$$
 in $\mathbf{R}^N \times]-\infty, t_0].$

Thus the function u is finite in a dense subset of $\{(x, t) \in \mathbb{R}^{N+1} \mid t < t_0\}$, so that, by hypothesis (6.7), $u > -\infty$ in a dense subset of \mathbb{R}^{N+1} . The first assertion of the theorem is so proved.

Now, let us consider a function $v \in \underline{\mathscr{L}}^{\mathscr{L}}(\mathbf{R}^{N+1})$ such that $\sup_{\mathbf{R}^{N+1}} v = U < \infty$. Let $\mu = \mathscr{L}v$ be its related \mathscr{L} -Riesz measure. By the first part of the theorem, also the function

$$u(z) := U + \Gamma_{\mu}(z), \qquad z \in \mathbf{R}^{N+1}$$

is \mathscr{L} -subharmonic in \mathbb{R}^{N+1} with least upper bound U and related \mathscr{L} -Riesz measure μ . Then in the weak sense of distributions we have $\mathscr{L}(v-u) = 0$. Since \mathscr{L} is hypoelliptic, there exists a function h, \mathscr{L} -harmonic in \mathbb{R}^{N+1} , such that h = v - u almost everywhere in \mathbb{R}^{N+1} . So, we get $h \leq -\Gamma_{\mu}$ a.e. in \mathbb{R}^{N+1} , hence everywhere as a consequence of Theorem 5.5. Now Proposition 5.8 yields $h \leq 0$ in \mathbb{R}^{N+1} . This completes the proof of the theorem.

REMARK 6.3. We note that the hypotheses $\mathscr{L}h = 0$ in \mathbb{R}^{N+1} and $h \le 0$ in the previous Theorem 6.2 do not imply that h is a constant function, unlike the case of sub-Laplacians on Carnot groups. Indeed, for example, the function

$$u(x,t) = -\exp(x_1 + \dots + x_N + Nt), \qquad x \in \mathbb{R}^N, \ t \in \mathbb{R},$$

is non positive, non constant and satisfies the classical heat equation $\sum_{i=1}^{N} \partial_{x_i}^2 u - \partial_t u = 0$ in \mathbb{R}^{N+1} .

If we suppose for |u| a suitable growth condition that enable us to get a Liouville-type theorem for \mathscr{L} (see [10]), we obtain a global representation formula exactly analogous to (7.7) of [4].

COROLLARY 6.4. Let u be a bounded-above \mathcal{L} -subharmonic function in \mathbb{R}^{N+1} , and $\mu = \mathcal{L}u$ be its related \mathcal{L} -Riesz measure. If we suppose

 $|u(0,t)| = O(t^m)$ as $t \to \infty$

for some $m \ge 0$, then

$$u(z) = U - \int_{\mathbf{R}^{N+1}} \Gamma(\zeta^{-1} \circ z) \,\mathrm{d}\mu(\zeta), \qquad z \in \mathbf{R}^{N+1},$$

where $U < \infty$ is the least upper bound of u.

PROOF. From (6.8) of Theorem 6.2 it follows that

$$u(z) = U + \Gamma_u(z) + h(z), \qquad z \in \mathbf{R}^{N+1},$$

where $h \le 0$ is \mathscr{L} -harmonic in \mathbb{R}^{N+1} . By Proposition 5.8 we have $\sup_{\mathbb{R}^{N+1}} \Gamma_{\mu} = 0$, so that $-h \le U - u$ in \mathbb{R}^{N+1} . In particular,

$$0 \le -h(0,t) \le U - u(0,t) = O(t^m)$$
 as $t \longrightarrow \infty$.

Then, by [10, Theorem 1.1], $h = \text{const. in } \mathbb{R}^{N+1}$. But, since

$$\sup_{\mathsf{R}^{N+1}} (U + \Gamma_{\mu} + h) = \sup_{\mathsf{R}^{N+1}} u = U = \sup_{\mathsf{R}^{N+1}} (U + \Gamma_{\mu}),$$

we have $h \equiv 0$, and the assertion follows.

ACKNOWLEDGEMENTS. The author wishes to thank Professor E. Lanconelli for useful discussions on the topics presented here.

REFERENCES

- 1. Bauer, H., Harmonische Räume und ihre Potentialtheorie, Lecture Notes in Math. 22 (1966).
- Bonfiglioli, A., Lanconelli, E., Liouville-type theorems for real sub-Laplacians, Manuscripta Math. 105 (2001), 111–124.
- Bonfiglioli, A., Lanconelli, E., Maximum Principle on unbounded domains for sub-Laplacians: a Potential Theory approach, Proc. Amer. Math. Soc. 130 (2002), 2295–2304.
- Bonfiglioli, A., Lanconelli, E., Subharmonic functions on Carnot groups, Math. Ann. 325 (2003), 97–122.
- Bony, J.-M., Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), 277– 304.

- 6. Constantinescu, C., Cornea, A., *Potential Theory on Harmonic Spaces*, Springer-Verlag, Berlin, 1972.
- 7. Garofalo, N., Lanconelli, E., Asymptotic behavior of fundamental solutions and potential theory of parabolic operators with variable coefficients, Math. Ann. 283 (1989), 211–239.
- Garofalo, N., Lanconelli, E., Wiener's criterion for parabolic equations with variable coefficients and its consequences, Trans. Amer. Math. Soc. 308 (1988), 811–836.
- Kogoj, A. E., Lanconelli, E., An invariant Harnack inequality for a class of hypoelliptic ultraparabolic equations, Mediterr. J. Math. 1 (2004), 51–80.
- Kogoj, A. E., Lanconelli, E., One-side Liouville Theorems for a class of hypoelliptic ultraparabolic equations, Contemp. Math. 368 (2005), 305–312.
- 11. Lanconelli, E., Pascucci, A., Superparabolic functions related to second order hypoelliptic operators, Potential Anal. 11 (1999), 303–323.
- Lanconelli, E., Polidoro, S., On a class of hypoelliptic evolution operators, Rend. Sem. Mat. Univ. Pol. Torino 52 (1994), 29–63. Partial differential equations, II (Turin, 1993).
- Negrini, P., Scornazzani, V., Superharmonic functions and regularity of boundary points for a class of elliptic-parabolic partial differential operators, Boll. Un. Mat. Ital. C (6) 3 (1984), no. 1, 85–106.
- Watson, N. A., Nevanlinna's first fundamental theorem for supertemperatures, Math. Scand. 73 (1993), 49–64.
- 15. Watson, N. A., *The representation of smooth functions in terms of the fundamental solution of a linear parabolic equation*, Ann. Polon. Math. 75 (2000), 281–287.
- Watson, N. A., A generalized Nevanlinna theorem for supertemperatures, Ann. Acad. Sci. Fenn. Math. 28 (2003), 35–54.

DIPARTIMENTO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI BOLOGNA PIAZZA DI PORTA S. DONATO, 5 40126 BOLOGNA ITALY *E-mail:* cinti@dm.unibo.it