
MATH. SCAND. 101 (2007), 65–82

GLOBAL SCHAUDER DECOMPOSITIONS OF
LOCALLY CONVEX SPACES

MILENA VENKOVA∗

Abstract

We define global Schauder decompositions of locally convex spaces and prove a necessary and
sufficient condition for two spaces with global Schauder decompositions to be isomorphic. These
results are applied to spaces of entire functions on a locally convex space.

Given two spaces, E and F , with Schauder (or even S -absolute) decom-
positions, the existence of isomorphisms between the spaces forming the de-
compositions does not imply that E and F are isomorphic. In order to tackle
this problem when the underlying decompositions consist of Banach spaces,
P. Galindo, M. Maestre and P. Rueda defined in [12] a subclass of S -absolute
decompositions of Fréchet spaces: R-Schauder decompositions. To consider
the corresponding problem when E and F are locally convex spaces and the
underlying decompositions are not necessarily Banach spaces, we were led to
define global Schauder decompositions.

1. Introduction

In this section we give initial definitions and preliminary results.
First we introduce notation that will be used throughout the article. Let E

denote a locally convex space over the complex numbers C, and let E′ denote
the space of all continuous linear functionals on E. When E′ is endowed with
the strong topology (i.e. the topology of uniform convergence over the bounded
subsets of E), we denote it by E′

β .
For E a locally convex space we let P(nE) denote the space of all continu-

ous n-homogeneous polynomials on E. The topology on P(nE) of uniform
convergence over the compact (respectively bounded) subsets of E is denoted
by τ0 (respectively τb). A third topology on P(nE) can be defined in the fol-
lowing way. A semi-norm p on P(nE) is τw-continuous if for every zero
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neighbourhood V in E there exists a positive constant C(V ) such that

p(P ) ≤ C(V )‖P ‖V

for all P ∈ P(nE). The topology generated by all such semi-norms is de-
noted by τw. When n = 1, E′

i := (P(1E), τw) is the inductive dual of E,
E′

β := (P(1E), τb) is the strong dual of E and E′
c := (P(1E), τ0). By

⊗̂
n,s,π

E

(respectively
⊗̂
n,s,ε

E) we denote the completed symmetric n-fold tensor product

of E endowed with the projective tensor topology (resp. the injective tensor
topology).

For more definitions and properties of polynomials and holomorphic func-
tions on locally convex spaces we refer the reader to [7] and [8], and for more
information on locally convex spaces we refer the reader to [13] and [14].

Definition 1.1. A sequence of subspaces {En}n of a locally convex space
E is a Schauder decomposition of E if:

• For each x in E there exists a unique sequence of vectors (xn)n, xn ∈ En,
such that

x =
∞∑

n=1

xn := lim
m→∞

m∑
n=1

xn.

• The projections (un)
∞
n=1 defined by

um

( ∞∑
n=1

xn

)
:=

m∑
n=1

xn

are continuous.

The topology on each En is induced by the topology on E. A Schauder decom-
position {En}n of a locally convex space E is absolute if for each p ∈ cs(E),

q

( ∞∑
n=1

xn

)
:=

∞∑
n=1

p(xn)

defines a continuous semi-norm on E.

The following definition is our main tool in this paper.

Definition 1.2. A Schauder decomposition {En}∞n=0 of a locally convex
space E is a global Schauder decomposition if for all r > 0, all x = ∑∞

n=1 xn ∈
E with xn ∈ En for each n,

(1) r · x :=
∞∑

n=1

rnxn ∈ E;
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and for each p ∈ cs(E),

(2) pr

( ∞∑
n=1

xn

)
:=

∞∑
n=1

rnp(xn)

defines a continuous semi-norm on E.

In particular, taking r = 1 we see that global Schauder decompositions are
absolute.

Remark 1.3. If {En}n is a global Schauder decomposition for the locally
convex space E, there is a generating family of semi-norms p ∈ cs(E) of the
form

(3) p

( ∞∑
n=1

xn

)
=

∞∑
n=1

p(xn).

Let q(x) := supn p(xn) where p is a continuous semi-norm satisfying (3).
Since supn p(xn) ≤ ∑∞

n=1 p(xn), the semi-norm q is continuous. Let q2(x) :=
supn(2

np(xn)), from the inequality

q(x) ≤ p(x) =
∞∑

n=1

1

2n
2np(xn) ≤ sup

n

(2np(xn))

∞∑
n=1

(
1

2n

)
= q2(x) ≤ p2(x),

it follows that the semi-norms {q(x) = supn p(xn)} generate the topology on
E. Moreover, condition (2) in Definition 1.2 is equivalent to the condition that
for each q ∈ cs(E),

(4) qr

( ∞∑
n=1

xn

)
:= sup

n

(rnq(xn))

defines a continuous semi-norm on E. Thus the locally convex topology of E

can be defined both by l1-type or by c0-type norms.

For completeness we will give the definitions for two other types of Schauder
decompositions, S -absolute decompositions and R-Schauder decompositions.
Let S denote the set of all sequences (αn)

∞
n=1 ⊂ C such that lim supn→∞ |αn|1/n

≤ 1.

Definition 1.4. A Schauder decomposition {En}n of a locally convex
space E is an S -absolute decomposition if for all α = (αn)n ∈ S and
x = ∑∞

n=1 xn ∈ E, with xn ∈ En for all n,

(5) α · x :=
∞∑

n=1

αnxn ∈ E
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and, for each p ∈ cs(E) and each α = (αn)n in S ,

(6) pα

( ∞∑
n=1

xn

)
:=

∞∑
n=1

|αn|p(xn)

defines a continuous semi-norm on E.

For results and applications of S -absolute decompositions we refer the
reader to [7] and [8]. We will just mention that a Schauder decomposition of a
barrelled locally convex space satisfying (5) is an S -absolute decomposition.

Definition 1.5. Let {En}n denote an absolute Schauder decomposition
of the locally convex space E. We say that {En}n is a T.S. (=Taylor series)
complete decomposition if for any sequence (xn)n with xn ∈ En for all n,∑∞

n=1 p(xn) < ∞ for all p ∈ cs(E) implies
∑∞

n=1 xn ∈ E.

T.S. completeness and conditions (1) and (5) are all completeness condi-
tions with respect to a decomposition. In particular, the S -absolute Schauder
decomposition of a sequentially complete locally convex space is T.S. com-
plete. If {En}n is a T.S. complete and global Schauder decomposition, then it
is an S -absolute decomposition.

Let us now consider the case when E is a Fréchet space such that there is
a sequence of Banach spaces {En}∞n=0 which is a Schauder decomposition of
E. Let 0 < R ≤ ∞. The decomposition {En}∞n=0 is R-Schauder ([12]) if for
every sequence (xn)n, xn ∈ En, the series x = ∑∞

n=1 xn converges in E if and
only if lim supn ‖xn‖1/n

n ≤ 1/R.
If E is a Fréchet space and {En}∞n=0 is an ∞-Schauder decomposition of

E consisting of Banach spaces, then it is a global Schauder decomposition
of E. Indeed, let A = {(rn)n : r > 0}, consider the Köthe sequence space
λ1(A, (En)n). This is the Fréchet space

{
(xn)n ∈ ∏∞

n=1 En : pr

(∑∞
n=0 xn

)
:=∑∞

n=0 rn‖xn‖n < ∞ for all r > 0
}
, endowed with the topology generated by

the semi-norms {pr}r>0. Clearly, {En}∞n=0 forms a global Schauder decompos-
ition of λ1(A, (En)n). By ([12], Theorem 1) E is topologically isomorphic to
λ1(A, (En)n), hence {En}∞n=0 forms a global Schauder decomposition of E.

To show that the converse is not true, consider the Köthe matrix A∗ ={(
(nr)n

)
n

: r > 0
}

and a sequence of Banach spaces {En}∞n=0. The cor-
responding Köthe sequence space λ1(A∗, (En)n) = {

(xn)n ∈ ∏∞
n=1 En :

p∗
r

(∑∞
n=0 xn

)
:= ∑∞

n=0(nr)n‖xn‖n < ∞ for all r > 0
}

endowed with the
topology generated by the semi-norms {p∗

r }r>0 is a Fréchet space. It is easy to
check that {En}∞n=0 is a global Schauder decomposition of λ1(A∗, (En)n). Let
x = ∑∞

n=1 xn ∈ ∏∞
n=1 En such that ‖xn‖n = 1/nn, then lim supn ‖xn‖1/n

n = 0.
On the other hand, for r ≥ 1 the series pr(x) = ∑∞

n=0(nr)n‖xn‖n is divergent



global schauder decompositions of locally convex spaces 69

hence x does not belong to λ1(A∗, (En)n), i.e. {En}∞n=0 is not an ∞-Schauder
decomposition for λ1(A∗, (En)n).

2. Application of Global Schauder Decompositions

Proposition 2.1. Let E and F be locally convex spaces. Let {En}∞n=0 and
{Fn}∞n=0 be T.S.-complete global Schauder decompositions for E and F re-
spectively. For each n let

Tn : En −→ Fn

be an isomorphism satisfying the following two conditions:
(A) For every q ∈ cs(F ) there exist p ∈ cs(E) and positive numbers c and

t such that

(7) q(Tn(xn)) ≤ ctnp(xn)

for every x = ∑∞
n=0 xn in E and every positive integer n.

(B) For every p ∈ cs(E) there exist q ∈ cs(F ) and positive numbers d and
v such that

p(T −1
n (yn)) ≤ dvnq(yn)

for every y = ∑∞
n=0 yn in F and every positive integer n.

Then T = ∑∞
n=0 Tn is an isomorphism between E and F .

Proof. Let q ∈ cs(F ). By condition (A) there exist p ∈ cs(E) and positive
numbers c and t such that

∞∑
n=0

q(Tn(xn)) ≤ c

∞∑
n=0

tnp(xn) = cpt (x) < ∞

for every x = ∑∞
n=0 xn ∈ E. Thus T is well defined and continuous. Let y =∑∞

n=0 yn ∈ F , we will prove that T is surjective. Since Tn is an isomorphism
for every n, there exist {xn}n, xn ∈ En, such that T (xn) = yn. Let p ∈ cs(E).
By condition (B) there exist q ∈ cs(F ) and positive numbers d and v such that

∞∑
n=0

p(xn) =
∞∑

n=0

p(T −1
n (yn)) ≤ d

∞∑
n=0

vnq(yn) = dqv(y) < ∞.

Since {En}∞n=0 is T.S. complete, x = ∑∞
n=0 xn ∈ E and T (x) = y.

Define S = ∑∞
n=0 T −1

n . Since the hypotheses are symmetric with respect
to E and F , the above also proves that S is well defined and continuous. It is
easy to check that S is the inverse of T .

The converse proposition holds in a more general situation.
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Proposition 2.2. Let E and F be locally convex spaces, and let {En}∞n=0
and {Fn}∞n=0 be their respective Schauder decompositions. Let

T : E −→ F

be an isomorphism such that T (Em) ⊆ Fm for every positive integer m. Then
Tm := T |Em

−→ Fm is an isomorphism for each m and Tm satisfies conditions
(A) and (B) of Proposition 2.1.

Proof. Let ym ∈ Fm ⊂ F . Since T is surjective there exists x = ∑∞
n=0 xn

such that T (x) = ∑∞
n=0 T (xn) = ym. By hypothesis T (xn) ∈ Fn for every n,

hence Tm(xn) = 0 for m �= n and ym = T (xm) = Tm(xm), i.e. Tm is surjective.
Since T is injective Tm is also injective. Thus Tm is a bijective mapping. The
continuity of Tm and T −1

m follows from the continuity of T and T −1.
We now show that conditions (A) and (B) are satisfied. Let q ∈ cs(F ). Since

T is continuous, there exist p ∈ cs(E) and c > 0 such that q(T (x)) ≤ cp(x)

for every x ∈ E. In particular, for x = xm ∈ Em we have

qm(Tm(xm)) ≤ cpm(xm).

Hence inequality (7) is satisfied for t = 1. Condition (B) follows in a similar
way from the continuity of T −1.

3. Stability Properties of Global Schauder Decompositions

The following lemma is an adjustment of ([8], Lemma 3.31).

Lemma 3.1. Let E be a barrelled locally convex space and {En}∞n=0 be a
Schauder decomposition of E satisfying condition (1), then {En}∞n=0 is a global
Schauder decomposition of E.

Proof. Let p be a continuous semi-norm on E, and let r > 0. The set{
x ∈ E : pr(x) =

∞∑
n=1

rnp(xn) ≤ 1

}
=

∞⋂
m=1

{
x =

∞∑
n=1

xn ∈ E :
m∑

i=1

rip(xi) ≤ 1

}
is a barrel, and consequently a neighbourhood of zero in E. Thus pr is con-
tinuous for every r > 0.

Lemma 3.2. Let E be a sequentially complete locally convex space and
{En}∞n=0 be a Schauder decomposition of E satisfying condition (2), then
{En}∞n=0 is a global Schauder decomposition of E.
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Proof. Let x = ∑∞
n=1 xn ∈ E and r > 0, denote sn := ∑n

i=1 rixi . If
p ∈ cs(E) then

p(sn − sm) =
n∑

i=m

rip(xi) = pr

( n∑
i=m

xi

)
−→ 0

as m, n → ∞. Thus (sn)n is a Cauchy sequence, hence
∑∞

n=1 rixi ∈ E.

Proposition 3.3. Let {En}n denote a global Schauder decomposition for
the locally convex space E. Then {En}n is a global Schauder decomposition
for the completion E.

Proof. Let x ∈ E, then there exists a net (xβ)β ⊂ E such that x =
limβ→∞ xβ . Since xβ ∈ E there exist (xβ,n)n such that xβ = ∑∞

n=0 xβ,n for
every β. The nets (xβ,n)β are Cauchy for every n, hence there exists xn ∈ En for
every n such that xn := limβ→∞ xβ,n. Let p ∈ cs(E) be from the generating
family of continuous semi-norms satisfying (3). Given ε > 0 we can find
β0 > 0 such that ∞∑

n=0

p(xβ,n − xβ ′,n) < ε

for all β, β ′ > β0. By passing to the limit in β ′ and extending p by continuity
to the completion we get

∞∑
n=0

p(xβ,n − xn) ≤ ε

when β > β0. This implies that the series
∑∞

n=0 xn is convergent and xβ →∑∞
n=0 xn. Since (xβ)β has a unique limit, x = ∑∞

n=0 xn. The projections (un)n
defined by

um

( ∞∑
n=0

yn

)
:=

m∑
n=1

yn

where
∑∞

n=0 yn ∈ E, are linear and continuous and hence can be extended by
uniform continuity to the completion E. Hence {En}n is a Schauder decom-
position for the completion E.

Let r > 0 and let p̂ ∈ cs(E). Since {En}n is a global Schauder decomposi-
tion for E, the mapping

p̂r

( ∞∑
n=0

yn

)
=

∞∑
n=0

rnp̂(yn),
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where y = ∑∞
n=0 yn ∈ E, defines a continuous semi-norm on E. Taking r = 1

we get

∞∑
n=0

p̂(xn) ≤ lim
β→∞

∞∑
n=0

p̂(xn − xβ,n) + lim
β→∞

∞∑
n=0

p̂(xβ,n)

= lim
β→∞

∞∑
n=0

p̂(xβ,n) = lim
β→∞ p̂1(xβ),

hence
∑∞

n=0 p̂(xn) defines a continuous semi-norm on E. For an arbitrary
r > 0 we have

∞∑
n=0

rnp̂(xn) =
∞∑

n=0

p̂(rnxn) ≤ lim
β→∞

∞∑
n=0

p̂(rnxβ,n) = lim
β→∞ p̂r (xβ).

Since p̂r is a continuous semi-norm on E, the limit exists and is finite. Thus∑∞
n=0 rnp̂(xn) defines a continuous semi-norm on E. An application of Lemma

3.2 completes the proof.

Proposition 3.4. If {En}n is a global Schauder decomposition for the
locally convex space E then {(En)i

′}n is a global Schauder decomposition for
the inductive dual of E, Ei

′.

Proof. By ([14], 10.3) E
′
i = E′

i , and by Proposition 3.3 {En}n is a global
Schauder decomposition for E. Hence we can assume that E and all En are
complete.

Let ϕ ∈ E′, we denote ϕ|En
by ϕn. By Remark 1.3 there exists a continuous

semi-norm p such that |ϕ(x)| ≤ p(x) for any x ∈ E, with p(xn) → 0
as n → ∞, and p(x) = supn p(xn) for any x = ∑∞

n=1 xn ∈ E. Hence
ϕ ∈ (E, p)′ and can be extended to Ep := (E, p)/p−1(0). We will denote

the extension of p to Ep again by p, and let (Ep)n := (En, p|En
)/p|En

−1(0).
Then

Ep =
{ ∞∑

n=1

xn : xn ∈ (Ep)n, p|En
(xn) → 0 as n → ∞

}
,

and p
(∑∞

n=1 xn

) = supn p|En
(xn). Let ϕ̄n denote the extension of ϕn in

((Ep)n)
′. Since {En}n is a Schauder decomposition of E, ϕ = ∑∞

n=1 ϕ̄n point-
wise on E. Let p′ be the dual semi-norm of p on E′ and let Bp be the unit ball
of Ep. Then

p′
(

ϕ −
m∑

n=1

ϕ̄n

)
= sup

x∈Bp

∣∣∣∣ϕ(x) −
m∑

n=1

ϕ̄n(x)

∣∣∣∣ = sup
x∈Bp

∣∣∣∣ ∞∑
n=m+1

ϕ̄n(x)

∣∣∣∣.



global schauder decompositions of locally convex spaces 73

Let x ∈ E and {λn}n ⊂ C, |λn| ≤ 1 for all n ∈ N. Since {En}n is an abso-
lute decomposition and E is complete,

∑∞
n=1 λnxn ∈ E (see p. 189 of [8]).

This allows us to choose {λn}n so that λnϕ̄n(x) = |ϕ̄n(x)| for all n. Since
supn |λn|p(xn) ≤ 1 for all x ∈ Bp, it follows that λ · x ∈ Bp. Hence

p′
(

ϕ −
m∑

n=1

ϕ̄n

)
= sup

x∈Bp

∞∑
n=m+1

∣∣ϕ̄n(x)
∣∣.

Suppose supx∈Bp

∑∞
n=m+1

∣∣ϕ̄n(x)
∣∣ does not tend to zero as m → ∞. Then there

exists δ > 0 such that for all m ∈ N we can find x(m) ∈ Bp with

∞∑
n=m+1

∣∣ϕ̄n(x
(m))

∣∣ ≥ δ.

Let m = 1 and x(1) be the corresponding element of Bp. There exists m1 > 1
such that m1∑

n=1

∣∣ϕ̄n(x
(1)
n )

∣∣ ≥ δ

2
.

By induction we can build an increasing sequence {mj }j∈N ⊂ N and a sequence
{x(j)} ⊂ Bp such that

mj+1∑
n=mj +1

∣∣ϕ̄n(x
(j+1)
n )

∣∣ ≥ δ

2

for all j . Let

yn =

⎧⎪⎪⎨⎪⎪⎩
0 n ≤ mj ,
1

n
x(j+1)

n mj + 1 ≤ n ≤ mj+1,

0 n > mj+1.

Since p(x(j)) ≤ 1 and p(x) = supk p(xk), we have that p(yn) ≤ 1/n, hence
p(yn) → 0 as n → ∞ and (yn)n ⊂ Bp. This implies that

∑∞
n=1 yn ∈ Ep.

As before we can choose {λn}n ⊂ C, |λn| ≤ 1 for all n ∈ N, so that
ϕ(

∑∞
n=1 λnyn) = ∑∞

n=1 |ϕ(yn)|. However

∞∑
n=1

|ϕ(yn)| =
∞∑

n=1

1

n

∣∣ϕ̄n(x
(j+1)
n )

∣∣ ≥ δ

2

∞∑
n=1

1

n
,

i.e.
∑∞

n=1 |ϕ(yn)| is divergent, a contradiction. Hence p′(ϕ − ∑m
n=1 ϕ̄n

) → 0

and ϕ = ∑∞
n=1 ϕn ∈ E′

p. Since, by definition, Ei
′ = ind

p∈cs(E)

(
(E, p)/p−1(0)

)′
,
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the mapping E′
p −→ Ei

′ is continuous, and ϕ = ∑∞
n=1 ϕn in E′

i . Moreover, by
([14], Proposition 10.3.4) the canonical surjection Ei

′ −→ (En)
′
i is open and

continuous, hence E′
i induces the inductive topology on (En)

′. Thus {(En)i
′}n

is a Schauder decomposition for Ei
′. The above also shows that ϕn(x) =

ϕn(xn) = ϕ(xn).
Next we show that {(En)i

′}n is a global Schauder decomposition for Ei
′.

Let ϕ ∈ E′
i , ϕ = ∑∞

n=1 ϕn, and let r > 0. If x ∈ E then r · x ∈ E and

(r · ϕ)(x) :=
∞∑

n=1

rnϕn(xn) = ϕ

( ∞∑
n=1

rnxn

)
= ϕ(r · x)

is well defined. Since ϕ is continuous there exists a continuous semi-norm p

on E such that |ϕ(x)| ≤ p(x) for any x ∈ E. Then

|(r · ϕ)(x)| ≤
∞∑

n=1

rnϕn(xn) ≤ pr(x).

Since pr is a continuous semi-norm on E, this implies that r · ϕ ∈ E′. An
application of Lemma 3.1 completes the proof.

A proof for the following proposition can be obtained by modifying the
proof of Proposition 3.4.

Proposition 3.5. If {En}n is an S -absolute decomposition for the locally
convex space E then {(En)

′
i}n is an S -absolute decomposition for Ei

′.

Next we look at the strong dual of a locally convex space.

Proposition 3.6. If {En}n is a global Schauder decomposition for the
locally convex space E then {(En)

′
β}n is a global Schauder decomposition for

E′
β .

Proof. Let ϕ = ∑∞
n=0 ϕn ∈ E′ where ϕn := ϕ|En

. By the continuity of ϕ

there exists p ∈ cs(E) such that |ϕ(x)| ≤ p(x) for all x = ∑∞
n=0 xn ∈ E. Let

r > 0, then

(8)

∞∑
n=1

rnϕn(xn) =
∞∑

n=1

ϕn(r
nxn) ≤ pr

( ∞∑
n=1

xn

)
.

Let
(∑∞

n=1 rnϕn

)
(x) := limn→∞

∑n
i=1 riϕi(xi). By (8),

∑∞
n=1 rnϕn ∈ E′. The

topology on E′
β is generated by all semi-norms of the form

s(ϕ) := sup{|ϕ(x)| : x ∈ A},
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for all A bounded subsets of E. Let B be a bounded set in E, r · B :={∑∞
n=1 rnxn : x ∈ B

}
and p ∈ cs(E). Then since pr ∈ cs(E),

sup
x∈r·B

p(x) = sup
x∈B

p

( ∞∑
n=0

rnxn

)
= sup

x∈B

pr(x) < ∞.

Hence the set r · B is bounded in E. Therefore∥∥∥∥ ∞∑
n=m

rnϕn

∥∥∥∥
B

= sup
x∈B

∣∣∣∣ ∞∑
n=m

ϕn(r
nxn)

∣∣∣∣ = sup
x∈r·B

∣∣∣∣ ∞∑
n=m

ϕn

∣∣∣∣ → 0

as m → ∞. Hence {(En)β
′}n is a Schauder decomposition for E′

β satisfying
(1). It remains to show that condition (2) is satisfied. Let B be a bounded set
in E and let

B̃ :=
{ ∞∑

n=1

λnxn : x ∈ B, (λn)n ⊂ C such that |λn| ≤ 1 for all n ∈ N
}
.

The set B̃ is bounded in E. Indeed, let p ∈ cs(E) satisfying (3). Then

sup
x∈B̃

p(x) = sup
x∈B

∞∑
n=1

p(λnxn) = sup
x∈B

∞∑
n=1

p(xn) < ∞.

This allows us to choose {λn}n so that λnϕn(x) = |ϕn(x)| for all n. Then

sup
x∈2rB̃

|ϕ(x)| = sup
x∈B̃

∣∣∣∣ ∞∑
n=1

(2r)nϕn(xn)

∣∣∣∣ = sup
x∈B

∞∑
n=1

(2r)n|ϕn(xn)| ≥ (2r)n‖ϕn‖B

for all n. Let q(ϕ) = sup
x∈B

|ϕ(x)|, then

qr(ϕ) ≤
∞∑

n=1

rn sup
x∈B

|ϕn(xn)| ≤
∞∑

n=1

1

2n
sup

x∈2rB̃

|ϕ(x)| = ‖ϕ(x)‖2rB̃

is continuous on E′
β .

4. Global Schauder Decompositions of Spaces of Holomorphic
Functions

In this section H (E) denotes the space of entire functions on a locally convex
space E.

Proposition 4.1. Let E be a locally convex space. Then
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(1) {(P(nE), τ0)}∞n=0 is a global Schauder decomposition for (H (E), τ0).

(2) {(P(nE), τw)}∞n=0 is a global Schauder decomposition for (H (E), τδ)

and (H (E), τw).

Proof. By ([8], Proposition 3.36), {(P(nE), τ0)}∞n=0 and {(P(nE), τw)}∞n=0
are S -absolute Schauder decompositions for (H (E), τ0) and (H (E), τδ) re-
spectively.

Let f = ∑∞
n=0

d̂nf (0)

n! ∈ H (E) and r > 0. If K ⊂ E is a compact balanced
set, by the local boundedness of f there exists a balanced open V ⊂ E such

that K ⊂ V and
∑∞

n=0

∥∥ d̂nf (0)

n!

∥∥
V

< ∞. Then

(9) ‖r · f ‖1/rV ≤
∞∑

n=0

rn

∥∥∥∥ d̂nf (0)

n!

∥∥∥∥
1/rV

=
∞∑

n=0

∥∥∥∥ d̂nf (0)

n!

∥∥∥∥
V

≤ ‖f ‖V .

Hence r · f ∈ H (E).
Since (H (E), τδ) is barrelled, by Lemma 3.1 {(P(nE), τw)}∞n=0 is a global

Schauder decomposition for (H (E), τδ). By replacing V by K in (9) we get
‖r · f ‖K ≤ ‖f ‖rK for all f ∈ H (E). Hence {(P(nE), τ0)}∞n=0 is a global
Schauder decomposition for (H (E), τ0). The proof that {(P(nE), τw)}∞n=0 is
a global Schauder decomposition for (H (E), τw) is similar (see also Propos-
ition 3.36 of [8]).

Propositions 4.1 and 2.1 imply

Corollary 4.2. Let E be a locally convex space. Then τδ = τw on H (E)

if and only if for every τδ-continuous semi-norm q there exist a τw-continuous
semi-norm p and positive numbers c and t such that

(10) q

(
d̂nf (0)

n!

)
≤ ctnp

(
d̂nf (0)

n!

)
for every f = ∑∞

n=0
d̂nf (0)

n! ∈ H (E) and every positive integer n.

Let E be a locally convex space, denote

Hb(E) = {f ∈ H(E) : ‖f ‖A < ∞ for every bounded set A}.
The functions in Hb(E) are called holomorphic functions of bounded type.
When endowed with τb, the topology of uniform convergence over the bounded
sets of E, Hb(E) becomes a locally convex space. The proof of Proposition
4.1 can easily be modified to show the following:

Proposition 4.3. Let E be a locally convex space. Then {(P(nE), τb)}∞n=0
is a global Schauder decomposition for (Hb(E), τb).
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In ([12], Examples 2 and 4) are given several examples of spaces of en-
tire functions on a Banach space such that the corresponding polynomial sub-
spaces are their ∞-Schauder decompositions – and, thus, their global Schauder
decompositions. All our results will apply to these spaces, and in particular
Proposition 2.1 reduces in this special case to ([12], Theorem 9(ii)).

Let E be a Banach space with a unit ball BE . In ([6]) the authors defined
the space HbI(E) of entire functions whose restrictions to nBE are integral
for all n. Endowed with the system of semi-norms {pn(f ) = ‖f |nBE

‖I }∞n=1,
HbI(E) is a Fréchet space and {(PI (

nE), ‖ · ‖I )}∞n=0 is an ∞-Schauder (and
hence global) decomposition for HbI(E). Now consider the entire functions
of bounded nuclear type on E, HNb(E) ([8], Definition 4.47). With the to-
pology generated by the semi-norms {πn(f ) = ‖f |nBE

‖N }∞n=1, HNb(E) is a
Fréchet space and a short calculation shows that {(PN(nE), ‖ · ‖N)}∞n=0 is an
∞-Schauder decomposition for HNb(E). By ([5], Theorem 2) if 
1 �↪→ ⊗̂

n,s,ε

E

for some integer n then PN(nE) and PI (
nE) are isometrically isomorphic. By

([12], Corollary 11) we obtain

Proposition 4.4. Let E be a Banach space such that
⊗̂
n,s,ε

E does not contain

a copy of 
1 for any n ∈ N. Then HbI(E) and HNb(E) are isomorphic.

Furthermore, by ([5], Proposition 3) we can replace “
⊗̂
n,s,ε

E does not contain

a copy of 
1 for any n ∈ N” with the condition that E′ has RNP.
Now let E be a locally convex space, let

(11) Gb(E) := {ϕ ∈ Hb(E)∗ : ϕ is τ0-continuous
on the bounded subsets of Hb(E)}.

When endowed with the topology τg of uniform convergence on the bounded
subsets of Hb(E), Gb(E) becomes a complete locally convex space. Let E

be a locally convex space such that the τb-bounded sets of Hb(E) are locally
bounded. By ([8], Lemma 3.25) if B is a locally bounded τb-bounded subset
of Hb(E), then it is relatively compact in (Hb(E), τ0). This allows us to apply
([15], Theorem 1.1) (see also p. 115 of [2]), and we obtain that Gb(E)′i =
(Hb(E), τ bor

b ). We have proved the following proposition.

Proposition 4.5. Let E be a locally convex space such that the τb-bounded
sets of Hb(E) are locally bounded. Then

Gb(E)′i = (Hb(E), τ bor
b ).

If E is a bornological DF space then the τb-bounded sets of Hb(E) are
locally bounded by ([10], Proposition 15). By ([10], Theorem 4), (Hb(E), τb)
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is Fréchet, and hence ultrabornological, which implies τb = τ bor
b . Thus if E is

a bornological DF space, Gb(E)′i = (Hb(E), τb).

Proposition 4.6. Let E be a locally convex space. Then the sequence{
(P(nE), τ bor

b )′
⋂

Gb(E)
}∞

n=0 is a global Schauder decomposition for Gb(E).

Proof. The space Gb(E) is a subspace of (Hb(E), τ bor
b )′ since its elements

are τb-continuous on the bounded sets of Hb(E) and hence are τ bor
b -continuous.

Let (fβ)β be a bounded net in Hb(E) which tends to 0 uniformly on every
compact subset K of E, and let r > 0. Since {(P(nE), τb)}∞n=0 is a global
Schauder decomposition for (Hb(E), τb) and rK is also a compact set, we
have ∞∑

n=0

rn

∥∥∥∥ d̂nfβ(0)

n!

∥∥∥∥
K

=
∞∑

n=0

∥∥∥∥ d̂nfβ(0)

n!

∥∥∥∥
rK

−→ 0

as β → ∞. Hence
{∑∞

n=0 rn d̂nfβ (0)

n!

}
β

is also a bounded τ0-null net in Hb(E).

Let ϑ = ∑∞
n=0 ϑn ∈ Gb(E) where ϑn := ϑ |P(nE). Then

(12)

( ∞∑
n=0

rnϑn

)
(fβ) =

∞∑
n=0

ϑn

( ∞∑
n=0

rn d̂nfβ(0)

n!

)
−→ 0

as β → ∞. This implies
∑∞

n=0 rnϑn ∈ Gb(E) for every r > 0.
Now let p be a τg-continuous semi-norm. Without loss of generality we

may assume that
p(ϑ) = sup

f ∈B

|ϑ(f )|,

where B is a bounded subset of Hb(E). Let

Bn :=
{

d̂nf (0)

n!
: f ∈ B

}
,

then

∞∑
n=0

rnpn(ϑn) =
∞∑

n=0

rn

∥∥∥∥ϑn

(
d̂nf (0)

n!

)∥∥∥∥
Bn

=
∞∑

n=0

∥∥∥∥ϑn

(
d̂nf (0)

n!

)∥∥∥∥
rBn

= sup
f ∈rB

|ϑ(f )|.

Since rB is also a bounded subset of Hb(E), the semi-norm
∑∞

n=0 rnpn is
continuous. This completes the proof.
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By ([3], Proposition 1) the space of all linear functionals on P(nE) which
are τ0-continuous on its locally bounded subsets is isomorphic to

⊗̂
n,s,π

E. This

and Proposition 4.6 give us

Corollary 4.7. Let E be a locally convex space such that for every positive
integer n the τb-bounded sets of P(nE) are locally bounded. Then

{ ⊗̂
n,s,π

E
}∞

n=0

is a global Schauder decomposition for Gb(E).

The condition in Corollary 4.7 is satisfied for example by all Fréchet spaces
and all bornological DF spaces.

The following definition is given in [4].

Definition 4.8. The locally convex space E is Q-reflexive if for every
positive integer n:

(1) The mapping
Jn :

⊗
n,s,π

E′′
e −→ (P(nE), τb)

′
i

is continuous.

(2) The extension of Jn to the completion of
⊗

n,s,π

E′′
e is an isomorphism

between
⊗̂

n,s,π

E′′
e and (P(nE), τb)

′
i .

From Propositions 2.1 and 2.2, combined with Propositions 3.4 and 4.3 and
Corollary 4.7, we obtain

Proposition 4.9. Let E be a locally convex space such that the τb-bounded
sets of H (E′′

ββ) are locally bounded. If E is Q-reflexive and (Jn)n satisfy condi-
tions (A) and (B) from Proposition 2.1, then J := ∑∞

n=0 Jn is an isomorphism
between Gb(E

′′
ββ) and (Hb(E), τb)

′
i .

We will need the following lemma.

Lemma 4.10. Let E := ∏∞
k=1 F for some Banach space F , Em :=

F × · · · × F︸ ︷︷ ︸
m

and Em := ∏∞
j=m+1 F . Let B be a τb-bounded set in Hb(E).

There exists a positive integer n0 such that f (x + y) = f (x) for all f ∈ B,
x ∈ En0 and y ∈ En0 .

Proof. Suppose our hypothesis is not true. Then for every positive integer
n there exist fn ∈ B, xn ∈ En and yn ∈ En such that fn(xn+yn)−fn(xn) �= 0.
Let λ ∈ C, then

gn : λ −→ fn(λxn + yn) − fn(λxn)
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is a non-zero entire function. For every n there exists λn such that ‖λnxn‖ ≤
1/n and gn(λn) �= 0. Indeed, otherwise there exists a neighbourhood of zero
in C such that gn is zero on it, and the Identity Principle implies that gn is
identically zero on C. Consider

hn : μ −→ fn(λnxn + μyn) − fn(λnxn).

The function hn(μ) is a non-constant entire function on C, so by Liouville’s
Theorem is unbounded. Hence there exists (μn)n in C such that

|hn(μn)| = |fn(λnxn + μnyn) − fn(λnxn)| > n + |fn(λnxn)|
for every n. Then

|fn(λnxn + μnyn)| ≥ |fn(λnxn + μnyn) − fn(λnxn)| − |fn(λnxn)| > n

for every n. Since (μnyn)n tends to zero and ‖λnxn‖ ≤ 1/n, the sequence
(λnxn +μnyn)n is bounded. Hence the sequence (fn)n ⊂ B is not bounded on
bounded sets in contradiction with the τb-boundedness of B.

Several examples of locally convex Q-reflexive spaces are given in [4]. We
will pay special attention to one of them,

∏∞
k=1 TJ

∗, where TJ
∗ denotes the

Tsirelson-James space.

Example 4.11. Let E := ∏∞
k=1 TJ

∗. We will show that the spaces
(Hb(E), τb)

′
β and Gb(E

′′
ββ) are isomorphic.

The space E := ∏∞
k=1 TJ

∗ is a Fréchet space (moreover, a quojection),
hence the τb-bounded sets of P(nE′′

ββ) are locally bounded. By ([4], Ex-
ample 3) E is Q-reflexive. According to Proposition 4.9 it suffices to show
that conditions (A) and (B) of Proposition 2.1 hold.

Let B be a bounded subset of (Hb(E), τb). By ([11], Theorem 1.5), for every
f ∈ Hb(E) there exists a function AB(f ) in Hb(E

′′
ββ) such that AB(f )|E = f .

Let
B ′′ := {AB(f ) : f ∈ B},

and let A′′ be a bounded subset of E′′
ββ . Since E is a distinguished Fréchet

space there exists a bounded subset of E, A, such that A′′ ⊂ A◦◦. Using ([11],
Theorem 1.5) we get

sup
f̃ ∈B ′′

‖f̃ ‖A′′ = sup
f ∈B

‖AB(f )‖A′′ ≤ sup
f ∈B

‖AB(f )‖A◦◦ = sup
f ∈B

‖f ‖A < ∞.

Consequently the set B ′′ is τb-bounded in Hb(E
′′
ββ) and sup{|ϕ(f )| : f ∈ B ′′}

is a continuous semi-norm on Gb(E
′′
ββ). Let ϑ = ∑∞

n=0 ϑn ∈ Gb(E
′′
ββ). Since
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E′′
ββ is Fréchet, every ϑn has a representation ϑn = ∑∞

i=1 λi
n ⊗n xi

n for some
null sequence (xi

n)i ⊂ E′′
ββ and some (λi

n)i ∈ 
1. Then

sup
f ∈B

∣∣∣∣[Jn(ϑn)]

(
d̂nf (0)

n!

)∣∣∣∣ = sup
f ∈B

∣∣∣∣ ∞∑
i=1

λi
n

[
ABn

(
d̂nf (0)

n!

)]
(xi

n)

∣∣∣∣
= sup

f̃ ∈B ′′

∣∣∣∣ϑn

(
d̂nf̃ (0)

n!

)∣∣∣∣.
Hence condition (A) of Proposition 2.1 is satisfied.

Let B ′′ be a bounded subset of (Hb(E
′′
ββ), τb). By Lemma 4.10 there ex-

ists n0 ∈ N such that f (x + y) = f (x) for all f ∈ B ′′, x ∈ E′′
n0

and y ∈
(En0)′′ := ∏∞

j=n0+1(TJ
∗)′′. The space En0 = TJ

∗ × · · · × TJ
∗︸ ︷︷ ︸

n0

is a Q-reflexive

Banach space, and since E′′
n0

has the RNP, En0 is isometrically Q-reflexive
([8], Proposition 2.48). By ([9], Proposition 2) (Hb(En0), τb)

′′ = Hb(E
′′
n0

),
and hence the set J ∗(B ′′) is contained and bounded in (Hb(En0), τb)

′′. Since
the spaces {P(nEn0)}n are Banach, by ([1], Proposition 8) (Hb(En0), τb) is
a quasinormable and consequently distinguished Fréchet space. Hence there
exists a τb-bounded set B in Hb(En0) such that B ′′ ⊂ B◦◦. Since En0 is iso-
metrically Q-reflexive ‖J−1

n ‖ = 1 for every n. Thus

sup
f ∈B ′′

∣∣∣∣[J−1
n (ϕn)]

(
d̂nf (0)

n!

)∣∣∣∣ ≤ sup
f ∈B◦◦

∣∣∣∣[J−1
n (ϕn)]

(
d̂nf (0)

n!

)∣∣∣∣
= sup

f ∈B

∣∣∣∣ϕn

(
d̂nf (0)

n!

)∣∣∣∣.
The set B is τb-bounded in Hb(En0) and hence in Hb(E). Thus (B) of Propos-
ition 2.1 is satisfied.
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