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EVANS-KISHIMOTO TYPE ARGUMENT FOR ACTIONS
OF DISCRETE AMENABLE GROUPS ON

MCDUFF FACTORS

TOSHIHIKO MASUDA

Abstract

We apply the Evans-Kishimoto type argument to centrally free actions of discrete amenable groups
on McDuff factors, and classify them. Especially, we present a different proof that the Connes-
Takesaki modules are complete cocycle conjugacy invariants for centrally free actions of discrete
amenable groups on injective factors.

1. Introduction

In the theory of operator algebras, the study of automorphism groups is one of
the most important subjects. Especially, since Connes succeeded in classifying
automorphisms of the approximately finite dimensional (AFD) factor of type
II1 in [4] and [1], classification of actions of discrete amenable groups on
injective factors has been solved in [9], [16], [19], [11] and finally in [10].

The strategy of Connes’s classification is called the model action splitting
argument. At first he constructed tensor product type model automorphisms
(or actions) on the AFD type II1 factor. Then he showed “the model action
splitting”, i.e., every automorphism contains model automorphisms as tensor
product components after an appropriate inner perturbation, and then proved
that it is cocycle conjugate to the model automorphism. In his argument, the
Rohlin property for automorphisms plays a crucial role. Namely, he showed
the non-commutative version of a Rohlin type theorem for a certain class
of automorphisms in [1]. By means of the Rohlin type theorem, he proved
the stability (or 1-cohomology vanishing theorem) for automorphisms via a
Shapiro type argument. Connes’s argument has been developed by Jones for
finite groups in [9], and by Ocneanu for general discrete amenable groups in
[16]. Especially, the Rohlin type theorem was extended to the case of discrete
amenable groups by Ocneanu, and he proved several cohomology vanishing
theorems in [16].
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On the other hand, another approach has been made in the study of auto-
morphisms of C∗-algebras. In [6], Evans and Kishimoto developed the inter-
twining argument for classification of automorphisms with the Rohlin property.
In their approach, they compare two given automorphisms directly without us-
ing model actions. Consequently they obtained classification results for a wide
class of automorphisms. (In the C∗-algebra case, the model action splitting ar-
gument forces us to make a strict restriction on actions.) Their intertwining
argument has been further developed in [15] for automorphisms of purely
infinite simple C∗-algebras, and for finite group actions in [8].

In this paper, we apply the Evans-Kishimoto type intertwining argument to
actions of discrete amenable groups on McDuff factors based on Ocneanu’s
Rohlin type theorem. Our main theorem says if two centrally free actions of a
discrete amenable group on a McDuff factor differ up to approximately inner
automorphisms, then they are cocycle conjugate. As a corollary, we get the
complete classification of centrally free actions of discrete amenable groups
on injective factors in terms of the Connes-Takesaki module by using the
characterization of approximately inner automorphisms in [11]. Hence this is
an another proof of the classical classification results in [1], [9], [16], [19],
[11] for centrally free actions. However our approach seems to be more unified
and simple, and this is an advantage of our theory.

Our result is also applicable to the classification of group actions on sub-
factors by a suitable modification. For example, we present a different proof
of Popa’s result in [17, Theorem 3.1]. (We remark that the classification result
of strongly amenable subfactors of type II1 by Popa in [17] is crucial in our
argument.)

Acknowledgements. The author is grateful to Professor Izumi, Professor
Katayama, and Professor Takesaki for comments on this work. He is suppor-
ted by Grant-Aid for Scientific Research, Japan Society for the Promotion of
Science.

2. Preliminaries and notations

Let M be a von Neumann algebra. For ϕ ∈ M+∗ , we let ‖x‖ϕ = √
ϕ(x∗x),

‖x‖#
ϕ =

√
(‖x‖2

ϕ + ‖x∗‖2
ϕ)/2, |x|ϕ = ϕ(|x|). Note that |x|ϕ is not necessarily

a norm unless ϕ is tracial, since it is not subadditive. For x ∈ M and ϕ ∈ M∗,
xϕ, ϕx ∈ M∗ are defined as xϕ(y) = ϕ(yx) and ϕx(y) = ϕ(xy) respectively.
We set [x, ϕ] = xϕ − ϕx. To avoid possible confusions, we often denote xϕ
and ϕx by x · ϕ and ϕ · x respectively. We denote φ ◦ α−1 by α(φ) for φ ∈ M∗
and α ∈ Aut(M).

We use the notation A � B when A is a finite subset in B, and denote the
cardinality of A by |A|.
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Fix a free ultrafilter ω over N. We define Mω and Mω as in [16]. Each
α ∈ Aut(M) gives automorphisms αω ∈ Aut(Mω), and αω|Mω

∈ Aut(Mω).
For ϕ ∈ M∗ and X = (xn) ∈ Mω, ϕω(X) := limn→ω ϕ(xn) is a normal
functional on Mω, which we denote by ϕ for simplicity. When M is a factor,
τω(X) := limn→ω xn(∈ C) always exists in the σ -weak topology for X =
(xn) ∈ Mω, and τω is a tracial state on Mω. We denote by |X|1 the L1-norm
with respect to τω.

We next collect some fundamental and useful inequalities in this paper.

Lemma 2.1. The following inequalities hold for ϕ ∈ M+∗ , x ∈ M , xi ∈ Mω

and yi ∈ Mω.

(1) ‖x · ϕ‖ ≤ √‖ϕ‖‖x‖ϕ , ‖ϕ · x‖ ≤ √‖ϕ‖‖x∗‖ϕ , ‖[x, ϕ]‖ ≤ 2
√‖ϕ‖‖x‖#

ϕ .

(2) ‖x‖2
ϕ ≤ ‖x · ϕ‖‖x‖, ‖x∗‖2

ϕ ≤ ‖ϕ · x‖‖x‖.

(3) ‖x‖#
ϕ ≤

√
1
2 (|x|ϕ + |x∗|ϕ)‖x‖.

(4)
∣∣∑

i xiyi
∣∣
ϕ

≤ ∑
i ‖xi‖|yi |1.

Proof. It is elementary to see (1), (2), (3). See [16, Lemma 7.1] for the
proof of (4).

Next we recall Ocneanu’s Rohlin type theorem, which is a main tool in the
proof of Lemma 3.4 below.

Theorem 2.2 ([16, Theorem 6.1]). LetM be a McDuff factor,G a discrete
amenable group, and α an action of G on Mω which is strongly free and
semiliftable. Let ε > 0, and {Ki}i∈I be an ε-paving family. Then there exists a
partition of unity {Ei,k}i∈I,k∈Ki ⊂ Mω such that

∑
i∈I

|Ki |−1
∑
k,l∈Ki

|αkl−1(Ei,l)− Ei,k|1 ≤ 5ε
1
2 ,

[αg(Ei,k), Ej,l] = 0, for all g ∈ G, i, j ∈ I, k ∈ Ki, l ∈ Kj .

See [16] for the notation in the above theorem. Here we briefly explain how
to construct an ε-paving family {Ki}. Fix N ∈ N such that N > 4

ε
log ε−1,

and set δ := (ε/3)N . Let Kn+1 be a (δ|K̄n|−1, K̄n)-invariant finite set, where
K̄n := ∪1≤i≤nKi . (In this paper, we say that K is (ε, F )-invariant if |K ∩⋂
g∈F g−1K| ≥ (1 − ε)|K|.) Then {Ki}1≤i≤N is shown to be an ε-paving

family. In this construction, each Ki can be chosen arbitrarily invariant.
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3. Classification

We state the main result in this paper.

Theorem 3.1. LetM be a McDuff factor,G a countable discrete amenable
group, and α, β centrally free actions of G on M . If αgβ−1

g ∈ Int(M) for

every g ∈ G, then there exist an α-cocycle vg and θ ∈ Int(M) such that
Ad vgαg = θ ◦ βg ◦ θ−1. Moreover we can choose vg close to 1, i.e., for any
given ε > 0, F � G and ϕ ∈ M+∗ , we can choose vg so that ‖vg − 1‖#

ϕ < ε

for any g ∈ F .

The assumption αgβ−1
g ∈ Int(M) implies αg = limn→∞ Ad ungβ for some

unitaries ung ∈ M . However Ad ungβg is not necessary an action of G. Hence
we need to take ung as β-cocycles at first.

Proposition 3.2. Let α, β be as in Theorem 3.1. Then there exist β-cocycles
ung , n = 1, 2, . . . , such that αg = limn→ω Ad ungβg .

Proof. Since αgβ−1
g ∈ Int(M), there exist unitaries ung , g ∈ G, n =

1, 2, . . . , such that αg = limn→∞ Ad ungβg . Set Ug := (ung) ∈ Mω. Note that
αωg = AdUgβωg holds on M(⊂ Mω). Set u(g, h) = Ugβ

ω
g (Uh)U

∗
gh. Then it is

easy to verify thatu(g, h) ∈ Mω and {AdUgβωg |Mω
, u(g, h)} is a cocycle action

onMω. Moreover AdUgβωg is strongly free in the sense of [16, Definition 5.6]
by [16, Lemma 5.7]. By Ocneanu’s 2-cohomology vanishing theorem [16,
Proposition 7.4], we get cg ∈ U(Mω) such that cg AdUgβωg (ch)u(g, h)c

∗
gh =

1, which yields cgUgβωg (chUh) = cghUgh. Hence Wg := cgUg becomes a
βω-cocycle. Let cg = (cng) be a representing sequence consisting of unitaries.
Since (cng) is a centralising sequence, Ad cng converges to idM . Hence αg =
limn→ω Ad cngu

n
gβg . Set wng = cngu

n
g and w′

n(g, h) := wngβg(w
n
h)w

n∗
gh. Then

(Adwngβg,w
′
n(g, h)) is a cocycle action, and the cocycle identityWgβ

ω
g (Wh) =

Wgh yields limn→ω w
′
n(g, h) = 1 in the σ -strong* topology. By Ocneanu’s 2-

cohomology vanishing theorem [16, Theorem 7.6], we have dng ∈ U(M) such
that dng Adwngβg(d

n
h )w

′
n(g, h)d

n∗
gh = 1 and limn→ω d

n
g = 1 in the σ -strong*

topology. Then dngw
n
g is a βg-cocycle and (dngw

n
g) = (wng) in Mω. It is easy to

see αgβ−1
g = limn→ω Ad dngw

n
g .

We get the following corollary immediately.

Corollary 3.3. Letα, β be as in Theorem 3.1. Then for any ε > 0,� � M∗
and F � G, there exists a β-cocycle ug such that ‖αg(φ)− Ad ugβg(φ)‖ < ε

for every g ∈ F and φ ∈ �.

Next we show an approximate 1-cohomology vanishing theorem, which
plays a central role in our argument.
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Lemma 3.4. Let α be a centrally free action of G on M . For any ε > 0,
F = F−1 � G,�+ � M+∗ , and� � M∗, there exist δ > 0 and � M∗ with
the following property; for any α-cocycle {vg} with ‖[vg, ψ]‖ < δ, g ∈ F ,
ψ ∈ , we can find w ∈ U(M) such that ‖[w, ϕ]‖ < ε for every ϕ ∈ �, and
‖vgαg(w∗)w − 1‖#

φ < ε for every g ∈ F and φ ∈ �+. When � = ∅,  = ∅
is possible.

Proof. Since every φ ∈ M∗ is decomposed as φ = φ1 − φ2 + i(φ3 − φ4),
φi ∈ M+∗ , it suffices to show the lemma in the case � = �+ � M+∗ . We may
assume 0 < ε < 1 and ‖φ‖ ≤ 1, φ ∈ �+. Fix ε′ > 0 with ε′ < (ε/8)4. Let
{Ki}i∈I be an ε′-paving family such that each Ki is (ε′, F )-invariant. We may
assume that allKi are in a subgroup ofG generated byF . Define Length(g) :=
min{n | g = h1h2 · · ·hn, hi ∈ F }, and set L by

L := max{Length(g) | g ∈ Ki, i ∈ I }.
Fix δ > 0 such that

∑
i |Ki |(L+ 1)δ < ε/3. Define  by

 := �+ ∪
⋃

1≤k≤L−1,
gi∈F

α−1
g1g2...gk

(�+).

By Ocneanu’s Rohlin type Theorem, there exists a partition of unity
{Ei,k}i∈I,k∈Ki ⊂ Mω such that

∑
i∈I

|Ki |−1
∑
k,l∈Ki

|αkl−1(Ei,l)− Ei,k|1 < 5ε
′ 1

2 ,

[αg(Ei,k), Ej,l] = 0 for all g ∈ G, i, j ∈ I, k ∈ Ki, l ∈ Kj .
Then by [16, Corollary 6.1], we have

∑
i∈I

∑
k∈Ki∩g−1Ki

|αg(Ei,k)− Ei,gk|1 ≤ 10ε
′ 1

2

and ∑
i∈I

∑
k∈Ki\g−1Ki

|Ei,k|1 ≤ ε′ + 5ε
′ 1

2

for any g ∈ F .
We show that δ and  defined above are the desired ones. Let vg be an α-

cocycle with ‖[vg, ψ]‖ < δ, g ∈ F , ψ ∈ . Set W := ∑
i,k v

∗
kEi,k . First we

estimate ‖vgαg(W ∗)W−1‖#
φ for g ∈ F as in the proof of [16, Proposition 7.2].

To this end, we investigate |vgαg(W ∗)W −1|φ and |(vgαg(W ∗)W −1)∗|φ , and
then use Lemma 2.1.
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We divide

vgαg(W
∗)W − 1 =

∑
i∈I,k∈Ki

∑
j∈I,l∈Kj

(vgαg(vk)v
∗
l − 1)αg(Ei,k)Ej,l

into three parts as follows.

∑
i∈I,k∈Ki

∑
j∈I,l∈Kj

(∗)

=
∑

j∈I,l∈Kj

∑
i,k∈Ki∩g−1Ki

(∗)+
∑

j∈I,l∈Kj

∑
i∈I,k∈Ki\g−1Ki

(∗)

=
∑

j∈I,l∈Kj

∑
j �=i∈I,

k∈Ki∩g−1Ki

(∗)+
∑

j∈I,l∈Kj ,
k∈Kj∩g−1Kj

(∗)+
∑

j∈I,l∈Kj

∑
i,k∈Ki\g−1Ki

(∗)

=
∑

j∈I,l∈Kj ,
k∈Kj∩g−1Kj ,gk=l

(∗)+
∑

j∈I,l∈Kj ,
k∈Kj∩g−1Kj ,gk �=l

(∗)

+
∑

j∈I,l∈Kj

∑
j �=i∈I,

k∈Ki∩g−1Ki

(∗)+
∑

j∈I,l∈Kj

∑
i,k∈Ki\g−1Ki

(∗)

=
∑

1

(∗)+
∑

2

(∗)+
∑

3

(∗).

In
∑

1 we sum for i = j, k ∈ Ki ∩ g−1Ki, gk = l, in
∑

2 we sum for
i = j, k ∈ Ki ∩ g−1Ki, gk �= l, or i �= j, k ∈ Ki ∩ g−1Ki, l ∈ Kj , and in

∑
3

we sum for j ∈ I, l ∈ Kj , k ∈ Ki\g−1Ki . Due to the cocycle identity, we have∑
1(vgαg(vk)v

∗
l − 1)αg(Ei,k)Ej,l = ∑

j (vgαg(vk)v
∗
gk − 1)αg(Ei,k)Ej,gk = 0,

and
∑

1 part vanishes. Hence

∣∣vgαg(W ∗)W − 1
∣∣
φ

=
∣∣∣∣
∑

2

(vgαg(vk)v
∗
l − 1)αg(Ei,k)Ej,l +

∑
3

(vgαg(vk)v
∗
l − 1)αg(Ei,k)Ej,l

∣∣∣∣
φ

≤ 2
∑

2

∣∣αg(Ei,k)Ej,l∣∣1 + 2
∑

3

∣∣αg(Ei,k)Ej,l∣∣1

holds by Lemma 2.1(4). Similarly we have

∣∣(vgαg(W ∗)W − 1)∗
∣∣
φ

≤ 2
∑

2

∣∣αg(Ei,k)Ej,l∣∣1 + 2
∑

3

∣∣αg(Ei,k)Ej,l∣∣1.
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We estimate the
∑

2 part. Then∑
2

∣∣αg(Ei,k)Ej,l∣∣1

=
∑
j∈I,
l∈Kj

∑
i �=j,

k∈Ki∩g−1Ki

∣∣αg(Ei,k)Ej,l∣∣1 +
∑

i∈I,l∈Ki,
k∈Ki∩g−1Ki,gk �=l

∣∣αg(Ei,k)Ei,l∣∣1

=
∑
i∈I,

k∈Ki∩g−1Ki

∣∣∣∣α(Ei,k)
(

1 −
∑
l

Ei,l

)∣∣∣∣
1

+
∑
i∈I,

k∈Ki∩g−1Ki

∣∣∣∣αg(Ei,k)
∑

l∈Ki,l �=gk
Ei,l

∣∣∣∣
1

=
∑

i∈I,k∈Ki∩g−1Ki

∣∣αg(Ei,k)(1 − Ei,gk)
∣∣
1

=
∑

i∈I,k∈Ki∩g−1Ki

∣∣(αg(Ei,k)− Ei,gk)(1 − Ei,gk)
∣∣
1

≤
∑

i∈I,k∈Ki∩g−1Ki

∣∣αg(Ei,k)− Ei,gk
∣∣
1

≤ 10ε
′ 1

2

holds.
The estimate of the

∑
3 part is given as follows.∑

3

|αg(Ei,k)Ej,l|1 =
∑

j∈I,l∈Kj

∑
i∈I,

k∈Ki\g−1Ki

|αg(Ei,k)Ej,l|1 =
∑
i∈I,

k∈Ki\g−1Ki

|Ei,k|1

≤ ε′ + 5ε
′ 1

2 ≤ 6ε
′ 1

2 .

Summing up, we get |vgαg(W ∗)W − 1|φ ≤ 32ε
′ 1

2 and |(vgα(W ∗)W −
1)∗|φ ≤ 32ε

′ 1
2 . By Lemma 2.1(3), we have

‖vgαg(W ∗)W − 1‖#
φ ≤ 8ε

′ 1
4 < ε.

We choose representing sequences W = (wn) consisting of unitaries, and
Ei,k = (eni,k) such that {eni,k}i∈I,k∈Ki is a partition of unity for each n. Set an :=∑

i,k v
∗
k e
n
i,k . (Note that an is not necessary a unitary.) Since W = (wn) = (an)

in Mω, {wn − an} converges to 0 σ -strongly∗. Choose a sufficiently large n
such that

‖vgαg(w∗
n)wn − 1‖#

φ < ε, g ∈ F, φ ∈ �+,

‖[φ, eni,k]‖ < δ, φ ∈ �+, i ∈ I, k ∈ Ki,
‖wn − an‖#

φ < ε/3, φ ∈ �+.
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Set w := wn, a := an, ei,k := eni,k . (Note that we never use the assumption
‖[vg, ψ]‖ < δ, ψ ∈ , in the estimation of ‖vgαg(w∗)w − 1‖#

φ .) Next we
show ‖[a, ϕ]‖ < ε/3, ϕ ∈ �+. To show this, we estimate ‖[vg, ϕ]‖, g ∈ Ki ,
ϕ ∈ �+ at first. We express g as g = g1g2 . . . gk , gi ∈ F , k ≤ L. Then it is
easy to show ‖[vg, ϕ]‖ ≤ ∑k

i=1 ‖[vgi , α
−1
g1...gi−1

(ϕ)]‖. (When i = 1, αg1...gi−1(ϕ)

means ϕ.) Since each α−1
g1...gi

(ϕ) is in , ‖[vgi , α
−1
g1...gi−1

(ϕ)]‖ < δ follows by
the assumption on vg . Hence we have ‖[vg, ϕ]‖ ≤ Lδ. Finally,

‖[a, ϕ]‖ ≤
∑

i∈I,k∈Ki
‖[v∗

k ei,k, ϕ]‖ ≤
∑

i∈I,k∈Ki
‖[v∗

k , ϕ]ei,k‖ + ‖v∗
k [ei,k, ϕ]‖

≤
∑

i∈I,k∈Ki
(L+ 1)δ =

∑
i∈I

|Ki |(L+ 1)δ < ε/3

holds for ϕ ∈ �+.
By Lemma 2.1(1),

‖[w, ϕ]‖ ≤ ‖[a, ϕ]‖ + ‖[w − a, ϕ]‖ < ε/3 + 2‖w − a‖#
ϕ < ε

holds for ϕ ∈ �+, and w is a desired unitary.

Remark. If we replace vgαg(W ∗)W withWvgαg(W ∗) in the above proof,
we then conclude ‖wvgαg(w∗)− 1‖#

φ < ε.

Now we present a proof of Theorem 3.1 by means of Lemma 3.4.

Proof of Theorem 3.1. Fix a faithful normal state ϕ0. Let � = {ϕi}∞i=0
be a countable dense subset in M∗, and set �n := {ϕi}ni=0. Fix Gn � G such
that Gn ⊂ Gn+1, G−1

n = Gn and
⋃
n Gn = G.

We construct wn, vng, v̄
n
g ∈ U(M), �′

n,n � M∗, �+
n � M+∗ , δn > 0, and

actions α(2n)g , β(2n−1)
g ofG satisfying the below conditions inductively. (We set

α(0) := α, β(−1) := β.)

(1.2n) ‖β(2n−1)
g (ϕ)− α(2n)g (ϕ)‖ < 1/22n, g ∈ G2n, ϕ ∈ �′

2n, (n ≥ 1).

(1.2n+ 1) ‖α(2n)g (ϕ)− β(2n+1)
g (ϕ)‖ < 1/22n+1,

g ∈ G2n+1, ϕ ∈ �′
2n+1, (n ≥ 0).

(2.2n) ‖β(2n−1)
g (ψ)− α(2n)g (ψ)‖ < δ2n−1

2
,

g ∈ G2n−1, ψ ∈
⋃

g∈G2n−1

β
(2n−1)
g−1 (2n−1), (n ≥ 1).
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(2.2n+ 1) ‖α(2n)g (ψ)− β(2n+1)
g (ψ)‖ < δ2n

2
,

g ∈ G2n, ψ ∈
⋃
g∈G2n

α
(2n)
g−1 (2n), (n ≥ 1).

(3.n) ‖vng − 1‖#
φ < 1/4n,

g ∈ Gn−2, φ ∈ �+
n−2, (G−1 = G0 = G1,�

+
−1 = �+

0 = {ϕ0}),
(4.n) ‖[wn, ϕ]‖ < 1/4n, ϕ ∈ �′

n−1, (n ≥ 3).

v̄ng := vng Adwn(v̄
n−2
g ), (v̄1

g = v1
g, v̄

2
g = v2

g),

α(2n)g := Ad v2n
g ◦ Adw∗

2n ◦ α(2n−2)
g ◦ Adw2n,

β(2n−1)
g := Ad v2n−1

g ◦ Adw∗
2n−1 ◦ β(2n−3)

g ◦ Adw2n−1,

�′
2n := �2n ∪ Adw∗

2n−1w
∗
2n−3 · · ·w∗

1(�2n) ∪ {v̄2n−1
g ϕ0, ϕ0v̄

2n−1
g }g∈G2n−1 ,

�′
2n+1 := �2n+1∪Adw∗

2nw
∗
2n−2 · · ·w∗

2(�2n+1)∪{v̄2n
g ϕ0, ϕ0v̄

2n
g }g∈G2n , (n ≥ 1)

�+
n := {Ad v̄ng (ϕ0) | g ∈ Gn}.

Here δ2n and 2n (δ2n−1 and 2n−1) are chosen as in Lemma 3.4 for α(2n),
1/42n+2, G2n, �

+
2n and �′

2n+1 (resp. for β(2n−1), 1/42n+1, G2n−1, �+
2n−1, and

�′
2n).
At first set �′

1 := �1 and fix a β(−1)-cocycle u1
g such that

‖α(0)g (ϕ)− Ad u1
gβ

(−1)
g (ϕ)‖ < 1/2, g ∈ G1, ϕ ∈ �′

1.

By Lemma 3.4, we get a unitary w1 such that ‖ugβ(−1)
g (w∗

1)w1 − 1‖#
ϕ0
< 1/4,

g ∈ G1. Set v1
g := u1

gβ
(−1)
g (w∗

1)w1, and β(1)g := Ad u1
g ◦ β(−1)

g = Ad v1
g ◦

Adw∗
1 ◦ β(−1)

g ◦ Adw1. Then we have

(1.1) ‖α(0)g (ϕ)− β(1)g (ϕ)‖ < 1/2

and

(3.1) ‖v1
g − 1‖#

ϕ0
< 1/4

for g ∈ G1. Set v̄1
g := v1

g , �′
2 := �2 ∪ Adw∗

1(�2) ∪ {v̄1
gϕ0, ϕ0v̄

1
g}, and

�+
1 := {Ad v̄1

g(ϕ0)}g∈G1 . By Lemma 3.4, we choose 1 and δ1 for β(1)g , 1/43,
G1, �+

1 and �′
2, and the first step is finished.
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Next we take an α(0)-cocycle u2
g such that

‖β(1)g (ϕ)− Ad u2
gα

(0)
g (ϕ)‖ <

1

22
, g ∈ G2, ϕ ∈ �′

2,(a.2)

‖β(1)g (ψ)− Ad u2
gα

(0)
g (ψ)‖ <

δ1

2
, g ∈ G1, ψ ∈

⋃
g∈G1

β
(1)
g−1(1).(b.2)

By Lemma 3.4, we getw2 ∈ U(M) such that ‖u2
gα

(0)
g (w

∗
2)w2−1‖#

ϕ0
< 1/42

for g ∈ G2. Set v2
g = v̄2

g := u2
gα

(0)
g (w

∗
2)w2 and α(2)g := Ad u2

gα
(0)
g = Ad v2

g ◦
Adw∗

2 ◦ α(0)g ◦ Adw2. Then we get

(3.2) ‖v2
g − 1‖#

ϕ0
<

1

42
, g ∈ G2.

By (a.2) and (b.2),

‖β(1)g (φ)− α(2)g (φ)‖ <
1

22
, g ∈ G2, ϕ ∈ �′

2,(1.2)

‖β(1)g (ψ)− α(2)g (ψ)‖ <
δ1

2
, g ∈ G1, ψ ∈

⋃
g∈G1

β
(1)
g−1(1).(2.2)

Set�′
3 := �3 ∪ Adw∗

2(�3)∪ {v̄2
gϕ0, ϕ0v̄

2
g}g∈G2 and�+

2 := {Ad v̄2
gϕ0 | g ∈

G2}. By Lemma 3.4, we choose δ2 and2 for α(2),G2,�′
3,�+

2 and 1/44, and
the second step is finished.

Suppose that we have constructed α(2n)g , β(2n−1)
g , w2n, v2n

g , v̄2n
g , �′

2n+1, δ2n

and 2n.
We choose a β(2n−1)-cocycle u2n+1

g ∈ U(M) such that

(a.2n+ 1) ‖α(2n)g (ϕ)− Ad u2n+1
g β(2n−1)

g (ϕ)‖ < 1

22n+1
,

g ∈ G2n+1, ϕ ∈ �′
2n+1,

(b.2n+ 1) ‖α(2n)g (ψ)− Ad u2n+1
g β(2n−1)

g (ψ)‖ < δ2n

2
,

g ∈ G2n, ψ ∈
⋃
g∈G2n

α
(2n)
g−1 (2n),

(c.2n+ 1) ‖α(2n)g (ψ)− Ad u2n+1
g β(2n−1)

g (ψ)‖ < δ2n−1

2
,

g ∈ G2n−1, ψ ∈
⋃

g∈G2n−1

β
(2n−1)
g−1 (2n−1).
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Then by (2.2n) and (c.2n+ 1) we get

‖β(2n−1)
g (ψ)− Ad u2n+1

g β(2n−1)
g (ψ)‖ < δ2n−1,

g ∈ G2n−1, ψ ∈ β(2n−1)
g−1 (2n−1),

which yields ‖[u2n+1
g , ψ]‖ < δ2n−1, g ∈ G2n−1, ψ ∈ 2n−1. By the choice of

δ2n−1 and 2n−1, there exists a unitary w2n+1 such that

‖u2n+1
g β(2n−1)

g (w∗
2n+1)w2n+1 − 1‖#

φ < 1/42n+1, g ∈ G2n−1, φ ∈ �+
2n−1,

and

(4.2n+ 1) ‖[w2n+1, ϕ]‖ < 1/42n+1, ϕ ∈ �′
2n.

Set v2n+1
g := u2n+1

g β(2n−1)
g (w∗

2n+1)w2n+1 and β(2n+1)
g := Ad u(2n+1)

g β(2n−1)
g =

Ad v(2n+1)
g ◦ Adw∗

2n+1 ◦ β(2n−1)
g ◦ Adw2n+1. Then

(3.2n+ 1) ‖v2n+1
g − 1‖#

φ <
1

42n+1
, g ∈ G2n−1, φ ∈ �+

2n−1.

By (a.2n+ 1) and (b.2n+ 1), we get

(1.2n+ 1) ‖α(2n)g (ϕ)− β(2n+1)
g (ϕ)‖ < 1

22n+1
,

g ∈ G2n+1, ϕ ∈ �′
2n+1.

(2.2n+ 1) ‖α(2n)g (ψ)− β(2n+1)
g (ψ)‖ < δ2n

2
,

g ∈ G2n, ψ ∈
⋃
g∈G2n

α
(2n)
g−1 (2n).

Set v̄2n+1
g := v2n+1

g Adw∗
2n+1(v̄

2n−1
g ), and define

�′
2n+2 := �2n+2 ∪ Adw∗

2n+1w
∗
2n−1 · · ·w∗

1(�2n+2)

∪ {v̄2n+1
g (ϕ0), ϕ0v̄

2n+1
g }g∈G2n+1 ,

�+
2n+1 := {Ad v̄2n+1

g ϕ0 | g ∈ G2n+1}.
By Lemma 3.4, we choose δ2n+1 > 0 and2n+1 � M∗ for β(2n+1), 1/42n+3,

G2n+1, �+
2n+1 and �′

2n+2, and the (2n+ 1)-st step is finished.
Next we choose an α(2n)-cocycle u2n+2

g such that

(a.2n+2) ‖β(2n+1)
g (ϕ)−Ad u2n+2

g α(2n)g (ϕ)‖ < 1

22n
, g ∈ G2n+2, ϕ ∈ �′

2n+2,
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(b.2n+ 2) ‖β(2n+1)
g (ψ)− Ad u2n+2

g α(2n)g (ψ)‖ < δ2n+1

2
,

g ∈ G2n+1, ψ ∈
⋃

g∈G2n+1

β
(2n+1)
g−1 (2n+1),

(c.2n+ 2) ‖β(2n+1)
g (ψ)− Ad u2n+2

g α(2n)g (ψ)‖ < δ2n

2
,

g ∈ G2n, ψ ∈
⋃
g∈G2n

α
(2n)
g−1 (2n).

By (c.2n+ 2) and (2.2n+ 1), we get

‖α(2n)g (ψ)− Ad u2n+2
g α(2n)g (ψ)‖ < δ2n, g ∈ G2n, ψ ∈

⋃
g∈G2n

α
(2n)
g−1 (2n).

We thus have ‖[u2n+2
g , ψ]‖ < δ2n for g ∈ G2n and ψ ∈ 2n. By the choice of

δ2n and 2n, we can find w2n+2 ∈ U(M) such that

‖u2n+2
g α(2n)g (w∗

2n+2)w2n+2 − 1‖#
φ <

1

42n+2
, g ∈ G2n, φ ∈ �+

2n

and

(4.2n+ 2) ‖[w2n+2, ϕ]‖ < 1

42n+2
, ϕ ∈ �′

2n+1.

Set v2n+2
g := u2n+2

g α(2n)g (w∗
2n+2)w2n+2 and α(2n+2)

g := Ad u2n+2
g α(2n)g =

Ad v2n+2
g ◦ Adw∗

2n+2 ◦ α(2n)g ◦ Adw2n+2. Then

(3.2n+ 2) ‖v2n+2
g − 1‖#

φ <
1

42n+2
, g ∈ G2n, φ ∈ �+

2n,

and by (a.2n+ 2) and (b.2n+ 2), we get

(1.2n+ 2) ‖β(2n+1)
g (ϕ)− α(2n+2)

g (ϕ)‖ < 1

22n
,

g ∈ G2n, ϕ ∈ �′
2n+2.

(2.2n+ 2) ‖β(2n+1)
g (ψ)− α(2n+2)

g (ψ)‖ < δ2n+1

2
,

g ∈ G2n+1, ψ ∈
⋃

g∈G2n+1

β
(2n+1)
g−1 (2n+1).
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Set v̄2n+2
g := v2n+2

g Adw∗
2n+2(v̄

2n
g ) and

�′
2n+3 := �2n+3 ∪ Adw∗

2n+2w
∗
2n · · ·w∗

2(�2n+3) ∪ {v̄2n+2
g ϕ0, ϕ0v̄

2n+2
g },

�+
2n+2 := {Ad v̄2n+2

g ϕ0 | g ∈ G2n+2}.
We choose δ2n+2 > 0, 2n+2 � M∗ for α(2n)g , 1/42n+4, G2n+2, �+

2n+2 and
�′

2n+3 by Lemma 3.4. Then the (2n + 2)-nd step is finished, and thus we
complete induction.

Set θ2n := Adw∗
2nw

∗
2n−2 · · ·w∗

2 . Then we have α(2n)g = Ad v̄2n
g ◦ θ2n ◦ αg ◦

θ−1
2n . We will verify {θ2n} converges to some θ ∈ Aut(M). To this end, we will

prove that {θ2n(ϕ)} and {θ−1
2n (ϕ)} are Cauchy sequences for ϕ ∈ M∗. Suppose

ϕ ∈ �k . For any nwith k ≤ 2n+ 1, ϕ and θ2n(ϕ) are in�′
2n+1. By (4.2n+ 2),

we have

‖θ2n+2(ϕ)− θ2n(ϕ)‖ = ‖[w2n+2, θ2n(ϕ)]‖ < 1

42n+2
,

and
‖θ−1

2n+2(ϕ)− θ−1
2n (ϕ)‖ = ‖w∗

2n+2ϕw2n+2 − ϕ‖ < 1

42n+2
.

It follows that {θ2n(ϕ)} and {θ−1
2n (ϕ)} are Cauchy sequences for ϕ ∈ �. Then

so are {θ2n(ϕ)} and {θ−1
2n (ϕ)} for every ϕ ∈ M∗, since� is dense inM∗. Hence

{θ2n} converges to some θ ∈ Aut(M).
Next we will verify that {v̄2n

g } is a Cauchy sequence with respect to ‖ · ‖#
ϕ0

.
Since we have

‖v̄2n+2
g − v̄2n

g ‖#
ϕ0

≤ ‖(v2n+2
g − 1)v̄2n

g ‖#
ϕ0

+ ‖(w∗
2n+2v̄

2n
g w2n+2 − v̄2n

g )‖#
ϕ0

+ ‖(v2n+2
g − 1)(w∗

2n+2v̄
2n
g w2n+2 − v̄2n

g )‖#
ϕ0
,

we will estimate the above three terms.
Suppose g ∈ Gk . Then for any n with 2n ≥ k, ϕ0,Ad v̄2n

g (ϕ0) ∈ �+
2n, and

hence ‖v2n+2
g − 1‖#

Ad v̄2n
g (ϕ0)

< 1/42n+2 and ‖v2n+2
g − 1‖#

ϕ0
< 1/42n+2 hold by

(3.2n+ 2).
We have

‖(v2n+2
g − 1)v̄2n

g ‖#2
ϕ0

= 1

2
(‖(v2n+2

g − 1)v̄2n
g ‖2

ϕ0
+ ‖v̄2n∗

g (v2n+2∗
g − 1)‖2

ϕ0
)

= 1

2
(‖v2n+2

g − 1‖2
Ad v̄2n

g (ϕ0)
+ ‖v2n+2∗

g − 1‖2
ϕ0
)

≤ ‖v2n+2
g − 1‖#2

Ad v̄2n
g (ϕ0)

+ ‖v2n+2
g − 1‖#2

ϕ0

<
2

162n+2
.
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Hence we get ‖(v2n+2
g − 1)v̄2n

g ‖#
ϕ0
<

√
2/42n+2 < 1/22n+1.

We next estimate ‖w∗
2n+2v̄

2n
g w2n+2−v̄2n‖#

ϕ0
. Since ϕ0, v̄

2n
g ϕ0, ϕ0v̄

2n
g ∈�′

2n+1,
we have ‖[w2n+2, ϕ0]‖ < 1/42n+2, ‖[w2n+2, v̄

2n
g ϕ0]‖ < 1/42n+2 and

‖[w2n+2, ϕ0v̄
2n
g ]‖ < 1/42n+2 by (4.2n+ 2). Then

‖(w∗
2n+2v̄

2n
g w2n+2 − v̄2n

g ) · ϕ0‖
= ‖(w∗

2n+2v̄
2n
g − v̄2n

g w
∗
2n+2)w2n+2 · ϕ0‖

≤ ‖(w∗
2n+2v̄

2n
g − v̄2n

g w
∗
2n+2) · ϕ0 · w2n+2‖

+ ‖(w∗
2n+2v̄

2n
g − v̄2n

g w
∗
2n+2) · [w2n+2, ϕ0]‖

≤ ‖w∗
2n+2v̄

2n
g ϕ0w2n+2 − v̄2n

g w
∗
2n+2ϕ0w2n+2‖ + 2/42n+2

≤ ‖[w∗
2n+2, v̄

2n
g ϕ0]w2n+2‖ + ‖v̄2n

g ϕ0 − v̄2n
g w

∗
2n+2ϕ0w2n+2‖ + 2/42n+2

≤ 1/42n+2 + ‖v̄2n
g [ϕ0, w

∗
2n+2]‖ + 2/42n+2

≤ 1/42n+1

holds. Hence

‖w∗
2n+2v̄

2n
g w2n+2 − v̄2n

g ‖2
ϕ0

≤ ‖w∗
2n+2v̄

2n
g w2n+2 − v̄2n

g ‖‖(w∗
2n+2v̄

2n
g w2n+2 − v̄2n

g ) · ϕ0‖
≤ 2‖(w∗

2n+2v̄
2n
g w2n+2 − v̄2n

g ) · ϕ0‖
≤ 2

42n+1

holds by Lemma 2.1(2).
In a similar way, we can show ‖(w∗

2n+2v̄
2n
g w2n+2 − v̄2n

g )
∗‖2
ϕ0

≤ 2/42n+1.

Hence we get ‖w∗
2n+2v̄

2n
g w2n+2 − v̄2n

g ‖#
ϕ0

≤ √
2/42n+1 = √

2/22n+1 < 1/22n.
The third term ‖(v2n+2

g − 1)(w∗
2n+2v̄

2n
g w2n+2 − v̄2n

g )‖#
ϕ0

is estimated as fol-
lows. ‖(v2n+2

g − 1)(w∗
2n+2v̄

2n
g w2n+2 − v̄2n

g )‖#2
ϕ0

= 1

2
(‖(v2n+2

g − 1)(w∗
2n+2v̄

2n
g w2n+2 − v̄2n

g )‖2
ϕ0

+ ‖(w∗
2n+2v̄

2n∗
g w2n+2 − v̄2n∗

g )(v2n+2∗
g − 1)‖2

ϕ0
)

≤ 2‖w∗
2n+2v̄

2n
g w2n+2 − v̄2n

g ‖2
ϕ0

+ 2‖v2n+2∗
g − 1‖2

ϕ0

≤ 4‖w∗
2n+2v̄

2n
g w2n+2 − v̄2n

g ‖#2
ϕ0

+ 4‖v2n+2∗
g − 1‖#2

ϕ0

≤ 4

42n
+ 4

42n+2

≤ 2

42n−1
.
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Hence ‖(v2n+2
g − 1)(w∗

2n+2v̄
2n
g w2n+2 − v̄2n

g )‖#
ϕ0

≤ √
2/22n−1 < 1/22n−2. Sum-

ming up, we have the following.

‖v̄2n+2
g − v̄2n

g ‖#
ϕ0

≤ 1

22n+1
+ 1

22n
+ 1

22n−2
≤ 1

22n−3
.

It follows that {v̄2n
g } is a Cauchy sequence and converges to some unitary v̂0

g .
In the same way, we can show that Adw∗

2n+1w
∗
2n−1 · · ·w∗

1 and v̄2n+1
g con-

verge to some σ ∈ Aut(M) and v̂1
g ∈ U(M) respectively. By (1.n) we get

Ad v̂0
g ◦ θ ◦ αg ◦ θ−1 = Ad v̂1

g ◦ σ ◦ βg ◦ σ−1, and hence α and β are cocycle
conjugate. By construction, θ and σ are approximately inner.

We will choose a cocycle close to 1. Suppose Ad vgα = θ ◦ βg ◦ θ−1,
θ ∈ Int(M). Fix F � G and ε > 0. Then there exists a unitary w such that
‖wvgαg(w∗) − 1‖#

ϕ0
< ε for each g ∈ F . (See the remark after Lemma 3.4.)

Define a new α-cocycle v′
g by v′

g := wvgαg(w
∗). We then have ‖v′

g−1‖#
ϕ0
< ε

for g ∈ F , and

Ad v′
gαg = Ad(wvgαg(w

∗)) ◦ αg
= Adw ◦ Ad vg ◦ αg ◦ Adw∗

= Adw ◦ θ ◦ βg ◦ θ−1 ◦ Adw∗.

Put σ := Adw ◦ θ . Then σ ∈ Int(M), and we get Ad v′
gαg = σ ◦ βg ◦ σ−1.

We present applications of Theorem 3.1. Let M be an injective factor. By
the Connes-Krieger-Haagerup classification of injective factors [2], [12], [5],
[7], M is a McDuff factor. Since Ker(mod) = Int(M) by [3] and [11], we get
the following corollary.

Corollary 3.5. LetM be an injective factor,G a discrete amenable group,
and α, β centrally free actions of G on M . Then Ad vgαg = θ ◦ βg ◦ θ−1 for
some α-cocycle vg and θ ∈ Int(M) if and only if mod(α) = mod(β). (In the
type II1 case, we regard mod(α) as trivial for α ∈ Aut(M).)

Theorem 3.1 can be modified for a relative McDuff subfactor N ⊂ M

by appropriate changes. Indeed in the proof we only have to replace Mω with
Mω∩Nω, which is a subfactor version of a central sequence algebra. Especially
ifN ⊂ M is a strongly amenable subfactor of type II1 in the sense of Popa [18],
then it is relatively McDuff thanks to Popa’s classification theorem for strongly
amenable subfactors of type II1 [18]. We also have Int(M,N) = Ker� by
[13], where�(α) is the Loi invariant for α ∈ Aut(M,N), and the equivalence
between strong outerness and central freeness by [17]. (Also see [14] for the
latter fact.) Hence Theorem 3.1 gives an alternative proof of the main theorem
in [17].
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Corollary 3.6. Let N ⊂ M be a strongly amenable subfactor of type
II1, G a discrete amenable group, and α, β strongly outer actions of G on
N ⊂ M . Then Ad vgαg = θ ◦ βg ◦ θ−1 for some α-cocycle vg ∈ U(N) and
θ ∈ Int(M,N) if and only if �(α) = �(β).

When N ⊂ M is a strongly amenable subfactor of type II∞, we have
Int(M,N) = Ker� ∩ Ker(mod). Hence we have the following corollary.

Corollary 3.7. Let N ⊂ M be a strongly amenable subfactor of type
II∞, G a discrete amenable group, and α, β strongly outer actions of G on
N ⊂ M . Then Ad vgαg = θ ◦ βg ◦ θ−1 for some α-cocycle vg ∈ U(N) and
θ ∈ Int(M,N) if and only if �(α) = �(β) and mod(α) = mod(β).

It is worth noting that Corollary 3.7 yields the classification of strongly
amenable subfactor of type IIIλ, 0 < λ < 1. See [13], [17].
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