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GLOBAL SCHAUDER DECOMPOSITIONS OF
LOCALLY CONVEX SPACES

MILENA VENKOVA*

Abstract

We define global Schauder decompositions of locally convex spaces and prove a necessary and
sufficient condition for two spaces with global Schauder decompositions to be isomorphic. These
results are applied to spaces of entire functions on a locally convex space.

Given two spaces, E and F, with Schauder (or even %-absolute) decom-
positions, the existence of isomorphisms between the spaces forming the de-
compositions does not imply that E and F are isomorphic. In order to tackle
this problem when the underlying decompositions consist of Banach spaces,
P. Galindo, M. Maestre and P. Rueda defined in [12] a subclass of .#-absolute
decompositions of Fréchet spaces: R-Schauder decompositions. To consider
the corresponding problem when E and F are locally convex spaces and the
underlying decompositions are not necessarily Banach spaces, we were led to
define global Schauder decompositions.

1. Introduction

In this section we give initial definitions and preliminary results.

First we introduce notation that will be used throughout the article. Let E
denote a locally convex space over the complex numbers C, and let E’ denote
the space of all continuous linear functionals on E. When E’ is endowed with
the strong topology (i.e. the topology of uniform convergence over the bounded
subsets of E), we denote it by Ey.

For E alocally convex space we let (" E) denote the space of all continu-
ous n-homogeneous polynomials on E. The topology on (" E) of uniform
convergence over the compact (respectively bounded) subsets of E is denoted
by 1o (respectively t5). A third topology on (" E) can be defined in the fol-
lowing way. A semi-norm p on #("E) is t,-continuous if for every zero
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neighbourhood V in E there exists a positive constant C (V') such that
p(P) = CMIIPly

for all P € P("E). The topology generated by all such semi-norms is de-
noted by 7,,. Whenn = 1, E| := (?('E), 1) is the inductive dual of E,
Ej = (P('E), 1) is the strong dual of E and E, := (?('E), 7). By @ E

n,s,mw

(respectively @ E) we denote the completed symmetric n-fold tensor product
n,s,e

of E endowed with the projective tensor topology (resp. the injective tensor

topology).

For more definitions and properties of polynomials and holomorphic func-
tions on locally convex spaces we refer the reader to [7] and [8], and for more
information on locally convex spaces we refer the reader to [13] and [14].

DerNITION 1.1. A sequence of subspaces {E, },, of a locally convex space
E is a Schauder decomposition of E if:

e Foreach x in E there exists a unique sequence of vectors (x,),, x, € Ej,,

such that 00 m
X = E X, := lim E X,-
m—00
n=1 n=1

e The projections (u,);2 ; defined by

00 m
u,,,( E x,,) = E Xn
n=1 n=1

are continuous.

The topology on each E,, is induced by the topology on E. A Schauder decom-
position {E,}, of a locally convex space E is absolute if for each p € cs(E),

q (Z xn) =Y px)
n=1

n=1
defines a continuous semi-norm on E.
The following definition is our main tool in this paper.

DEFINITION 1.2. A Schauder decomposition {E,} 7, of a locally convex
space E is a global Schauder decompositionifforallr > 0,allx =) °°  x, €
E with x,, € E, for each n,

oo
(1) r-x::Zr”x,,eE;

n=1
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and for each p € cs(E),

) P (Z xn) =Y r"ple)

n=1 n=1
defines a continuous semi-norm on E.

In particular, taking r = 1 we see that global Schauder decompositions are
absolute.

RemARk 1.3. If {E,}, is a global Schauder decomposition for the locally
convex space E, there is a generating family of semi-norms p € cs(E) of the
form

3) p(z xn> = plx).
n=1

n=1

Let g(x) := sup, p(x,) where p is a continuous semi-norm satisfying (3).
Since sup,, p(x,) < Z;il p(x,), the semi-norm ¢ is continuous. Let g5 (x) :=
sup,, (2" p(x,)), from the inequality

0]

1 = (1
< = —n ) < omn . — | = < ,
q(x) < p(x) ; 52" P) = sup(2" p(x) ; (2) 32(x) < pa(x)
it follows that the semi-norms {g(x) = sup, p(x,)} generate the topology on
E. Moreover, condition (2) in Definition 1.2 is equivalent to the condition that

for each g € cs(E),

€ qr (Z xn) 1= sup(r'q (x,))

n=1

defines a continuous semi-norm on E. Thus the locally convex topology of E
can be defined both by /{-type or by cy-type norms.

For completeness we will give the definitions for two other types of Schauder
decompositions, & -absolute decompositions and R-Schauder decompositions.
Let.% denote the set of all sequences (c,)°; C Csuch thatlim sup,_, o, |o, |'/"
<1

DEFINITION 1.4. A Schauder decomposition {E,}, of a locally convex

space E is an S -absolute decomposition if for all « = (a,), € & and
x =) 2, x, € E, withx, € E, forall n,

o0
) a-x::ZanxneE

n=1
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and, for each p € cs(F) and each ¢ = (), in &,

oo

©6) Pe (an) =Y lealp(xa)
n=lI

n=1
defines a continuous semi-norm on E.

For results and applications of %’-absolute decompositions we refer the
reader to [7] and [8]. We will just mention that a Schauder decomposition of a
barrelled locally convex space satisfying (5) is an & -absolute decomposition.

DeriNITION 1.5. Let {E,}, denote an absolute Schauder decomposition
of the locally convex space E. We say that {E,}, is a T.S. (=Taylor series)
complete decomposition if for any sequence (x,), with x,, € E, for all n,
Yoo, p(xy) < oo forall p € cs(E) implies ) -, x, € E.

T.S. completeness and conditions (1) and (5) are all completeness condi-
tions with respect to a decomposition. In particular, the &-absolute Schauder
decomposition of a sequentially complete locally convex space is T.S. com-
plete. If {E, }, is a T.S. complete and global Schauder decomposition, then it
is an & -absolute decomposition.

Let us now consider the case when E is a Fréchet space such that there is
a sequence of Banach spaces {E,}7°, which is a Schauder decomposition of
E.Let 0 < R < oo. The decomposition {E,}7°, is R-Schauder ([12]) if for
every sequence (x,),, X, € E,, the series x = ZZL X, converges in E if and
only if lim sup,, [lx,[+"" < 1/R.

If E is a Fréchet space and {E,}7°, is an oco-Schauder decomposition of
E consisting of Banach spaces, then it is a global Schauder decomposition
of E. Indeed, let A = {(r"), : r > 0}, consider the Kothe sequence space
M (A, (E,),). This is the Fréchet space {(x,l),l €L En: pr(Xpegxn) ==
> o 1xnlln < oo forall r > 0}, endowed with the topology generated by
the semi-norms { p, },~¢. Clearly, {E,} 2, forms a global Schauder decompos-
ition of AL(A, (E,)»). By ([12], Theorem 1) E is topologically isomorphic to
M (A, (E,)n), hence {E,}2, forms a global Schauder decomposition of E.

To show that the converse is not true, consider the Kothe matrix A* =
{((nr)"),1 r o> 0} and a sequence of Banach spaces {E,}52,. The cor-
responding Kothe sequence space A'(A*, (E,),) = {(xn)n € ]_[2';1 E, :
pr(X0ioxn) = Yol (mr)"Ixylla < oo forall r > 0} endowed with the
topology generated by the semi-norms {p;'},~¢ is a Fréchet space. It is easy to
check that {E,}7° is a global Schauder decomposition of AL(A*, (Ep)n). Let

x =YY" x, €[22, E, suchthat ||x, |, = 1/n", then lim sup,, ||x,[l"" = 0.

n=1

On the other hand, for r > 1 the series p, (x) = ZZO:O (nr)"||xy ||, s divergent



GLOBAL SCHAUDER DECOMPOSITIONS OF LOCALLY CONVEX SPACES 69

hence x does not belong to A (A*, (E,),), i.e. {E,}2, is not an oo-Schauder
decomposition for A'(A*, (E,),).

2. Application of Global Schauder Decompositions

ProprosITION 2.1. Let E and F be locally convex spaces. Let {E,}.°, and
{Fu}2 be T.S.-complete global Schauder decompositions for E and F re-

spectively. For each n let
T,:E, — F,

be an isomorphism satisfying the following two conditions:
(A) For every g € cs(F) there exist p € cs(E) and positive numbers ¢ and
t such that

(7 q (T (x)) < ct” p(xn)

for every x = Z:i o Xn in E and every positive integer n.
(B) For every p € cs(E) there exist q € cs(F) and positive numbers d and

v such that .
p(Tn () < dvnQ(yn)

foreveryy = ZZO:O v, in F and every positive integer n.
Then T =Y 2, T, is an isomorphism between E and F.

PrROOF. Letg € cs(F). By condition (A) there exist p € cs(E) and positive
numbers ¢ and ¢ such that

Y a(T@n)) <Y 1" px) = cpi(x) < 00

n=0 n=0

for every x = ) 7, x, € E. Thus T is well defined and continuous. Let y =
> >y yn € F, we will prove that T is surjective. Since 7,, is an isomorphism
for every n, there exist {x,},, x, € E,, such that T (x,,) = y,. Let p € cs(E).
By condition (B) there exist ¢ € cs(F') and positive numbers d and v such that

Y pG) =D p(T ) =d Y 0"q() = dgu(y) < oo.

n=0 n=0 n=0

Since {E,}>°, is T.S. complete, x = Y 7 x, € E and T (x) = y.
Define S = Y °2 7T,7!. Since the hypotheses are symmetric with respect
to E and F, the above also proves that S is well defined and continuous. It is

easy to check that § is the inverse of T'.

The converse proposition holds in a more general situation.
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PRrOPOSITION 2.2. Let E and F be locally convex spaces, and let {E,};°
and {F,}72 , be their respective Schauder decompositions. Let

T:E— F

be an isomorphism such that T (E,,) < F,, for every positive integer m. Then
T, .= T|g, —> F,, is an isomorphism for each m and T,, satisfies conditions

m

(A) and (B) of Proposition 2.1.

PRrOOF. Let y,, € F,, C F. Since T is surjective there exists x = Y _ X,
such that T'(x) = ZZOZO T (xn) = Ym- By hypothesis T (x,) € F, for every n,
hence T;,(x,) = Oform # nand y,, = T (x,,) = T,,(xn), 1.e. T,, is surjective.
Since T is injective T, is also injective. Thus 7}, is a bijective mapping. The
continuity of 7,, and 7, ! follows from the continuity of 7 and 7~".

We now show that conditions (A) and (B) are satisfied. Letg € cs(F). Since
T is continuous, there exist p € cs(E) and ¢ > 0 such that ¢(T (x)) < cp(x)
for every x € E. In particular, for x = x,, € E,, we have

G (T (X)) < cpm(Xm).
Hence inequality (7) is satisfied for # = 1. Condition (B) follows in a similar
way from the continuity of 7.
3. Stability Properties of Global Schauder Decompositions
The following lemma is an adjustment of ([8], Lemma 3.31).

LEMMA 3.1. Let E be a barrelled locally convex space and {E,};°, be a
Schauder decomposition of E satisfying condition (1), then {E,}3°, is a global
Schauder decomposition of E.

PrOOF. Let p be a continuous semi-norm on E, and let » > 0. The set

{x €E:p(x)= Zrnp(xn) = 1}

n=l1

is a barrel, and consequently a neighbourhood of zero in E. Thus p, is con-
tinuous for every r > 0.

LEMMA 3.2. Let E be a sequentially complete locally convex space and
{En)o2y be a Schauder decomposition of E satisfying condition (2), then
{E, )2, is a global Schauder decomposition of E.
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PROOF. Letx = Y °2 x, € Eandr > 0, denote s, := > _ rix;. If
p € cs(E) then

n n

P(Sn _Sm) = Zrip(xi) = pr<2xi> — 0

as m,n — oo. Thus (s,), is a Cauchy sequence, hence Z:’;] rix; € E.

PROPOSITION 3.3. Let {E},}, denote a global Schauder decomposition for
the locally convex space E. Then {E,}, is a global Schauder decomposition
for the completion E.

PrROOF. Let x € E, then there exists a net (xg)pg C E such that x =
limg_, « xg. Since xg € E there exist (xg,), such that xg = > - xg, for
every . The nets (xg ,) g are Cauchy for every n, hence there exists x,, € E, for
every n such that x, := limg_, o xg,. Let p € cs(E) be from the generating
family of continuous semi-norms satisfying (3). Given ¢ > 0 we can find
Bo > 0 such that

o
Zp(xﬂ,n - xﬁ’,n) <¢

n=0

for all 8, B’ > By. By passing to the limit in 8’ and extending p by continuity
to the completion we get

00
Z p(xﬁ,n - xn) <e¢

n=0

when B > By. This implies that the series Y - x, is convergent and x5 —
Y o2 o Xn. Since (xp)p has a unique limit, x = Y . x,,. The projections (i),

defined by N .
Un (Z yn> = Z n
n=0 n=1

where > |y, € E, are linear and continuous and hence can be extended by
uniform continuity to the completion E. Hence {E,}, is a Schauder decom-
position for the completion E.

Letr > Oandlet p € cs(E). Since {E,}, is a global Schauder decomposi-
tion for E, the mapping

ﬁr (Z yn> = Zrnﬁ(yn)’
n=0

n=0
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where y = Z;’ZO:O v, € E, defines a continuous semi-norm on E. Taking r = 1
we get

o o (o)
D PO = Jim 37 poy =) + Jim Y )
n=0 n=0 n=0
o0
= lim p(x = lim p;(xp),
ﬁm;l’( p) = Jim p1(xp)

hence Zf,o:o p(x,) defines a continuous semi-norm on E. For an arbitrary
r > 0 we have

o0 oo oo
Zor"ﬁm) - Zoﬁ(r"x,» < lim Xgmr"xﬁ,n) = Jim pr(xp).
n= n= n=

Since p, is a continuous semi-norm on E, the limit exists and is finite. Thus
Y o2 o r" p(x,) defines a continuous semi-norm on E. An application of Lemma
3.2 completes the proof.

ProposiTiON 3.4. If {E,}, is a global Schauder decomposition for the
locally convex space E then {(E,);'}, is a global Schauder decomposition for
the inductive dual of E, E;’.

Proor. By ([14], 10.3) F; = E], and by Proposition 3.3 {(E,}, is a global
Schauder decomposition for E. Hence we can assume that E and all E, are
complete.

Letp € E’, we denote ¢|g, by ¢,. By Remark 1.3 there exists a continuous
semi-norm p such that |p(x)|] < p(x) for any x € E, with p(x,) — 0
asn — oo, and p(x) = sup, p(x,) for any x = Z;’ilx,, € E. Hence
¢ € (E, p) and can be extended to E, := (E, p)/p~1(0). We will denote
the extension of p to £, again by p, and let (E)), = (E,, plgn)/pIE,f'(O).
Then

oo
Ep = {ZX’Z :xn € (Ep)n, plg, (xn) > Oasn — oo},

n=1

and p(zzozl x,,) = sup, p|g, (x,). Let ¢, denote the extension of ¢, in
((E,),). Since {E, }, is a Schauder decomposition of E, ¢ = Z;L @, point-
wise on E. Let p’ be the dual semi-norm of p on E” and let B, be the unit ball
of E,. Then

p’(w - Z@) = sup|p(x) — Y @u(x)| = sup| Y Gu(x)|.
n=1 x€B, n=1 x€B) n=m+1
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Let x € E and {A,}, C C, |A,| < 1 forall n € N. Since {E,}, is an abso-
lute decomposition and E is complete, Z;o: | AnXxn € E (see p. 189 of [8]).
This allows us to choose {),}, so that A,¢,(x) = |@,(x)| for all n. Since
sup, [A,|p(x,) < 1forall x € B,, it follows that A - x € B,,. Hence

( Z%) = sup Z |G ()]

x€B, n=m+1

Suppose sup, g Y 41 }(Z)n (x) | does not tend to zero as m — oo. Then there
exists § > 0 such that for all m € N we can find x™ € B, with

D @™ = 6.

n=m+1

Let m = 1 and xV be the corresponding element of B,. There exists m; > 1
such that

m

> lenx] =

n=1

NI%

By induction we can build an increasing sequence {m;};en C N and a sequence
(xP} c B, such that

mji1 s
Z }¢zz(xy(/+1))| = 5

n=m;+1

for all j. Let
J 0 n <mj,
1 ..
n = ,?%5]“) mj+1<n<mj,
0 n>mj.

Since p(x?) < 1 and p(x) = sup; p(xx), we have that p(y,) < 1/n, hence
p(yn) — 0asn — oo and (y,), C B,. This implies that Z,ﬁl Yu € E,.
As before we can choose {A,}, C C, |A,] < 1 for all n € N, so that

P32 Auyn) = 02, l@(y,)|. However

Z o ()| = Z L6,y > 5 Z =

i.e. Yo7 l¢(ya)| is divergent, a contradiction. Hence p'(¢ — Y n | @,) — 0
and ¢ = 32, ¢y € E). Since, by definition, £/ = ind_((E, p)/p~1(0).
pEcs
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the mapping E,, —> E;’is continuous, and ¢ = 3~ 7| ¢, in E;. Moreover, by
([14], Proposition 10.3.4) the canonical surjection E;" —> (E,) is open and
continuous, hence E’ induces the inductive topology on (E,)". Thus {(E,);"}»
is a Schauder decomposition for E;’. The above also shows that ¢,(x) =
(pn(xn) = (P(Xn).

Next we show that {(E,);'}, is a global Schauder decomposition for E;’.
Letp € E, 9 = o2 ¢n,andletr > 0.Ifx € E thenr - x € E and

- @)x) =Yg (xn) = w(Z r"xn) = (- x)

n=1 n=1

is well defined. Since ¢ is continuous there exists a continuous semi-norm p
on E such that |p(x)| < p(x) for any x € E. Then

o0

(- @) < D r"gu(x) < pr().

n=1

Since p, is a continuous semi-norm on E, this implies that r - ¢ € E’. An
application of Lemma 3.1 completes the proof.

A proof for the following proposition can be obtained by modifying the
proof of Proposition 3.4.

PRroOPOSITION 3.5. If {E,}, is an & -absolute decomposition for the locally
convex space E then {(E,):}, is an & -absolute decomposition for E/.

Next we look at the strong dual of a locally convex space.

ProposiTiON 3.6. If {E,}, is a global Schauder decomposition for the

locally convex space E then {(En)jg},, is a global Schauder decomposition for
E’,.
B

PRrOOF. Let ¢ = Zzio ¢, € E' where ¢, := ¢|g,. By the continuity of ¢
there exists p € cs(E) such that [p(x)| < p(x) for all x = Z;’O:O X, € E. Let
r > 0, then

(8) Zrn¢n(xn) = an(rnxn) = Dr (Z xn)-
n=1 n=1

n=1

Let (ZZOZI r”(pn)(x) = limysoo Yy P @i (x:). By (8), > o2, r"¢, € E’. The
topology on E /’3 is generated by all semi-norms of the form

s(@) :=sup{le(x)] : x € A},
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for all A bounded subsets of E. Let B be a bounded set in E, r - B :=
{Zzozl r'"x, 1 x € B} and p € cs(E). Then since p, € cs(E),

sup p(x) = supp(Zr x,,) = sup p,(x) < oo.

xer-B XeB n=0 xeB

Hence the set r - B is bounded in E. Therefore

Zr Pn Zcpn(r Xn)| = prn

n=m
as m — oo. Hence {(E,)s'}, is a Schauder decomposition for E}j satisfying
(1). It remains to show that condition (2) is satisfied. Let B be a bounded set
in E and let

= sup
xeB

= sup
xer-B

oo
B .= {anx,, :x € B, (A,), C Csuchthat |A,| < 1foralln e N}.

n=1

The set B is bounded in E. Indeed, let p € cs(E) satisfying (3). Then

sup p(x) = Supr(k Xn) = Supr(xn) < oo0.

xeB XeB xeB

This allows us to choose {A,}, so that 1,,¢, (x) = |¢,(x)]| for all n. Then

Z(Zr)n On(x,)| =

n=1

supZ(Zr) |6 ()] = 1)l 5

xeB

sup |p(x)| = sup

xe2rB xeB

for all n. Let g(¢) = sup|e(x)], then

xXeB
21
a-(p) < Z" sup g (x)| < D~ = sup lp(0)| = llo(®)ll, 5
xeB n=1 2 xe2rB

is continuous on E 1‘3

4. Global Schauder Decompositions of Spaces of Holomorphic
Functions

In this section # (E) denotes the space of entire functions on a locally convex
space E.

ProOPOSITION 4.1. Let E be a locally convex space. Then
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(D) {(P("E), 1)};,2, is a global Schauder decomposition for (% (E), ).

(2) {(P("E), t)}2, is a global Schauder decomposition for (¥ (E), ts)
and ((E), ty).

Proor. By ([8], Proposition3.36), {(Z("E), 1) }o2yand {(P("E), 1)},
are S-absolute Schauder decompositions for (# (E), o) and (# (E), Ts) re—
spectively.

Let f=) 1, & /O ¢ % (E)andr > 0.If K C E is a compact balanced

n!

set, by the local boundedness of f there exists a balanced open V C E such

that K C Vand ) 7, d"f(o) |, < oco. Then
00 00 <
ar f(O) dr
© - fllyrv < Z =) <Iflv.
1/rv n—0 1%

Hencer - f € #(E).

Since (% (E), ts) is barrelled, by Lemma 3.1 {(?("E), 1,,)}:°, is a global
Schauder decomposition for (# (E), t5). By replacing V by K in (9) we get
Ilr - fllx < I fll-x forall f € ' (E). Hence {(P("E), 19)};2, is a global
Schauder decomposition for (#'(E), t9). The proof that {(P("E), 1,)}2, is
a global Schauder decomposition for (# (E), t,,) is similar (see also Propos-
ition 3.36 of [8]).

Propositions 4.1 and 2.1 imply

COROLLARY 4.2. Let E be a locally convex space. Then ts = t,, on # (E)
if and only if for every ts-continuous semi-norm q there exist a T,,-continuous
semi-norm p and positive numbers ¢ and t such that

dn £(0 dn £ (0
(10) q( ,{,())sa”p( f:,())

forevery f =3 d”f(o) € J (E) and every positive integer n.

n!

Let E be a locally convex space, denote
Hp(E) ={f € H(E) : || flla < oo for every bounded set A}.

The functions in 77, (E) are called holomorphic functions of bounded type.
When endowed with 7, the topology of uniform convergence over the bounded
sets of E, 7, (E) becomes a locally convex space. The proof of Proposition
4.1 can easily be modified to show the following:

PROPOSITION 4.3. Let E be a locally convex space. Then {(P("E), 1)}°2,
is a global Schauder decomposition for (7, (E), tp).
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In ([12], Examples 2 and 4) are given several examples of spaces of en-
tire functions on a Banach space such that the corresponding polynomial sub-
spaces are their co-Schauder decompositions — and, thus, their global Schauder
decompositions. All our results will apply to these spaces, and in particular
Proposition 2.1 reduces in this special case to ([12], Theorem 9(ii)).

Let E be a Banach space with a unit ball Bg. In ([6]) the authors defined
the space #4,(E) of entire functions whose restrictions to nBg are integral
for all n. Endowed with the system of semi-norms {p,(f) = || .l 1}5e>
Ji(E) is a Fréchet space and {(Z;("E), || - l1)}52, is an co-Schauder (and
hence global) decomposition for #;,;(E). Now consider the entire functions
of bounded nuclear type on E, Hxp(E) ([8], Definition 4.47). With the to-
pology generated by the semi-norms {1, () = || flus, In};2,, #nb(E) is a
Fréchet space and a short calculation shows that {(?y ("E), || - [In)}02, ’13 an

oo-Schauder decomposition for #xp,(E). By ([5], Theorem 2) if £; > @ E

n,s,e
for some integer n then Zy ("E) and &, (" E) are isometrically isomorphic. By
([12], Corollary 11) we obtain

PROPOSITION 4.4. Let E be a Banach space suchthat R E does not contain
n,s,e

a copy of £y for any n € N. Then #1(E) and #\w(E) are isomorphic.

Furthermore, by ([5], Proposition 3) we can replace * @ E does not contain
n,s,e

a copy of £; for any n € N” with the condition that £’ has RNP.
Now let E be a locally convex space, let

(11) Gu(E) :={p € #,(E)* : ¢ is Tp-continuous
on the bounded subsets of 7}, (E)}.

When endowed with the topology 7, of uniform convergence on the bounded
subsets of 7, (E), G,(E) becomes a complete locally convex space. Let E
be a locally convex space such that the t,-bounded sets of 7#),(E) are locally
bounded. By ([8], Lemma 3.25) if B is a locally bounded t;,-bounded subset
of #,(E), then it is relatively compact in (#}(E), 7o). This allows us to apply
([15], Theorem 1.1) (see also p. 115 of [2]), and we obtain that G,(E); =
(I, (E), t,?or). We have proved the following proposition.

PrOPOSITION 4.5. Let E be a locally convex space such that the t,-bounded
sets of #,(E) are locally bounded. Then

Gy(E); = (I (E), 7).

If E is a bornological DF space then the 7,-bounded sets of 7,(E) are
locally bounded by ([10], Proposition 15). By ([10], Theorem 4), (7, (E), t5)
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is Fréchet, and hence ultrabornological, which implies 7, = 72°". Thus if E is
a bornological DF space, G,(E). = (#}(E), 1p).

ProOPOSITION 4.6. Let E be a locally convex space. Then the sequence
{ (P("E), r,'for) (N Gy(E) } is a global Schauder decomposition for G, (E).

Proor. The space G, (E) is a subspace of (7, (E), T, bory’ since its elements
are 1j,-continuous on the bounded sets of 7, (E) and hence are tl';or—contlnuous.
Let (fg)s be a bounded net in H,(E) which tends to O uniformly on every
compact subset K of E, and let r > 0. Since {(P("E), 1)}, is a global

Schauder decomposition for (7, (E), 15) and rK is also a compact set, we

dm@ 3

K n=0

o0

2

=0

d" f5(0)

n!

— 0

rkK

as B — oo. Hence { Yoolor" a ]:l /‘!(0) } 8 is also a bounded to-null net in 5, (E).
Letd =) ¥, € Gp(E) where 9, := ¥|p@r). Then

(12) (waym ZF(Z dﬁw)—w

n=0 n=0 n=0

as B — oo. This implies Y o, r"®, € G,(E) for every r > 0.
Now let p be a 7,-continuous semi-norm. Without loss of generality we
may assume that

p(@) =sup|P(f)l,
feB

where B is a bounded subset of 7, (E). Let

then
> e d" £ (0 > d" £ (0
> oo =3 (TL2)] = 3]a (T42)
= — n! R n! 'B,
= sup |7 (f)I.
ferB

Since r B is also a bounded subset of 74,(E), the semi-norm Z:O:o r" pn 1s
continuous. This completes the proof.
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By ([3], Proposition 1) the space of all linear functionals on 2 (" E) which
are Tp-continuous on its locally bounded subsets is isomorphic to Q) E. This

n,s,mw

and Proposition 4.6 give us

CoRrOLLARY 4.7. Let E be alocally convex space such that for every positive
integer n the t,-bounded sets of (" E) are locally bounded. Then { &K E }

n,s,mw

n=0
is a global Schauder decomposition for Gy (E).

The condition in Corollary 4.7 is satisfied for example by all Fréchet spaces
and all bornological DF spaces.
The following definition is given in [4].

DEerINITION 4.8. The locally convex space E is Q-reflexive if for every
positive integer n:
(1) The mapping
I+ Q) E] — (P('E). ),

n,s,m

is continuous.

(2) The extension of J, to the completion of ) E! is an isomorphism
n,s,mw

between @ E] and (P("E), 1p)..
From Propositions 2.1 and 2.2, combined with Propositions 3.4 and 4.3 and
Corollary 4.7, we obtain

ProPOSITION 4.9. Let E be a locally convex space such that the t,-bounded
sets of ' (E g ) are locally bounded. If E is Q-reflexive and (J,), satisfy condi-
tions (A) and (B) from Proposition 2.1, then J := Ziio J, is an isomorphism
between G,(Eg,) and (9,(E), Tp);-

We will need the following lemma.

LEmMMA 4.10. Let E = ]_[,fozl F for some Banach space F, E, :=
Fx---x Fand E" := ]_[;imﬂ F. Let B be a t,-bounded set in 3,(E).
——

m
There exists a positive integer ny such that f(x +y) = f(x) forall f € B,
xeE,andy € E™.

PROOF. Suppose our hypothesis is not true. Then for every positive integer
nthereexist f, € B,x, € E,and y, € E" suchthat f,(x,+ y,) — fu(x,) # 0.
Let A € C, then

gn A —> [uQxn + yu) — fu(Axy)
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is a non-zero entire function. For every n there exists A, such that |1, x,| <
1/n and g,(%,) # 0. Indeed, otherwise there exists a neighbourhood of zero
in C such that g, is zero on it, and the Identity Principle implies that g, is
identically zero on C. Consider

hy o b — fu(haXy + uyn) — fu(hnxy).

The function 4, (u) is a non-constant entire function on C, so by Liouville’s
Theorem is unbounded. Hence there exists (i, ), in C such that

[y ()| = | fuAnXn + tnYn) — fu(Rnx)| > 0+ | f(Ayx,)|

for every n. Then

|fn()\'nxn + /’Lnyn)| Z |fn()‘nxn + Mﬂyﬂ) - fn()"nxn” - |fn()‘nxn)| >n

for every n. Since (u,y,), tends to zero and ||A,x,|| < 1/n, the sequence
(ApXn + Wnyn)n 1s bounded. Hence the sequence (f;;),, C B is not bounded on
bounded sets in contradiction with the t,-boundedness of B.

Several examples of locally convex Q-reflexive spaces are given in [4]. We
will pay special attention to one of them, [];—, T,*, where T,;* denotes the
Tsirelson-James space.

EXAMPLE 4.11. Let E := [];2, T,*. We will show that the spaces
(I, (E), t;,);g and G;,(Egﬂ) are isomorphic.
The space E := [[;2, T;* is a Fréchet space (moreover, a quojection),

hence the t1,-bounded sets of Z("E gﬁ) are locally bounded. By ([4], Ex-
ample 3) E is Q-reflexive. According to Proposition 4.9 it suffices to show
that conditions (A) and (B) of Proposition 2.1 hold.

Let B be abounded subset of (H,(E), 15). By ([11], Theorem 1.5), for every
f € #,(E) there exists afunction AB(f) in %b(Egﬂ) suchthat AB(f)|g = f.

Let
B" :={AB(f): f € B},

and let A” be a bounded subset of E,. Since E is a distinguished Fréchet
space there exists a bounded subset of E, A, such that A” C A°°. Using ([11],
Theorem 1.5) we get

sup || fllar = sup |AB(f)llar < sup |AB(f)lla = sup || flla < cc.
feB” feB feB feB

Consequently the set B” is 7,-bounded in 7, (Eg,) and sup{le(f)| : f € B"}

!

is a continuous semi-norm on G, (E}’S’ﬂ). Letd =) 020, € Gb(Egﬁ). Since
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Egﬁ is Fréchet, every 9, has a representation 3, = Zf’il )»fl ®n x,"l for some
null sequence (x/); C Egﬂ and some (1}); € £;. Then

ar £ (0 an (0
[Jn(w( ’f,())’ [ ( f”)]x;
19"<d"f_<0>>’.

n!

Hence condition (A) of Proposition 2.1 is satisfied.
Let B” be a bounded subset of (%,(Egﬂ), 7). By Lemma 4.10 there ex-

ists no € N such that f(x +y) = f(x) forall f € B", x € E; and y €
(E™)' == ]_[;inﬁl(TJ*)”. The space E,, = T;* x --- x T;* is a Q-reflexive

sup
feB

= sup
fEBN

no
Banach space, and since E;; has the RNP, E,, is isometrically Q-reflexive

([8], Proposition 2.48). By ([9], Proposition 2) (7, (Ey,,), t)" = %,(E;[O),
and hence the set J*(B") is contained and bounded in (%, (E,,), t5)". Since
the spaces {#("E,,)}, are Banach, by ([1], Proposition 8) (H,(E,,), 1) is
a quasinormable and consequently distinguished Fréchet space. Hence there
exists a t,-bounded set B in 7, (E,,) such that B” C B°°. Since E,, is iso-

metrically Q-reflexive ||Jn_1 || = 1 for every n. Thus
_ d" f(0) . d" f(0)
sup [J,ﬂ(qon)]( A )' < sup [Jﬁ(qan)]( / )'
feB” n: feB n:

= Sup|@n
feB

(ﬁﬂm)‘
n! ’

The set B is tp-bounded in 7}, (E,,) and hence in 7, (E). Thus (B) of Propos-
ition 2.1 is satisfied.
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