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A GENERAL ENERGY FORMULA

KATHRYN E. HARE, PARASAR MOHANTY and MARIA ROGINSKAYA∗

Abstract

An analogue of the formula relating the Riesz energy of a measure on the torus with a weighted l2

norm of its Fourier transform is given for energies arising from more general kernels. This involves
estimating the Fourier transform of the kernel. The formula is used to study certain measures of
(classical) energy dimension zero.

1. Introduction

There is an important and useful relationship between the t-Riesz energy of a
measure μ defined on the circle, It (μ), and its Fourier transform

(1.1) It (μ) ≡
∫∫

dμ(x) dμ(y)

|x − y|t ∼ |μ̂(0)| +
∑

n∈Z\{0}
|n|t−1 |μ̂(n)|2 .

One reason for the interest in the energy of a measure is that if It (μ) < ∞,
then the Hausdorff dimension of μ is at least t . Both this formula and the
analogous classical formula relating the energy of a measure on Rn with its
Fourier transform have been used to study a variety of things, including distance
sets, the average rate of decay of the Fourier transform and the singularity of
Riesz products (c.f. [8], [13, ch. 12], [16] and the references cited therein).

The t-energy has been generalized in different ways. Kahane in [12] con-
sidered replacing the kernel |x|−t by |log |x|| and established a similar result
to (1.1) by proving that the n’th Fourier coefficient of |log |x|| was comparable
to 1/ |n|. In [9] the kernel |x|−t was replaced by the function |x|−1 |log |x||s .
This gave the possibility of distinguishing measures of energy dimension one,
the maximum possible.

Here we replace |x|−t by more general kernels, including |x|−β |log |x||α
for 0 < β < 1, or β = 0 and α > 0, and establish an energy formula
analogous to (1.1). The weights on the right hand side of the formula will be
the Fourier transform of the kernel, so to have a useful formula one needs good
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estimates for the transform. The main contribution of the paper, which may be
of independent interest, is to derive an elementary procedure for approximating
the Fourier transform of a class of kernels that satisfy certain technical (but
not overly restrictive) conditions.

Our formula provides a tool to study measures of dimension zero, but for
which ∫∫

|log |x − y||α dμ(x) dμ(y) < ∞

for some α > 0. Cantor measures supported on Cantor sets with ratios tending
to zero at a suitable rate or smooth measures on ‘flat’ curves (c.f. [1], [7])
are examples of measures with this property. In particular, we investigate the
connection with Lipschitz-like properties of the measure and the mapping
properties of Lorentz or Orlicz-improving measures.

2. Refined Energy

2.1. Notation and Terminology

Throughout the paper the circle T will be the interval [−1/2, 1/2]. When we
speak of a measure we mean a finite, regular, positive Borel measure on T. We
assume Lebesgue measure on T is normalized so that the Fourier transform of
an even, integrable function is given by

φ̂(n) =
∫ 1/2

0
φ(x) cos 2πnx dx.

Recall that a positive function ψ is said to satisfy the doubling condition if
there are positive constants c, C such that

cψ(2x) ≤ ψ(x) ≤ Cψ(2x) for all x.

By a kernel, we will mean a function φ defined on the circle that is positive,
even, integrable, convex, decreasing for x > 0, and satisfies the doubling
condition.

Given a kernel φ, the φ-energy of a measure μ is given by

Iφ(μ) =
∫∫

φ(x − y) dμ(x) dμ(y)

where x − y is understood to be the group operation.
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2.2. A Fourier transform formula for φ-energy

We first observe that kernels have positive Fourier transform.

Lemma 2.1. If f is even, convex, decreasing and positive, then f̂ (n) ≥ 0
for all n.

Proof. Notice that∫ 1/2

0
f (x) cos 4πx dx

=
∫ 1/8

0

[
f (x)− f

(
1

4
− x

)
− f

(
x + 1

4

)
+ f

(
1

2
− x

)]
cos 4πx dx.

The convexity of f implies that f (−x+1/2)−f (x+1/4) ≥ f (−x+1/4)−
f (x), hence ∫ 1/2

0
f (x) cos 4πx dx ≥ 0.

Now, subdivide the interval [0, 1/2] into the periods of cos 2nπx. The
previous inequality implies that on each of these subintervals

∫
f (x) cos 2πnx

is positive. If n is odd there will be a half-period remaining, but cosine is
positive on [0, π/2] and f is decreasing, so this portion of the integral is
positive as well. Hence f̂ (n) ≥ 0.

Proposition 2.2. If φ is a kernel and μ a measure on T, then

Iφ(μ) ≤
∞∑

n=−∞
φ̂(n) |μ̂(n)|2 .

Proof. The proof is similar to that given in [8] for the t-energy. Let ψ be a
non-negative, continuous, even function supported on [−1/6, 1/6]. Assumeψ
satisfies

∫
ψ = 1 and ψ̂ ≥ 0. Let {ψε}ε>0 be the approximate identity where

ψε(x) = ε−1ψ(x/ε). Note that ψε is supported on [−ε/6, ε/6].
By Fatou’s lemma∫∫

φ(x − y) dμ(x) dμ(y) ≤ lim inf
ε→0

∫∫
ψε ∗ φ(x − y) dμ(x) dμ(y).

Sinceψε ∗φ is a continuous function on the torus, Parseval’s theorem (applied
first to the exterior integral) gives∫∫

(ψε ∗ φ) (x − y) dμ(x) dμ(y) =
∑
n

ψ̂ε(n)φ̂(n) |μ̂(n)|2 ,
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and the sum converges to
∑
φ̂(n) |μ̂(n)|2 as ε → 0 since ψ̂ε(n) → 1 pointwise

from below.

Theorem 2.3. Suppose φ is a kernel which satisfies the condition

(2.1)
1

z

∫ z

0
φ(x) dx ≤ Bφ(z)

for positive z in a neighbourhood of 0. Then for any measure μ on T,

(2.2) Iφ(μ) =
∞∑

n=−∞
φ̂(n) |μ̂(n)|2 .

Proof. In view of the previous proposition we only need to prove that

Iφ(μ) ≥
∞∑

n=−∞
φ̂(n) |μ̂(n)|2

and this is trivially true if Iφ(μ) is infinite. Thus we can assume the function
(x, y) 
→ φ(x − y) belongs to L1(μ× μ).

We will continue to use the notation of the previous proof. It will be enough
to prove that

(2.3)
∫∫

φ(x − y) dμ(x) dμ(y) = lim
ε→0

∫∫
ψε ∗ φ(x − y) dμ(x) dμ(y).

To justify this we will check that there is a constant κ such that ψε ∗ φ(z) ≤
κφ(z) for z �= 0. Since ψε ∗ φ → φ pointwise, Lebesgue’s theorem will then
imply (2.3).

As the functions are even we can assume z > 0 and we write ψε ∗ φ(z) as∫ 2z

z/2
ψε(x)φ(z− x) dx +

∫
x /∈(z/2,2z)

ψε(x)φ(z− x) dx.

Since φ(z) is even and decreasing for z > 0, φ(z − x) ≤ φ(z/2) when
x /∈ (z/2, 2z). Hence the doubling condition ensures that the second integral
is bounded by κ1φ(z) (for a suitable constant κ1).

The first integral is zero if ε < z/2. As ψ is bounded, if ε ≥ z/2∫ 2z

z/2
ψε(x)φ(z− x) dx ≤ κ2

z

∫ z

0
φ(t) dt ≤ κ2Bφ(z).

Together these estimates establish that ψε ∗ φ(z) ≤ κφ(z).
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Corollary 2.4. Suppose that φ is a kernel, limx→0 xφ(x) = 0 and there
is some ε > 0 such that −xφ′(x) ≤ (1 − ε)φ(x) for all x �= 0. Then (2.2)
holds.

Proof. An integration by parts argument allows one to verify (2.1).

2.3. Estimating the Fourier transform

Of course, the previous results are mainly of interest if one can estimate φ̂. In
this subsection we show that for a reasonable class of kernels there is a simple
way to estimate the Fourier transform.

Notation. When we write f ∼ g we mean there are positive constants
a, b such at af ≤ g ≤ bf .

Theorem 2.5. Suppose φ is a kernel that is smooth away from the origin,
−φ′ satisfies the doubling condition and limx→0 x

2φ′(x) = 0. Suppose also
that either

(i) for some ε > 0, 0 ≤ (xφ′(x))′ ≤ (1 − ε)(−φ′(x)) for all small x > 0,

or

(ii) (xφ′(x))′ ≤ 0 and −φ′(x) ≥ −3φ′(4x) for small x > 0.

Then there is a positive integer n0 such that

φ̂(n) ∼ −φ
′ (1/ |n|)
n2

for |n| ≥ n0.

Remark 2.1. There are other possible assumptions one can make than
−φ′(x) ≥ −3φ′(4x), but this is a convenient choice. Before proving the the-
orem we give several corollaries and examples.

Corollary 2.6. Suppose φ satisfies the conditions of both Theorems 2.3
and 2.5. If φ �= 0 a.e. then

Iφ(μ) ∼
∑
n�=0

− 1

n2
φ′

(
1

|n|
)

|μ̂(n)|2 + |μ̂(0)|2 .

Remark 2.2. We are often only interested in whether Iφ(μ) is finite or
infinite, so having equivalence here, rather than equality, is not significant.

Proof of Corollary 2.6. Asφ is decreasing away from zero there must be
a neighbourhood on which it is bounded away from zero. Thus Iφ(μ) ≥ a ‖μ‖2
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for some constant a > 0. Since it is also the case that
∑

|n|<n0
φ̂(n)) |μ̂(n)|2 ≤

b ‖μ‖2 = b |μ̂(0)|2 for large enough b (and n0 as in the theorem), we have

Iφ(μ) ∼
∑

|n|≥n0

φ̂(n) |μ̂(n)|2 + |μ̂(0)|2 .

But for suitably large b,

0 ≤ −φ′ (1/ |n|)
n2

|μ̂(n)|2 ≤ b |μ̂(0)|2 for all n �= 0,

hence
Iφ(μ) ∼

∑
n�=0

− 1

n2
φ′

(
1

|n|
)

|μ̂(n)|2 + |μ̂(0)|2 .

Example 2.1. If −xφ′ = ψ(φ(x)) then the assumption of case (i) is equi-
valent to 0 ≤ ψ ′(x) ≤ 1 − ε for large x. The classical formula relating energy
and the Fourier transform, (1.1), can be recovered by putting φ(x) = |x|−t for
0 < t < 1 and ψ(x) = tx.

Notation. Denote log+ |n| = max{1, log |n|}.
Corollary 2.7. Suppose φ(x) = |x|−β |log |x||α for 0 < β < 1. Then∫∫ |log |x − y||α

|x − y|β dμ(x) dμ(y) ∼
∑
n�=0

(log+ |n|)α
|n|1−β |μ̂(n)|2 + |μ̂(0)|2 .

Proof. Just check that the conditions of case (i) of the theorem are satisfied.

Corollary 2.8. If α > 0, then∫∫
|log |x − y||α dμ(x) dμ(y) ∼

∑
n�=0

(log+ |n|)α−1

|n| |μ̂(n)|2 + |μ̂(0)|2 .

Proof. If α ≥ 1 the assumption of case (i) can be verified by takingψ(t) =
αt(α−1)/α (following the notation of the example above).

If α < 1 then the requirements of case (ii) are satisfied.

Proof of Theorem 2.5. First, we will prove that there is some constant
a > 0 and integer n0 such that

φ̂(n) ≥ a

(
−φ

′ (1/ |n|)
n2

)
for |n| ≥ n0.



a general energy formula 35

As φ is even it suffices to consider n > 0.
We begin by defining a new, even function

φ1(x) =
{
φ(x)+ (−x + 1/4n) φ′ (1/4n)− φ (1/4n) for x ∈ [0, 1/4n]

0 for x ∈ [1/4n, 1/2].

The difference, φ − φ1, is even, convex, positive and integrable, thus φ̂(n) ≥
φ̂1(n). From the Fourier transform formula we have

φ̂1(n) =
∫ 1/2

0
φ1(x) cos 2πnx dx ≥

√
2

2

∫ 1/8n

0
φ1(x) dx.

Define a second even function by

φ2(x) =
{
φ(x)+ (−x + 1/8n) φ′ (1/8n)− φ (1/8n) for [0, 1/8n]

0 for [1/8n, 1/2].

The convexity of φ allows one to verify that φ1 ≥ φ2, thus it will be enough
to show that ∫ 1/8n

0
φ2 ≥ a

(
−φ

′ (1/n)
n2

)
for n suitably large.

After integrating by parts (twice) we obtain,∫ 1/8n

0
φ2 = −

∫ 1/8n

0
xφ′(x) dx + φ′ (1/8n)

2(8n)2

= −φ
′ (1/8n)
(8n)2

+
∫ 1/8n

0
x(xφ′(x))′ dx + φ′ (1/8n)

2(8n)2
.

Suppose (i) holds. Since (xφ′)′ ≥ 0 for small x and the doubling condition
implies −φ′(1/8n) ∼ −φ′(1/n), the desired bound easily follows.

If assumption (ii) holds we note that

−
∫ 1/8n

0
xφ′(x) dx + φ′ (1/8n)

2(8n)2
≥ −

∫ 1/8n

1/32n
xφ′(x) dx + φ′ (1/8n)

2(8n)2

≥ −φ
′(1/32n)

32n

(
1

8n
− 1

32n

)
+ φ′ (1/8n)

2(8n)2

≥ −φ
′(1/8n)
(32n)2

for n sufficiently large

and the doubling condition completes the argument.
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Now we will show the upper bound on φ̂(n). Similar arguments to those
used in Lemma 2.1 show that∫ 1/2

1/2n
φ(x) cos 2nπx dx ≤ 0.

Thus
φ̂(n) ≤

∫ 1/2n

0
φ(x) cos 2nπx dx

=
∫ 1/4n

0
(φ(x)− φ(−x + 1/2n)) cos 2nπx dx

≤
∫ 1/4n

0
(φ(x)− φ(−x + 1/2n)) dx.

Since φ′ is increasing,∫ 1/4n

0
xφ′(−x + 1/2n) dx ≥ φ′ (1/4n)

∫ 1/4n

0
x dx = φ′ (1/4n)

2(4n)2
.

Integrating by parts and simplifying gives∫ 1/4n

0

(
φ(x)− φ(−x + 1/2n)

)
dx

= xφ(x)
∣∣1/4n
0 −

∫ 1/4n

0
xφ′(x) dx

−
[
xφ(−x + 1/2n)

∣∣1/4n
0 +

∫ 1/4n

0
xφ′(−x + 1/2n)

]
≤

∫ 1/4n

0
−xφ′(x) dx − φ′ (1/4n)

2(4n)2
.(2.4)

In case (ii) the function −xφ′(x) is increasing and thus∫ 1/4n

0
−xφ′(x) dx − φ′ (1/4n)

2(4n)2
≤ −φ

′ (1/4n)
(4n)2

− φ′ (1/4n)
2(4n)2

≤ −cφ
′ (1/n)
n2

.

In case (i) we apply integration by parts a second time to obtain

−
∫ 1/4n

0
xφ′(x) dx = −φ

′ (1/4n)
(4n)2

+
∫ 1/4n

0
x(xφ′(x))′ dx.
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Substituting in the bound (xφ′(x))′ ≤ (1 − ε)(−φ′(x)) and simplifying gives

−
∫ 1/4n

0
xφ′(x) dx ≤ −cφ

′ (1/4n)
(4n)2

.

If we use this estimate in (2.4) and apply the doubling condition to −φ′ the
desired result is obtained.

Given an even sequence of positive weights, {wn}, it can be of interest to
know if the formula

∑
w2
n |μ̂(n)|2 corresponds to some general energy. We will

give a constructive method for finding a kernel assuming that the weights form
the sequence of Fourier coefficients of a function f which is even, positive,
integrable, convex, decreasing and smooth away from the origin.

Proposition 2.9. Suppose f is a kernel that is smooth away from the
origin. Let Kf be the even function defined by

Kf (x) =
∫ 1

x

(
yf ′(y)

)2
dy for x ≥ 0.

Then ∫∫
Kf (x − y) dμ(x) dμ(y) ∼

∑
n�=0

∣∣f̂ (n)μ̂(n)∣∣2 + ∣∣μ̂(0)∣∣2

provided −f ′ satisfies the doubling condition, limx→0 x
2f ′(x) = 0, − 3

2f
′ ≤

xf ′′ ≤ (2 − ε)(−f ′) for some ε > 0 and
∫ z

0 Kf (x) dx ≤ BzKf (z).
Moreover,

f̂ (n) ∼ − 1

n2
f ′ (1/n) and K̂f (n) ∼

(
1

n2
f ′ (1/n)

)2

.

Proof. We check that f and Kf satisfy the conditions of Theorem 2.5.
Notice that K ′

f = −(xf ′(x))2 ≤ 0, so clearly Kf is decreasing. Integrability
can be checked using the integrability of f ; convexity from the observation
that xf ′′ ≥ −f ′. The doubling properties and limiting behaviour of xKf (x)
and x2K ′

f are easily checked. It is also a routine matter to verify that condition
(i) of Theorem 2.5 is satisfied for both functions f and Kf .

Remark 2.3. One can obtain a similar proposition based on condition (ii)
of Theorem 2.5. It would be interesting to find a general result.
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3. Applications

3.1. Fine Hausdorff dimension

The Hausdorff and energy dimensions of a measure (for definitions see [6] and
[8]) are two ways to quantify singularity. As there are continuous measures of
dimension zero it is of interest to refine these notions of dimension.

Suppose we are given a kernel φ with limx→0 φ(x) = ∞. If we put h(x) =
1/φ(x), then we may define the h -Hausdorff measure of a Borel set E as in
[14] by h(E) = limδ→0 hδ(E) where

hδ(E) = inf
{∑

h
(
diamUj

)
:
⋃
Uj ⊇ E, diamUj ≤ δ

}
.

The case φ(x) = |x|−t gives the classical t-Hausdorff measure.

Definition 3.1. Put hs(x) = |log |x||−s . For a measure μ of Hausdorff
dimension zero we define the Fine 0-Hausdorff dimension of μ by

Fine0 dimH μ = inf{inf{s > 0 : hs (F ) < ∞} : μ(F) > 0}.
For a measure μ of energy dimension zero define the Fine 0-energy dimension
of μ by

Fine0 dime μ = sup{s > 0 : I1/hs (μ) < ∞}.

The same arguments as given in the classical case (see [5, ch. 4]) show that
if there exists a measure μ on E such that I1/h(μ) < ∞, then h(E) = ∞.
Thus Fine0 dimH μ ≥ Fine0 dime μ.

3.2. Lorentz and Lorentz-Zygmund improving measures

It follows easily from Corollary 2.8 that if |μ̂(n)| ≤ O(log |n|)−ε for some
ε > 0, then Fine0 dime μ ≥ 2ε. In this section we will study other classes of
measures which have positive Fine 0-Hausdorff dimension.

A natural generalization of the classical Banach spaces Lp are the Lorentz-
Zygmund spaces, Lp,q(logL)α for 0 < p, q < ∞, −∞ < α < ∞, where the
quasi-norm is given by

‖f ‖p,q,α =
(∫ 1

0

[
t1/p(1 − log t)αf ∗(t)

]q dt
t

)1/q

for f ∗ the decreasing rearrangement of f . The Banach spaceLp is the Lorentz-
Zygmund space with p = q, α = 0. The Lorentz spaceL(p, q) is the Lorentz-
Zygmund space Lp,q(logL)0,

Lorentz-Zygmund spaces for p, q = ∞ are also defined, but these will not
be of interest to us.
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There are various inclusions between the Lorentz-Zygmund spaces. We list
some below:

Lp,q(logL)α ⊂ Lp,q(logL)β if α > β;

Lp1,q1(logL)α1 ⊂ Lp2,q2(logL)α2 if p1 > p2;

Lp,q1(logL)α ⊂ Lp,q2(logL)β if either q1 ≤ q2 and α ≥ β, or q1 > q2 and
α + 1/q1 > β + 1/q2.

In particular, this implies that

L(2, q) ⊂ L2,2(logL)−α whenever α > 1/2 − 1/q

and, consequently,
L(2, q) ⊂ L2 if q > 2.

The Lorentz-Zygmund space, L2,2(logL)α , is also known to be equal to
the Orlicz space L
 with 
(x) = x2(log x)α/2. For proofs of these facts and
other properties of Lorentz-Zygmund spaces we refer the reader to [3].

A measure is called Lp-improving if it acts by convolution as a bounded
operator from Lp to L2 for some p < 2. Singular examples include Riesz
product measures and the Cantor measure. It was shown in [10] that Lp-
improving measures have positive energy dimension.

But there are also examples of “improving” measures that have dimension
zero.

Definition 3.2. (i) A measure μ is said to be Lorentz-improving if under
convolutionμmaps a Lorentz spaceL(2, q), for some q > 2, into the (proper)
subspace L2.

(ii) A measure μ is said to be Lorentz-Zygmund improving if under convo-
lution μ maps a Lorentz-Zygmund space L2,2(LogL)−α , for some α > 0, into
the (proper) subspace L2.

Of course, Lorentz-Zygmund improving measures are always Lorentz-
improving. Examples of Cantor measures which are Lorentz-improving, but
have dimension zero, can be found in [7].

Proposition 3.1. Suppose μ is Lorentz-improving. Then μ has positive
Fine 0-energy dimension.

Proof. Consider ∑
n�=0

(
log+ |n|)s−1

|n| |μ̂(n)|2
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for s > 0 and note that this sum is dominated by the square of the L2 norm
of μ ∗ F where F̂ (n) = (

log+ |n|)(s−1)/2
/
√|n|. Such a function F is known

([15]) to belong to the Lorentz space L(2, q) for q > 2 provided

∞∑
n=1

(
n−1/2(log+ n)(s−1)/2

)q
nq/2−1 < ∞

and this is the case if s < 1 − 2/q. Thus the Fine 0-energy dimension is at
least 1 − 2/q.

Corollary 3.2. Suppose |μ̂(n)| decreases monotonically away from zero.
Then μ is Lorentz-improving if and only if Fine0 dime μ > 0.

Proof. Measures with monotonic Fourier transform are known ([7]) to be
Lorentz-improving if and only if |μ̂(n)| ≤ C

(
log+ |n|)s for some s < 0.

More can be said about the behaviour of Lorentz-Zygmund improving meas-
ures. It will be useful to first estimate the Lorentz-Zygmund norms of Dirichlet
kernels and characteristic functions.

Lemma 3.3. Let α > 0.
(i) There are positive constants A, B such that for any interval I ,

A |I | (1 − log |I |)−2α ≤ ‖χI‖2
2,2,−α ≤ B |I | (1 − log |I |)−2α.

(ii) There are positive constants A, B such that if Dn is the n’th Dirichlet
kernel, then

An(log n)−2α ≤ ‖Dn‖2
2,2,−α ≤ Bn(log n)−2α.

Proof. (i) We use the fact that χ∗
I = χ[0,|I |]. Thus

‖χI‖2
2,2,−α =

∫ |I |

0
(1 − log t)−2αdt.

The claim follows from the fact that (1 − log t)−2α is an increasing function
and 1 − log t ∼ 1 − log t/2.

(ii) There are positive constants A,B such that for t ∈ [0, 1/2],

Anχ[0,1/4(n+1/2)] ≤ Dn(t) ≤ B
(
nχ[0,1/(n+1/2)] + 1

t
χ[1/(n+1/2),1/2]

)
.

The estimates on the norms of characteristic functions shows that the
L2,2(logL)−α norms of both nχ[0,1/4(n+1/2)] and nχ[0,1/(n+1/2)] are
O(n1/2(log n)−α).
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Observe that if F = 1
t
χ[1/(n+1/2),1/2], then

F ∗(t) = B
χ[0,1/2−1/(n+1/2)]

t + 1/(n+ 1/2)
.

Thus
‖F‖2

2,2,−α = B

∫ 1/2

0

(1 − log t)−2α

(t + 1/(n+ 1/2))2
dt.

For the integral from 0 to 1/
√
n, majorize (1 − log t)−2α by c(log n)−2α and

integrate to get a bound of cn(log n)−2α (where the constant c may change).
For the integral from 1/

√
n to 1/2, just use the fact that (1 − log t)−2α is

bounded and integrate the remaining term, (t + 1/(n+ 1/2))−2. This gives a
bound of c

√
n which is even smaller. Therefore, ‖F‖2

2,2,−α ≤ cn(log n)−2α

and that completes the argument.

Proposition 3.4. If there is a constant c and α > 0 such that for all n,
‖μ ∗Dn‖2 ≤ c ‖Dn‖2,2,−α , then Fine0 dime μ ≥ 2α.

Proof. We remark that∑
n�=0

(
log+ |n|)s−1

|n| |μ̂(n)|2 =
∞∑
k=0

∑
|n|∈[2k ,2k+1)

(
log+ |n|)s−1

|n| |μ̂(n)|2

≤ c

∞∑
k=0

(
log 2k

)s−1

2k
‖μ ∗D2k+1‖2

2

≤ c

∞∑
k=0

ks−1

2k
‖D2k+1‖2

2,2,−α

Substituting the bound for the norm of the Dirichlet kernel from the lemma
and simplifying shows that

∑
n�=0

(
log+ |n|)s−1

|n| |μ̂(n)|2 ≤
∞∑
k=0

ks−1

2k
2kk−2α,

and this is finite provided s < 2α.

We will use the following elementary inequalities to obtain a partial converse
to this result.

Lemma 3.5. Suppose Fine0 dime μ = s > 1. Then

∞∑
|n|=N

|μ̂(n)|2
|n| ≤ O(logN)1−s and

∑
|n|≤N

|μ̂(n)|2 ≤ O(N(logN)1−s).
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Proof. In fact, the second inequality follows directly from the first. The
first can be obtained by simply noting that

∞∑
n=N

|μ̂(n)|2
|n| ≤

∞∑
n=N

(
log+ |n|)s−1

|n| |μ̂(n)|2 (
log+ |n|)1−s ≤ O(logN)1−s .

Proposition 3.6. Suppose Fine0 dime μ = s > 1. If α = (s − 1)/2, then
there is a constant c such that

‖μ ∗ f ‖2 ≤ c ‖f ‖2,2,−α

whenever f is a Dirichlet kernel or the characteristic function of an interval.

Proof. For Dirichlet kernels the proof follows immediately from the second
inequality above and the estimates we have for the Lorentz-Zygmund norms
of these kernels.

So assume f = χI for I = [a, b]. As |f̂ (n)| = |(einb − eina)/n| when
n �= 0, an application of the mean value theorem shows we need to bound∑

n�=0

|μ̂(n)|2|(einb − eina)/n|2 ≤
∑
n�=0

|μ̂(n)|2|(einb − eina)/n|b − a.

Break up the sum at N = �1/(b − a)�. For the sum for |n| ≤ N we apply the
mean value theorem again and use the bound for

∑
|n|≤N |μ̂(n)|2 which was

given in the previous lemma. To handle the sum for |n| > N , we note that∣∣einb − eina
∣∣ ≤ 2 and then use the lemma to bound

∑∞
|n|=N |μ̂(n)|2 / |n|. Thus

both parts of the sum are dominated by

c |b − a| (1 − log |b − a|)1−s ,

which is comparable to ‖χI‖2
2,2,−α .

These results can be extended to a larger class of functions.

Lemma 3.7. Suppose there is a constant c such that for all intervals I ,

‖μ ∗ χI‖2 ≤ c ‖χI‖2,2,−α .

Put β = α− 1/2. There is a constant c such that for all monotonic, integrable
functions f , ‖μ ∗ f ‖2 ≤ c ‖f ‖2,2,−β .

Proof. Suppose f is a positive, decreasing, step function, say f =∑N
k=1 akχIk , where ak are decreasing and Ik are disjoint, adjacent intervals.
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Put bk = ak − ak+1, bN = aN and Uk = ⋃k
j=1 Ij , so f ∗ = ∑

bkχUk . One can
easily check that

‖f ‖2,1,−α =
∑
k

bk‖χUk‖2,1,−α.

Also, by assumption,

‖μ ∗ f ‖2 ≤
∑

bk‖μ ∗ χUk‖2 ≤ c
∑

bk‖χUk‖2,2,−α.

The inclusions of the Lorentz-Zygmund spaces imply that for any function g,
‖g‖2,2,−α ≤ c ‖g‖2,1,−α and ‖g‖2,1,−α ≤ c ‖g‖2,2,−β . Combining these facts
yields ‖μ ∗ f ‖2 ≤ c ‖f ‖2,2,−β .

By taking limits we can extend this result to any positive, decreasing func-
tion. The general monotonic case can be handled by considering the positive
and negative parts of the function.

Putting the two preceeding results together gives,

Corollary 3.8. Suppose Fine0 dime μ = s > 2. If β = s/2−1, then there
is a constant c such that

‖μ ∗ f ‖2 ≤ c ‖f ‖2,2,−β

for all monotonic, integrable functions f .

We can also obtain a sufficient condition for positive fine 0-energy dimen-
sion.

Corollary 3.9. Let 0 < α < 1 and suppose there is a constant c such that

‖μ ∗ χI‖2 ≤ c ‖χI‖2,2,−α

for all intervals I . Then μ has positive fine 0-energy dimension.

Proof. For ε > 0 set f = |x|−1/2 |log |x| /3|−ε and put β = 1/2 −
α. As f is decreasing near 0 and smooth away from 0, it is easy to check
f ∈ L2,2(logL)−β provided ε < 1 − α. With the notation of Proposition
2.9, Kf ∼ |log |x| /3|1−2ε since f ′(x) ∼ |x|−3/2 |log |x| /3|−ε. Moreover, by
Cor. 2.8,∫∫

|log |x − y| /3|1−2ε dμ(x)dμ(y) ∼
∑
n�=0

(
log+ |n|)−2ε

|n| |μ̂(n)|2 + |μ̂(0)|2

∼ ‖f ∗ μ‖2
2 .
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The previous proposition implies that ‖f ∗ μ‖2 < ∞, consequently, Fine0

dime μ ≥ 2α.

3.3. Orlicz-improving measures

Definition 3.3. Similarly, a measure will be said to be Orlicz-improving if
it maps an Orlicz space L
 ≡ {f :

∫

(|f |) < ∞}, for some 
 satisfying


(x)/x2 → 0, into (the smaller space) L2.

Proposition 3.10. Suppose α > 0. If μ̂2 belongs to the Orlicz space LA,
where

A(t) =
{ ∫ t

0 exp
(−(cx)−1/α

)
dx for t ≤ 1

∞ for t > 1

(for some constant c > 0), then μ ∗ L
 ⊆ L2 for a Young’s function 
(t) ∼
t2(log(2 + t))−α .

Proof. Givenα > 0, there is some k > 1 such thatφ(x) = x(log(k+x))−α
is increasing (to infinity). Hence 
(t) = ∫ t

0 φ(x)dx is a Young’s function
and it is comparable to t2(log(2 + t))−α . Because φ(x)/x is decreasing, the
Hausdorff-Young inequality for Orlicz spaces ([11]) implies

‖f̂ ‖
L
̃

≤ 2 ‖f ‖L

where


̃ =
∫ t

0

dx

φ−1(1/x)
.

Also, if A∗ is the conjugate Young’s function to A, then Holder’s inequality
gives

‖μ ∗ f ‖2
2 = ‖μ̂2f̂ 2‖1 ≤ 2‖μ̂2‖LA‖f̂ 2‖LA∗ = 2‖μ̂2‖LA‖f̂ ‖LB

forB(t)=A∗(t2). If we put a(x)= exp −(cx)−1/α , thenA∗(t)= ∫ t
0 a

−1
+ (x) dx

where a−1
+ (x) = a−1(x) if x ≤ 1 and 1 else. Thus, B(0) = 0 and B(t) ∼ t2 ∼


̃(t) for large t . It is a routine calculation to check that B ′(t) = 2ta−1(t) ≤
C
̃′(t) for small t , hence B(t) ≤ C
̃(t) for some constant C. It follows that

‖μ ∗ f ‖2
2 ≤ 2C‖μ̂2‖LA‖f̂ ‖L
̃ ≤ 4C‖μ̂2‖LA‖f ‖L


and thus if μ̂2 ∈ LA, then μ ∗ L
 ⊆ L2.

Corollary 3.11. Suppose μ is a measure on T. If there is some c > 0 such
that ∑

|μ̂(n)|2 exp
(−(c |μ̂(n)|2)−1/α

)
< ∞
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then μ ∗ L2,2(logL)−α/2 ⊆ L2.

Remark 3.1. A similar condition for Lorentz-improving measures is given
in [7].

Proof. Without loss of generality ‖μ‖ ≤ 1. Then

∑
n

A(|μ̂(n)|2) =
∑
n

∫ |μ̂(n)|2

0
exp

(−(cx)−1/α
)
dx

≤
∑

|μ̂(n)|2 exp
(−(c |μ̂(n)|2)−1/α

)
and this is finite by assumption. The conclusion follows since L2,2(logL)−α/2
coincides with the Orlicz space L
 for 
(t) ∼ t2(log(2 + t))−α .

Corollary 3.12. Suppose μ is a measure supported on a compact subset
of Rn. If ∫ 1

0
exp(−(cx)−1/α)m{z : |μ̂(z)|2 ≥ x} dx < ∞,

then μ ∗ L
 ⊆ L2.

Proof. In this case we can observe that∫
A(|μ̂(z)|2) dz =

∫ ∞

−∞

∫ |μ̂(z)|2

0
exp

(−(cx)−1/α
)
dx dz

=
∫ 1

0
exp

(−(cx)−1/α
)
D(

√
x ) dx

where D(x) is the distribution function of μ̂, D(x) = m{z : |μ̂(z)| ≥ x}.
Example 3.1. An example of such a measure is given in [1]. There it is

shown that if μ = χσ where σ denotes arc length measure on the curve
(t, γ (t)) for γ (t) = exp −(t−p) and χ ∈ C∞

0 (R
2), then the distribution

function of μ̂ satisfies D(x) ≤ Cγ ′(x)γ (x/C)−2 and μ ∗ L
 ⊆ L2 for

 ∼ t2(1 + log+ t)−2/p. With this estimate on the distribution function our
methods also give the conclusion that μ ∗ L
 ⊆ L2 as the hypothesis of the
corollary above is satisfied with α = p/2.

Although these measures are ‘flat’, it follows that they necessarily have
positive Fine 0-energy dimension.
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3.4. Lipschitz-like properties

In [10] it is shown that positive energy dimension is equivalent to the measure
being Lipschitz. There is a partial analogue of that fact for the fine 0-energy
dimension. We will say a measure μ is Log-Lip(α) if

|μ[x, x + h]| ≤ c |logh|−α for all h > 0.

Using classical results, such as can be found in [2] and [4], it can be shown
that a measure μ is Log-Lip(α) for α > 0 if

∞∑
|n|=N

|μ̂(n)|
|n| ≤ c(logN)−α,

and that if μ is Log-Lip(α) for α > 1, then

∞∑
|n|=N

|μ̂(n)|2
|n| ≤ c(logN)1−α.

With these facts one can easily prove that if μ is Log-Lip(α) for some α > 1,
then Fine0 dime μ ≥ α − 1, while if Fine0 dime μ = s > 2, then μ is Log-
Lip(α) for α ≥ (s − 1)/2.
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