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A GLOBAL MORPHISM FROM THE DOUADY
SPACE TO THE CYCLE SPACE

JÓN INGÓLFUR MAGNÚSSON

Abstract

We establish, for any given complex space M , a global morphism from the reduction of its Douady
space to its cycle space. This morphism is an extension of the morphism defined in [1] from the
subspace of the Douady space formed by all pure dimensional subspaces of M to the cycle space
of M . In the case where M is projective this morphism is the classical morphism from the Hilbert
scheme of M to the Chow scheme of M .

Introduction

Let M be a complex space. Then there is a natural map from its Douady space
to its cycle space that maps every compact complex subspace of M to its
fundamental cycle. The object of the present paper is to prove that this map is
a holomorphic map from the reduction of the Douady space of M to the cycle
space of M . See corollary 3.3.

This result is known in the case where M is projective since in that case
there is a global morphism from the Hilbert scheme of M to the Chow scheme
of M (see [6]), and in that case it is easy to see that the Douady space of M

is the complex space associated with the Hilbert scheme of M and from [1] it
is known that the cycle space of M is the complex space associated with the
Chow scheme of M .

For a general complex space M a weaker version of this result can be found
in [1], where it is proved that the restriction of the above map to the reduction
of the subspace of the Douady space of M consisting of all pure dimensional
subspaces (having no embedded components) is holomorphic.

We will obtain this result as a simple consequence of the following more
general theorem. See section 1 for notations and terminology.

Main Theorem. Let M be a complex space and let Z ⊂ S × M be a
flat family of n-dimensional subspaces of M . Let q: Z → M and π : Z → S

denote the canonical projections and for each s in S let Zs denote the fibre
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of π over s and put Zs := q(Zs). Then ([Zs])s∈Sred
is an analytic family of

n-cycles in M .

In section 1 we introduce the basic definitions and preliminary results
needed. Then a special case will be proved in section 2 and finally we prove
the Main Theorem in section 3.

The proof is based on the same ideas as in [1].

1. Basic notions and preliminaries

In this section M will denote a (not necessarily reduced) complex space.

1.1. Basic definitions

Definition 1.1. A flat family of subspaces of M is a pair of complex spaces
(S, Z ) such that Z is a subspace of S ×M and such that the natural projection
π : Z → S is flat. If the projection is also a proper map then the family is
called flat and proper.

Definition 1.2. An n-cycle in M is a locally finite linear combination

Z =
∑
i∈I

niZi

with coefficients in N∗, where the Zi are globally irreducible complex sub-
spaces of M of dimension n such that Zi �= Zj holds for i �= j . The set

|Z| :=
⋃
i∈I

Zi

is called the support of Z. The n-cycle Z is called compact if its support |Z|
is compact.

Definition 1.3. A scale of M is a triplet E = (U, B, j) having the fol-
lowing properties:

(i) U � Cn and B � Cp are open polydisks,

(ii) j is a holomorphic embedding of an open subset ME of M into an open
neighbourhood of U × B in Cn+p.

The scale E is said to be adapted to an n-cycle Z if

j (|Z| ∩ ME) ∩ (U × ∂B) = ∅.

The k-th symmetric group acts on (Cp)k = Cp × · · · × Cp by permutation

β(x1, . . . , xk) := (xβ(1), . . . , xβ(k)).
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The orbit space of this action is called the k-th symmetric power of Cp and will
be denoted by Symk(Cp). It is a normal complex space. (See for instance [5]).

The k-th symmetric group acts in the same way on Bk and the orbit space
Symk(B) can be naturally identified with an open subset of Symk(Cp).

Assume E = (U, B, j) is a scale of a complex space M adapted to an
n-cycle Z in M . Then Z induces a ramified covering of a certain degree of an
open neighborhood of U whose degree will be denoted by degE Z or kE for
short. Hence Z induces a holomorphic map

U → SymkE (B).

For a detailed discussion see [1] or [7].

Definition 1.4. Let S be a reduced complex space and let (Zs)s∈S be a
family of n-cycles in M .

(i) The family (Zs)s∈S is called analytic if for every s0 ∈ S and every
scale E = (U, B, j), adapted to the n-cycle Zs0 , there exists an open
neighbourhood SE of s0 in S such that

(a) E is adapted to Zs for all s ∈ SE ,
(b) degE Zs = degE Zs0 for all s ∈ SE ,
(c) the map gE : SE × U → SymkE (B) is holomorphic, where

gE(s, ·): U → SymkE (B) is the holomorphic map induced by Zs .

(ii) The family (Zs)s∈S is called a proper analytic family of compact n-cycles
if it is analytic, every cycle is compact and for every s0 ∈ S and every
neighborhood W of |Zs0 | there exists an open neighborhood S0 of s0 in
S such that |Zs | ⊂ W for all s ∈ S0.

Remark 1.5. For a family (Zs)s∈S of n-cycles in M the set

G := {(s, z) ∈ S × M | z ∈ |Zs |}
is usually called the graph of the family and it is easy to see that the topological
condition in (ii) is verified if and only if the canonical projection G → S is a
proper mapping.

Let Z be an irreducible component of M . Then Z̊ := Z \ Sing(Mred) is a
connected manifold and we have OZ̊,z = OMred,z for all z ∈ Z̊. For each z ∈ Z̊

the analytic algebra OZ̊,z is regular so there exists a section

can
OM,z O Z̊ ,z

which makes OM,z a coherent OZ̊,z-module. The rank of this module is in-
dependent of the choice of the section as can be seen in the following way.
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Put
O := OMred,z

and let � denote the nilradical of O . Then it is easy to show that the length of
the localized ring O� is equal to the rank of O as a Ored-module.

It follows that the rank is the same for all points z in Z̊ and it is called the
multiplicity of the component Z in M .

Now suppose that the complex space M is of dimension n and let M ′ denote
the union of of the irreducible components of M whose dimension is strictly
less than n. Let M denote the analytic closure of M \ M ′ in M , in other words
M is the smallest complex subspace of M that contains M \ M ′. Then M is a
complex space of pure dimension n.

Let (Mi)i∈I be the family of the irreducible components of M , in other
words the irreducible components of dimension n of M , and put

[M] :=
∑
i∈I

niMi

where ni is the multiplicity of Mi in M .

Definition 1.6. The n-cycle [M] is called the fundamental cycle of M .

1.2. Preliminary results

For every positive integer l let Sl(Cp) be the l-th symmetric product of the
complex vector space Cp and let σl : (Cp)k → Sl(Cp) be the l-th elementary
symmetric polynomial. One can interpret this mapping in the following way.
Think of the elements in Cp as C-linear forms on the dual space (Cp)�, in other
words think of them as homogeneous poynomials of degree 1 in p variables.
Then Sl(Cp) becomes the space of homogeneous polynomials of degree l in
p variables and σl(v1, . . . , vk) is a symmetric polynomial of degree l in p

variables for every l ∈ {1, . . . k} and for every (v1, . . . , vk) ∈ (Cp)k .

Proposition 1.7. The mapping

S : Symk(Cp) →
k⊕

l=1

Sl(Cp)

induced by (σ1, . . . , σk) is a proper holomorphic embedding.

Proof. See [1] or [7].

Theorem 1.8 (Douady). Let M be a complex space. Then there exists a
complex space D = D(M) and a subspace X ⊂ D ×M , called the universal
(flat and proper) family, having the following properties:
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(i) The canonical projection π : X → D is a flat and proper map.

(ii) (Universal property) If (S, Z ) is a flat and proper family of subspaces
of M , then there exists a unique holomorphic map f : S → D such that

Z = S ×D X .

Proof. See [3].

The set of all compact n-cycles in X will be denoted by Cn(M) and the set
of all compact cycles in M will be denoted by C (M). Obviously C (M) is the
disjoint union of the family

(
Cj (M)

)
j≥0.

Theorem 1.9 (Barlet). The set Cn(M) carries a reduced complex structure
such that the following conditions are fulfilled:

(i) The family (X)X∈Cn(M) is a proper analytic family of compact n-cycles.

(ii) (Universal property) For every analytic family (Zs)s∈S of compact n-
cycles the map

S → Cn(M), s �→ Zs

is holomorphic.

Proof. See [1].

The complex spaces D(M) and C (M) are called the Douady space and the
(Barlet) cycle space of M .

2. The case of dimension zero

Theorem 2.1. Let T be a reduced complex space and let B be a relatively
compact open polydisk in Cp. Let Z ⊂ T × B be a flat and proper family of
0-dimensional subspaces of B. Then the associated family of 0-cycles in B is
analytic.

Proof. For each t in T let Yt denote the image of the fiber Zt by the
canonical projection q: Z → B, so that

Zt = {t} × Yt .

Let A t be the structure sheaf of the zero-dimensional subspace Yt of B and
let Xt be the fundamental cycle of Yt . Then Xt is given by the formula

Xt :=
∑
y∈Yt

ny(t){y}

where ny(t) := dimC A t
y .
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The canonical projection π : Z → T is flat and finite so π∗OZ is a locally
free OT -module. Without loss of generality we may assume T connected and
consequently π∗OZ of constant rank which will be denoted by k. For every t

in T we then have
(π∗OZ )t =

⊕
y∈Yt

OZ ,(t,y)

and
A t

y = OZ ,(t,y) ⊗OZ ,(t,y)
C

for every y in Yt . It follows that

dimC A t
y = dimOT ,t

OZ ,(t,y)

and that ∑
y∈Yt

ny(t) = k

for every t in T . Hence Xt ∈ Symk(B) for all t in T and the proof of the
theorem consists of showing that the mapping

T → Symk(B), t �→ Xt

is holomorphic.
As before let q: Z → B denote the canonical projection and write q =

(q1, . . . qp). Each qj is a global holomorphic function on Z so multiplication
by qj defines a OT -linear endomorphism

π∗OZ → π∗OZ

and for each t in T it induces a C-linear endomorphism

Lj : A t → A t .

In terms of the decomposition

A t =
⊕
y∈Yt

A t
y

we obviously have for every j that

Lj

(∑
y∈Yt

vy

)
=

∑
y∈Yt

qj (t, y)vy

so for each y in Yt every non-zero element of A t
y is an eigenvector for Lj

corresponding to the eigenvalue qj (t, y).
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Now let t be a fixed point in T . Since the OT ,t -algebra (π∗OZ )t is a free OT ,t -
module the polynomial algebra (π∗OZ )t [X1, . . . , Xp] is a free OT ,t [X1, . . . ,

Xp]-module. Put
P := q1X1 + · · · + qpXp

and consider it as an element in OZ (Z )[X1, . . . , Xp]. Multiplication by P

defines a OT ,t [X1, . . . , Xp]-linear endomorphism

L : (π∗OZ )t [X1, . . . , Xp] → (π∗OZ )t [X1, . . . , Xp]

whose characteristic polynomial is of the form

λk + α1λ
k−1 + · · · + αk−1λ + αk

where αj is a homogeneous polynomial of degree j in OT ,t [X1, . . . , Xp].
For each t in T the polynomial

(∗) λk + α1(t)λ
k−1 + · · · + αk−1(t)λ + αk(t)

is the characteristic polynomial of the C[X1, . . . , Xp]-linear endomorphism

L (t): A t [X1, . . . , Xp] → A t [X1, . . . , Xp]

defined by multiplication by the polynomial

P(t) := q1(t, ·)X1 + · · · + qp(t, ·)Xp.

From our considerations above concerning the endomorphisms L1, . . . , Lp we
see that the characteristic polynomial (*) has k different roots in C[X1, . . . , Xp],
namely

q1(t, y)X1 + · · · + qp(t, y)Xp,

where y ranges over the k points in Yt (counted with multiplicities). Hence
α1(t), . . . , αk(t) are the symmetric polynomials of these roots and this proves
that the holomorphic map

T →
k⊕

j=1

Sj (Cp), t �→ (α1(t), . . . , αk(t))

is the composition of the map

T → Symk(B), t �→ Xt

and the holomorphic embedding Symk(B) → ⊕k
j=1 Sj (Cp) described in sec-

tion 1. It then follows that the former map is holomorphic and the theorem is
proved.



26 jón ingólfur magnússon

3. The general case

For the proof of our Main Theorem (stated in the introduction) we need the
following results.

Lemma 3.1. Let S be a reduced complex space, let U be an open polydisk
in Cn, let 	 be a closed subset of S × U such that 	 ∩ ({s} × U) is contained
in a nowhere dense analytic subset of {s} × U for all s in S and let

g: S × U \ 	 → C

be a holomorphic function. If the restriction of g to {s} × U \ 	 extends
holomorphically to {s} × U for all s in S, then g extends holomorphically to
S × U .

Proof. The proof is based on Cauchy’s formula. See [1] for details.

Lemma 3.2. Let A and B be local Noetherian rings and ρ: A → B be a
local homomorphism such that B is a flat A-module via ρ. Let � be a proper
ideal of A and let � denote the ideal generated by ρ(�) in B. Then for every
finitely generated B-module M the following conditions are equivalent:

(i) M is a flat B-module.

(ii) M is a flat A-module and M/�M is flat B/�-module.

Proof. See [2].

Proof of the Main Theorem. Since base change respects flatness we
may assume without loss of generality that the space S is reduced. Let s0 be a
point in S and let E = (U, B, j) be a scale of M adapted to Zs0 , i.e.

j−1(U × ∂B) ∩ Zs0 = ∅.

Since j−1(U × ∂B) is compact there exists an open neighbourhood S0 of s0

in S such that
j−1(U × ∂B) ∩ Zs = ∅

for all s in S0. Then

Y := (idS0 ×j)((S0 × j−1(U × B)) ∩ Z )

is a complex n-dimensional subspace of S0 ×U ×B that satisfies the following
conditions:

• The canonical projection f : Y → S0 is flat.

• The canonical projection π : Y → S0 × U is finite.
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For each s in S0 the fiber of f over s will be denoted by Ys and {s} × U will
often be identified with U to simplify the presentation.

Denote by 	 the set of all points in S0 × U where the coherent OS0×U -
module π∗OY is not free. Then 	 is a thin analytic subset of S0 × U . See [4]
for instance.

Let us first show that 	 ∩ ({s} × U) is a thin analytic subset of {s} × U for
all s ∈ S0. For s ∈ S0 and u ∈ U , put M := (π∗OY )(s,u), B := OS0×U,(s,u),
A := OS0,s and let � be the maximal ideal of A. Then by lemma 3.2 we get:

(π∗OYs
)u is a free OU,u-module if and only if (π∗OY )(s,u) is a free OS×U,(s,u)-

module.

It follows that 	 ∩ ({s}×U) is a thin analytic subset of {s}×U for all s ∈ S0.

For s ∈ S0, denote by Y ′
s the union of those irreducible components of Ys

whose dimension is strictly less than n and denote by Y s the analytic closure
of Ys \ Y ′

s in Ys . Let us show that π(Ys \ Y s) ⊂ 	.
If y ∈ Ys \ Y s then OYs ,y is not a free module over OU,π(y) since dimy Ys <

n = dim U . It follows that
(
π∗OYs

)
π(y)

is not a free OU,π(y)-module so by
lemma 3.2 the OS0×U,π(y)-module (π∗OY )π(y) is not free. Hence π(y) ∈ 	.
This shows that π(Ys \ Y s) ⊂ 	 for all s ∈ S0.

Put T := S0 × U \ 	. Then

π−1(T ) ⊂ T × B

is a flat and proper family of 0-dimensional subspaces of B and by theorem 2.1
the corresponding family of fundamental cycles is an analytic family of 0-
cycles in B. Let

g: T → Symk(B)

be the holomorphic map defined by that family, where k is the rank of the
OS0×U -module π∗OY . For every s in S0 the holomorphic map

g(s, ·): {s} × U \ 	 → Symk(B)

extends to the holomorphic map induced by the fundamental cycle [Zs] in
the scale E. From this and lemma 3.1 we deduce that the map g extends to a
holomorphic map

ĝ: S0 × U → Symk(B)

such that ĝ(s, ·): U → Symk(B) is the holomorphic map induced by [Zs] in
the scale E. Hence ([Zs])s∈S is an analytic family of n-cycles and the proof is
completed.
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Corollary 3.3. Let M be a complex space. Then the mapping

D(M)red → C (M), Z → [Z]

is holomorphic.

Proof. It is easy to see that the complex subspaces of M belonging to the
same connected component of D(M) are all of the same dimension. Thus we
only have to show that for any flat and proper family of subspaces of a certain
dimension in M the corresponding analytic family of fundamental cycles is
also proper.

Let (S, Z ) be a flat and proper family of n dimensional subspaces of M .
To show that the corresponding analytic family of the fundamental n-cycles is
proper we may assume, without loss of generality, that the space S is reduced
and (globally) irreducible. Put d := dim S and let π : Z → S be the canonical
projection. Since π is flat the equality

dimz Z = dimz Zπ(z) + d

holds for every z ∈ Z . It follows easily that the graph of the corresponding
analytic family is the union of all irreducible components of dimension n + d

of Z . The restriction of π to this subspace of Z being proper the proof is
completed in virtue of the remark following definition 1.4.
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