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PROJECTIVE MULTI-RESOLUTION ANALYSES
ARISING FROM DIRECT LIMITS OF

HILBERT MODULES
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(Dedicated to the memory of Gert K. Pedersen)

Abstract

The authors have recently shown how direct limits of Hilbert spaces can be used to construct
multi-resolution analyses and wavelets in L2(R). Here they investigate similar constructions in
the context of Hilbert modules over C∗-algebras. For modules over C(Tn), the results shed light
on work of Packer and Rieffel on projective multi-resolution analyses for specific Hilbert C(Tn)-
modules of functions on Rn. There are also new applications to modules over C(C)when C is the
infinite path space of a directed graph.

Introduction

A multi-resolution analysis for L2(Rn) consists of a two-sided sequence of
subspacesVk which are the dilates of a single subspace V0 with an orthonormal
basis consisting of the integer translates of a single scaling function φ. The
Fourier transform of V0 then has an orthonormal basis of the form

{e2πim·xφ(x) : m ∈ Zn},
and is the closure of the set {f (e2πix)φ(x) : f ∈ C(Tn)}; in other words, V0 is
the closure of the free module over C(Tn) generated by φ. Packer and Rieffel
have shown that one can also obtain projective multi-resolution analyses in
which the initial module V0 is the closure of a finitely generated projective
module over C(Tn) [19].

Over the past few years, various authors have realised that Hilbert modules
over C∗-algebras provide a fertile environment for studying multi-resolution
analyses, wavelets and frames [11], [21], [23], [18], [7], and Packer and Rieffel
worked in that context throughout. They considered a specific Hilbert C(Tn)-
module � of functions on Rn, and their projective multi-resolution analyses
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consist of the dilationsVk of one Hilbert submoduleV0 (see [19, Definition 4]).
The spaces Vk are themselves Hilbert modules over C∗-algebras of functions
on different compact quotients of Rn, and are also projective C(T2)-modules,
though this is not emphasised in [19].

In our previous paper [16], we showed that direct limits of Hilbert spaces
provide a useful framework for Mallat’s famous construction of wavelets from
a mirror filter [17]. Here we use direct limits of Hilbert modules over C∗-
algebras to produce projective multi-resolution analyses in Hilbert modules.
We believe that our methods shed considerable light on the constructions in
[19], and yield interesting new information about Packer and Rieffel’s module
�. Our methods require that we work in the category of Hilbert modules over
a fixed C∗-algebra, and the spaces in our multi-resolution analyses are Hilbert
modules in the same category which can be concretely realised using the tensor
powers of a single module. When the initial module V0 and its complementW0

in V1 are free, we can use our multi-resolution analyses to find orthonormal
module bases; when W0 is not free, we obtain module frames in the sense
of Frank and Larson [11]. We can in particular write down specific module
bases for the module�. However, many of our constructions are quite general,
and we also describe new examples based on the path spaces of finite directed
graphs.

A projective multi-resolution analysis for a Hilbert module X over a C∗-
algebra A is, loosely speaking, an increasing sequence of Hilbert submodules
{Vk}which yields a direct-sum decompositionX = V0⊕

( ⊕∞
k=0 Wk

)
; we call

it projective because one hopes that V0 and the Wk are finitely generated and
projective (as they are in [19]). In its full generality, our construction starts
with a fixed Hilbert module Y , a correspondenceM overA, and an isometry T
of Y into the balanced tensor product Y ⊗A M . We build a direct system with
modules Y ⊗A M⊗k and maps Tk := T ⊗ id, and then the direct limit module
Y∞ comes with a canonical projective multi-resolution analysis in which V0

is a copy of Y , Vk is isomorphic to Y ⊗A M⊗k , and Wk is isomorphic to the
complement of the range of Tk in Y ⊗A M⊗(k+1) (see Proposition 2.4).

WhenA has an identity 1A and we take Y to be the free moduleAA,A⊗AM
is naturally isomorphic to M , and the isometries T : A → M have the form
a �→ m · a for vectors m ∈ M such that 〈m,m〉 = 1A; by parallel with the
classical case, we then say that m is a filter. So each filter m yields a direct
limit M∞ with a projective multi-resolution analysis. For this construction to
be useful, we need to be able to identify interesting modules X (such as the
module � from [19]) as having the form M∞. As in [16], we do this using a
dilation operator and a scaling function. Here, the appropriate notion of dilation
operator is a Hilbert module isomorphismD : X→ X⊗A M , and the scaling
function is an element φ of X such that Dφ = φ ⊗m (see Corollary 2.6).
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For modules such as X = �, we usually expect the dilation to be an
operator from X to itself, and to achieve this we need to choose appropriate
correspondences M . We use correspondences ML which were introduced by
Exel in his study of irreversible dynamics [9], [10], and which are associated to
an endomorphism α of a C∗-algebra A and a transfer operator L for α. When
A is C(T) or C(Tn), there are natural transfer operators such that the filters in
ML are the filters arising in wavelet theory and signal processing, and for these
filters we can identify the underlying vector spaces ofML withA andX⊗AML

with X. For the classical case in which A = C(T), α(f )(z) = f (zN), and
m0 is a low-pass filter, the usual dilation operator and scaling function φ ∈
� ⊂ L2(R) satisfy our needs, and our construction converts the tensor-product
based multi-resolution analysis for (ML)∞ into one for � (Example 3.7). Our
tensor product construction, however, allows us to build an orthonormal basis
for the module � (see Example 4.8).

We have organised our work as follows. In Section 1, after describing some
subtleties associated with isometries on Hilbert modules, we define the direct
limit of a system of Hilbert modules. Our direct limits are a little different from
those in [1]: it is important for us that the limit has a universal property for
maps which are not inner-product preserving. In Section 2, we prove our main
result about the existence of projective multi-resolution analyses based on a
direct limit of Hilbert modules (Theorem 2.3), and then specialise to modules
over a unital C∗-algebra and systems in which the initial module is AA.

Next we specialise to the correspondencesML associated to the endomorph-
isms of A = C(C) induced by local homeomorphisms of a compact space C
(Section 3). In Section 4, we describe a general procedure for building frames,
gradually specialising until we obtain a specific module basis for the module
�. In Section 5, we apply the general construction of Section 2 with Y the
non-free projective C(T2)-module considered by Packer and Rieffel in [19,
§4-5]. The final result is the same as theirs, but we believe our approach is
more systematic, and helps to explain why some of the choices they made
are natural. In our final Section 6, we present a general procedure for con-
structing Hilbert modules from inverse limits of compact spaces, and we use
the correspondence associated in [5] to a finite directed graph E to produce
a multi-resolution analysis for a module of functions on the two-sided path
space of the graph. This example provides further evidence that, in practice,
our abstract construction becomes quite concrete.

Conventions

We will be working in the category of right-Hilbert modules over a fixed C∗-
algebra A. If X is such a module, we denote the inner product by (x, y) �→
〈x, y〉 and the module action by (x, a) �→ x · a. When we change the module
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action or inner product, we try to add a subscript to remind ourselves we have
done this; for example, if L is a transfer operator for an endomorphism of A,
we write 〈·, ·〉L for the inner product on X defined by 〈x, y〉L = L(〈x, y〉).
Some of our HilbertA-modules are correspondences overA, which means we
also have a left action (a, x) �→ a · x given by a homomorphism of A into the
C∗-algebra L (X) of adjointable operators on X.

All tensor products of Hilbert modules in this paper are internal tensor
products. Thus when we formX⊗A M , for example, we are assuming thatM
is a correspondence, and that we have completed the algebraic tensor product
X �M in the inner product defined on elementary tensors by

〈x ⊗m, y ⊗ n〉 := 〈〈y, x〉 ·m, n〉.
Since completing includes modding out by vectors of length zero, it balances
the tensor product by making (x ·a)⊗m = x⊗ (a ·m), and we writeX⊗AM
to remind us of this (see [22, page 48], for example). However, since every
tensor product here is balanced, we simplify notation by writing x ⊗ y rather
than x ⊗A y for the image of an elementary tensor in X ⊗A M .

Several of our applications involve a specific module � over C(Tn) con-
sidered by Packer and Rieffel in [19, §1]. It is defined for any n ≥ 1, though
we are primarily interested in n = 1 and n = 2. As a set, � consists of the
continuous functions ξ : Rn → C for which there is a constant K such that∑

k∈Zn |ξ(t − k)|2 ≤ K for all t in Rn, and such that the function defined by
this sum is continuous; with right action and inner product defined by

(0.1) (ξ · f )(t) := ξ(t)f (e2πit )

and

(0.2) 〈ξ, η〉(e2πit ) =
∑
k∈Zn

ξ(t − k)η(t − k),

� is a Hilbert C(Tn)-module [19, Proposition 7]. We freely use key properties
of � established by Packer and Rieffel, and especially Propositions 13 and 14
of [19].

1. Isometries and direct limits of Hilbert modules

For a bounded operator T : H → K between Hilbert spaces, the following
statements are equivalent:

(i) T is isometric: ‖T h‖ = ‖h‖ for every h ∈ H ;

(ii) T preserves the inner product: (T g | T h) = (g | h) for every g, h ∈ H ;

(iii) T satisfies T ∗T = 1.

In view of (i), we call an operator with these properties an isometry.
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WhenX and Y are Hilbert modules over a C∗-algebraA and T : X→ Y is
a boundedA-linear map, we easily obtain (iii)�⇒ (ii)�⇒ (i). The converse (i)
�⇒ (ii) is also true, but is nontrivial: to see this, observe that the range of anA-
module homomorphism T satisfying (i) is automatically a closed submodule
of Y , and [14, Theorem 3.5] implies that it is unitary as a map into T (X),
hence inner-product preserving. On the other hand, it is no longer true that (ii)
�⇒ (iii), unless we know that T is adjointable (see Lemma 1.1 below). Not all
inner-product preserving maps are adjointable: the standard counterexample is
the inclusion of C0((0, 1]) in C([0, 1]), viewed as a map of Hilbert C([0, 1])-
modules (see [14, page 21] or [22, Example 2.19]). We are interested in both
adjointable and non-adjointable inner-product preserving operators, and for
us the key difference is that adjointable inner-product preserving maps have
complemented range (see Lemma 1.1).

A closed submoduleM of a HilbertA-moduleX is complemented if the map
(m, n) �→ m+ n is a Hilbert module isomorphism ofM ⊕M⊥ ontoX. When
this is the case, there is an orthogonal projection P : X → M , and P is an
adjointable operator on X such that P 2 = P = P ∗. The converse observation
is also valid: if P ∈ L (X) satisfies P 2 = P = P ∗ then M := P(X) is
complemented with complementM⊥ = (1−P)(X). The next lemma sums up
the key properties: it is similar to but not quite the same as [14, Proposition 3.6].

Lemma 1.1. Let A be a C∗-algebra, and suppose thatX and Y are Hilbert
A-modules and S : X → Y is inner-product preserving. Then S is an A-
module homomorphism, and S is adjointable if and only if the range of S is a
complemented A-submodule of Y . If this is the case, then S∗S = 1, and SS∗
is the orthogonal projection onto the range of S.

Proof. That S is an A-module homomorphism follows by computing
‖S(x · a)− (Sx) · a‖2 for x ∈ X and a ∈ A. If S is adjointable, then S∗S = 1,
and P := SS∗ is a self-adjoint projection in L (Y ) with P(Y ) = S(X). We
deduce from the observations in the paragraph preceding the lemma that S(X)
is complemented. Conversely, if S(X) is complemented andP is the projection
onto S(X), then the inverse S−1 : S(X)→ X satisfies

〈Sx, y〉 = 〈PSx, y〉 = 〈Sx, Py〉 = 〈Sx, SS−1Py〉 = 〈x, S−1Py〉,

and hence S−1P is an adjoint for S.

In view of the distinction between (ii) and (iii) it is potentially ambiguous to
talk about “isometries of Hilbert bimodules”, and we try to be precise at least
in the formulations of our results. As an example: the following easy lemma
gives one way to construct isometries.
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Lemma 1.2. LetA be aC∗-algebra with identity andX a HilbertA-module.
For every x ∈ X, the map Sx : a → x · a of AA into X is adjointable with
adjoint given by S∗xy = 〈x, y〉. The map Sx is inner-product preserving if and
only if 〈x, x〉 = 1.

We now describe our direct limit and its universal property.

Proposition 1.3. Suppose that A is a C∗-algebra and

X0
T0−−−−−−→ X1

T1−−−−−−→ X2
T2−−−−−−→ · · ·

is a direct system of Hilbert A-modules Xk in which each Tk is inner-product
preserving (but not necessarily adjointable).

(a) There are a Hilbert A-module X∞ and inner-product preserving maps
ιk : Xk → X∞ with the following property: whenever Rk : Xk → Z are
bounded A-module homomorphisms of Xk into another Hilbert A-module Z
such that Rk+1 ◦ Tk = Rk and ‖Rk‖ ≤ M for all k ≥ 0, there is a unique
bounded A-module homomorphism R∞ such that ‖R∞‖ ≤ M and R∞ ◦ ιk =
Rk for k ≥ 0. We illustrate this with the commutative diagram:

X2 . . .
T1

R1

R�

T0

R0 R2

i0

i1

X0 X1

Z

T2
X�

If every Tk is adjointable, so is every ιk , and if every Rk is inner-product
preserving, so is R∞.

(b) The pair (X∞, ιk) is essentially unique: whenever (Y, jk) is a pair with
the property described in (a), the space

⋃∞
k=1 j

k(Xk) is dense in Y , and there
is an isomorphism θ of X∞ onto Y such that θ ◦ ιk = jk for all k.

The pair (X∞, ιk) is called the direct limit of the system (Xk, Tk), and
we usually write X∞ = lim−→Xk or (X∞, ιk) = lim−→(Xk, Tk). We refer to the
property in part (a) as the universal property of the direct limit.

Proof. To construct such a module, we take the quotient Q of the disjoint
union

⊔∞
k=0 Xk by the equivalence relation which identifies each x ∈ Xk with
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Tkx ∈ Xk+1. Since the maps Tk are A-module homomorphisms and preserve
the inner products, the quotient Q is an A-module and carries an A-valued
inner product. We take X∞ to be the completion of Q in the norm defined by
the inner product, which is naturally a Hilbert A-module. We write [x] for the
class of x ∈ Xk in Q or X∞, and define ιkx = [x] for x ∈ Xk .

GivenRk : Xk → Z as in (a), elementary algebra shows that there is a well-
defined A-module homomorphism R∞ ofQ into Z such that R∞([x]) = Rkx
for x ∈ Xk . The norm of R∞([x]) satisfies

‖R∞([x])‖ = ‖Rkx‖ ≤ ‖Rk‖ ‖x‖ = ‖Rk‖ ‖[x]‖ ≤ M‖[x]‖,
so R∞ is bounded on Q and hence extends to a bounded linear operator R∞
with the required properties. Any bounded operator T : X∞ → Z satisfying
T ◦ ιk = Rk agrees with R∞ onQ, and hence by continuity also on X∞ = Q.
If every Rk is inner-product preserving, then R∞ is inner-product preserving
onQ, and the continuity of the inner products implies thatR∞ is inner-product
preserving on X∞.

Now suppose that each Tk is adjointable, and note that ‖T ∗k ‖ = ‖Tk‖ = 1
(by, for example, [8, Proposition 1.10]). To verify the statement about adjoint-
ability of ιk we apply the universal property to

. . .Tk�2Tk�1Tk

Tk
*T*

k�1

Tk
*

id

Xk

Xk Xk�1 Xk�2 X�

to get a boundedA-module homomorphismR∞ : X∞ → Xk . Then for x ∈ Xk
and y = ιk+nz ∈ X∞, we have

〈x,R∞y〉 = 〈x, (R∞ ◦ ιk+n)z〉
= 〈x, T ∗k T ∗k+1 · · · T ∗k+n−1z〉
= 〈Tk+n−1 · · · Tk+1Tkx, z〉
= 〈ιk+n(Tk+n−1 · · · Tk+1Tkx), ι

k+nz〉
= 〈ιkx, y〉.

Since both sides are continuous in y, this extends to all y ∈ X∞, and R∞ is an
adjoint for ιk , as claimed.
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To prove (b), we let Z := ⋃∞
k=1 j

k(Xk) and aim to prove that Y = Z.
Viewing the maps jk as having range inZ, and applying the universal property
to jk : Xk → Z, gives a map j∞ : Y → Z such that j∞ ◦ jk = jk . But
now we can view j∞ as a map of Y into Y such that we have a commutative
diagram

X2 . . .
T1

j�

T0

j 0

j 0

j1

j1

j2

X0 X1

Y

T2
Y

Since the diagram also commutes when we replace j∞ by the identity map
idY from Y to Y , the uniqueness in the universal property forces j∞ = idY
and Y = Z.

The homomorphism θ is obtained by applying the universal property of
(X∞, ιk) to the maps jk : Xk → Y . It is an isomorphism because applying the
universal property of (Y, jk) to ιk : Xk → X∞ gives an inverse.

Remark 1.4. It is tempting to think that we are working exclusively in
the category of Hilbert modules and inner-product preserving maps. However,
in proving that ιk is adjointable, we had to apply the universal property of
Proposition 1.3 to maps which do not preserve the inner product. This means
we cannot directly apply the results of [1], for example.

Examples 1.5. For an example where each Tk is inner-product preserving
but not adjointable, take Tk to be the map of C0((−k, k)) into C0((−(k +
1), k + 1)) which extends f ∈ C0((−k, k)) to be 0 outside (−k, k) (see [22,
Example 2.19]). When we view each C0((−k, k)) as a Hilbert C0(R)-module,
the direct limit is isomorphic to C0(R), with the inclusion maps playing the
role of the ιk . When we view each C0((−k, k)) as a Hilbert C(T)-module with

(f · a)(x) = f (x)a(e2πix) and 〈f, g〉(e2πix) =
k∑

l=−k+1

f (x − l)g(x − l)

for x ∈ [0, 1), then the direct limit is the HilbertC(T)-module� constructed in
[19, §1]. To see this, we recall from [19, Proposition 3] that� is complete, and



projective multi-resolution analyses arising from . . . 325

apply Proposition 1.3 with Rk the inclusion of C0((−k, k)) in �. The induced
map R∞ has dense range by [19, Proposition 4], and hence is surjective.

Example 1.6. For an example in which every Rk is adjointable but R∞
is not, let A = C(N ∪ {∞}), let Xk = span{δj : 0 ≤ j ≤ k} ⊂ A, and
let Tk : Xk ↪→ Xk+1 be the inclusion. Then with X∞ = span{δj : j ≥
0} = c0(N) and ιk the inclusion maps, (X∞, ιk) has the universal property. By
uniqueness, the map R∞ associated to the inclusions Rk : Xk ↪→ A has to be
the inclusion of c0(N) inA. However, R∞(c0(N))⊥ = {0}, so the range of R∞
is not complemented in A, and Lemma 1.1 implies that R∞ is not adjointable.

2. Multi-resolution analyses from direct limits of modules

The direct systems of interest to us involve the tensor powers of a fixed cor-
respondence M over A. We have an important motivating example in mind.

Example 2.1. In this example, the C∗-algebra A is C(T), and the module
M also has underlying space C(T). (We will try to distinguish elements of the
coefficient algebra by calling them a or b.) The module structure depends on
a fixed integer N ≥ 2; the actions are defined by

(f · a)(z) := f (z)a(zN) and (a · f )(z) = a(z)f (z)
for f ∈ M and a ∈ A, and the inner product is given by

〈f, g〉(z) = 1

N

∑
{w∈T : wN=z}

f (w)g(w).

It is easy to check that the operator f �→ a · f is then adjointable with adjoint
g �→ a∗ · g, so the left action gives a C∗-algebra homomorphism of A into the
algebra L (M) of adjointable operators on the right Hilbert A-module M .

To construct our direct systems, we start with a fixed Hilbert A-module Y ,
and an isometry T of Y into the balanced tensor product Y ⊗A M by our fixed
correspondence M . Again we have a specific motivating example.

Example 2.2. Suppose that A is unital with identity 1A, the correspond-
enceM is essential in the sense that 1A · f = f for f ∈ M , and take Y = AA.
Recall that a filter inM is an elementm such that 〈m,m〉 = 1A. Then for every
filterm ∈ M , the isometry Sm : A→ M of Lemma 1.2 fits our model. (To see
this, we just need to observe that the map a ⊗A n �→ a · n is an isomorphism
of A⊗A M ontoM , so we can view Sm as a map into A⊗A M .) Filters in our
motivating Example 2.1 are functions m : T→ C such that

1

N

∑
wN=z
|m(w)|2 = 1 for every z ∈ T,
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or in other words, filters in the sense of wavelet theory (see [4, Equations (1.14)
and (1.25)], for example), and then Sm : A→ M is defined by

(Sma)(z) = m(z)a(zN).

The other maps Tk in our direct system (Xk, Tk) of Hilbert modules will
be formed by tensoring T : Y → T ⊗A M with the identity maps idk on the
tensor powers M⊗k := M ⊗A · · · ⊗A M . There are some subtleties involved
in forming such tensor products, so we briefly discuss this construction.

Suppose that Y and Z are Hilbert modules over a C∗-algebraA, andM is a
correspondence over A. For every T ∈ L (Y, Z), there is a unique adjointable
map T ⊗ id from the internal tensor product Y ⊗AM toZ⊗AM characterised
by

(2.1) (T ⊗ id)(y ⊗m) = (T y)⊗m for y ∈ Y and m ∈ M.
To prove that there is such a map T ⊗id requires non-trivial arguments (see [14,
page 42]), but the characterising property (2.1) makes it easy to manipulate. For
example, one can check by computing on elementary tensors that (S◦T )⊗id =
(S ⊗ id) ◦ (T ⊗ id), and that (T ⊗ idM)⊗ idN = T ⊗ idM⊗AN . Adjointability
plays a crucial role in proving that T ⊗ id extends to the completion, so we
cannot in general form T ⊗ id for non-adjointable operators T , even if they
are norm-bounded. However, if T : Y → Z is inner-product preserving, then
one can verify directly that there is a well-defined linear operator T ⊗ id on the
algebraic tensor product Y �M which preserves the internal tensor-product
norm, and hence induces an inner-product preserving map T ⊗ id on Y ⊗A M
satisfying (2.1).

Our construction involves a Hilbert-module isomorphismU of Y onto Y⊗A
M , and the isomorphisms Uk defined inductively by U 0 = U and

(2.2) Uk+1 = (U ⊗ idk) ◦ Uk : Y → Y ⊗A M⊗(k+1).

We can verify by calculations on elementary tensors that

(2.3) Uk+1 = (Uk ⊗ id1) ◦ U.
We can now formulate the main result of the section.

Theorem 2.3. Suppose that M is a correspondence over a C∗-algebra A,
Y is a Hilbert A-module, and T : Y → Y ⊗A M is inner-product preserving
and adjointable. Define Tk := T ⊗ idk : Y ⊗A M⊗k → Y ⊗A M⊗(k+1).

(a) Let (Y∞, ιk) = lim−→(Y ⊗A M
⊗k, Tk). Then there is a Hilbert-module

isomorphism R of Y∞ onto Y∞ ⊗A M such that R ◦ ιk+1 = ιk ⊗ id for k ≥ 0.
The submodules Yk := ιk(Y ⊗A M⊗k) of Y∞ satisfy:
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(i) Y0 is a complemented A-submodule of Y∞;

(ii) Yk = R−k(Y0 ⊗A M⊗k) for k ≥ 0;

(iii) Yk is a complemented submodule of Yk+1 for k ≥ 0;

(iv)
⋃∞
k=0 Yk is dense in Y∞.

(b) Suppose X is a Hilbert A-module, D : X → X ⊗A M is a Hilbert-
module isomorphism and Q0 : Y → X is an inner-product preserving map
such thatD ◦Q0 = (Q0 ⊗ id) ◦ T . Then there is an inner-product preserving
map Q : Y∞ → X such that Q ◦ ι0 = Q0 and D ◦Q = (Q ⊗ id) ◦ R. The
submodules Vk := Q(Yk) of Q(Y∞) satisfy

(2.4) Vk = D−k ◦ (Q0 ⊗ idk)(Y ⊗A M⊗k)
and have properties mirroring those of (i)–(iv).

Since the modules in our analysis are often finitely generated and project-
ive, we call a sequence of submodules {Yk} satisfying (i)–(iv) a projective
multi-resolution analysis for Y∞. Part (b) then says that the sequence {Vk} is
a projective multi-resolution analysis for the (necessarily closed) submodule
Q(Y∞) of X. We will explain in Example 3.7 how these projective resolution
analyses give the ones considered by Packer and Rieffel in [19].

Proof. (a) Since T is inner-product preserving and adjointable, so is each
Tk , and we can form the direct limit (Y∞, ιk); it follows from Proposition 1.3
that each ιk is inner-product preserving and adjointable. For k ≥ 0, Rk+1 :=
ιk⊗ id is an inner-product preserving map from Y ⊗AM⊗(k+1) into Y∞⊗AM .
Since

Rk+1 ◦ Tk = (ιk ⊗ id) ◦ (T ⊗ idk) = (ιk ⊗ id) ◦ (Tk−1 ⊗ id)

= (ιk ◦ Tk−1)⊗ id = ιk−1 ⊗ id = Rk,
we have a commutative diagram

. . .
T1

R1

R

T

R2

i0

i1

Y

Y� �A M

Y �A M �2Y �A M
T2

Y�
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in which every solid arrow is inner-product preserving. Thus the universal
property of (Y∞, ιk) gives an inner-product preserving mapR := R∞ : Y∞ →
Y∞ ⊗A M satisfying R ◦ ιk = ιk−1 ⊗ id. Since elements of the form ιk−1b as
k and b vary are dense in Y∞, R is surjective, and hence an isomorphism of
Hilbert modules.

To prove (i), note that Y0 is the range of the inner-product preserving and
adjointable map ι0, and hence by Lemma 1.1 is complemented in Y∞. To prove
(ii), we note that it is trivially true for k = 0; for k ≥ 1 we use (2.3) to compute

RkYk = Rk ◦ ιk(Y ⊗A M⊗k)
= (Rk−1 ⊗ id1) ◦ (R ◦ ιk)(Y ⊗A M⊗k)
= (Rk−1 ⊗ id1) ◦ (ιk−1 ⊗ id)(Y ⊗A M⊗k)
= Rk−1(Yk−1)⊗A M,

and (ii) then follows from an induction argument. For (iii), we observe that
Tk is adjointable, and hence its range is a complemented submodule of Y ⊗A
M⊗(k+1). Since ιk+1 ◦ Tk = ιk , ιk+1 maps the range of Tk onto Yk = range ιk ,
and hence Yk is complemented in Yk+1, as claimed. Part (iv) follows from
Proposition 1.3(b).

(b) For every k ≥ 1, the map Qk := D−k ◦ (Q0 ⊗ idk) : Y ⊗A M⊗k → X

is inner-product preserving because D and Q0 are. From (2.2) and the given
property of Q0, we deduce that

Qk+1 ◦ Tk = D−(k+1) ◦ (Q0 ⊗ idk+1) ◦ (T ⊗ idk)

= D−k ◦ (D ⊗ idk)
−1 ◦ ((Q0 ⊗ id)⊗ idk) ◦ (T ⊗ idk)

= D−k ◦ ((D−1 ◦ (Q0 ⊗ id) ◦ T )⊗ idk)

= D−k ◦ (Q0 ⊗ idk)

= Qk.

Hence the universal property of (Y∞, ιk) gives an inner-product preserving
mapQ of Y∞ into X such thatQ ◦ ιk = Qk = D−k ◦ (Q0 ⊗ idk). Then, using
(2.3) again, we have

(D ◦Q) ◦ ιk+1 = D ◦Qk+1 = D ◦D−(k+1) ◦ (Q0 ⊗ idk+1)(2.5)

= D ◦D−1 ◦ (D−k ⊗ id) ◦ ((Q0 ⊗ idk)⊗ id)

= (D−k ◦ (Q0 ⊗ idk))⊗ id;
on the other hand, the relation R ◦ ιk+1 = ιk ⊗ id gives

(2.6) (Q⊗ id) ◦ R ◦ ιk+1 = (Q ◦ ιk)⊗ id = (D−k ◦ (Q0 ⊗ idk))⊗ id,
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and (2.5) and (2.6) imply thatD ◦Q = (Q⊗ id) ◦R. The properties of Vk :=
Q(Yk) follow from those of Yk because Q is inner-product preserving. An
induction argument using the formula (2.2) shows thatDk◦Q = (Q⊗idk)◦Rk ,
and this implies (2.4).

Proposition 2.4. With the notation of Theorem 2.3, let Zk denote the
complement Yk+1 � Yk of Yk in Yk+1. Then there is a natural Hilbert-module
direct-sum decomposition

(2.7) Y∞ = Y0 ⊕
( ∞⊕
k=0

Zk

)
,

and the isomorphism Rk : Y∞ → Y∞ ⊗A M⊗k induced by R restricts to an
isomorphism of Zk onto Z0 ⊗A M⊗k .

For the last part we need a simple lemma:

Lemma 2.5. Suppose V1 is a complemented submodule of a Hilbert A-
moduleV2 andE is a correspondence overA. ThenV1⊗AE is a complemented
submodule of V2 ⊗A E with

(V1 ⊗A E)⊥ = V ⊥1 ⊗A E.

Proof. Since the inclusions of V1 and V ⊥1 in V2 induce isometric embed-
dings of V1 ⊗A E and V ⊥1 ⊗A E into V2 ⊗A E, the assertion at least makes
sense. Let P ∈ L (V2) be the orthogonal projection of V2 on V1. Then since
T �→ T ⊗ id is a homomorphism of L (V2) into L (V2 ⊗A E), P ⊗ idE is a
projection. It is easy to see that the range of P ⊗ idE contains V1 ⊗A E. On
the other hand, if x ∈ (P ⊗ idE)(V2 ⊗A E), and x ∼ ∑

i vi ⊗ yi ∈ V2 � E,
then

x = (P ⊗ idE)x ∼
∑

(P vi)⊗ yi ∈ V1 ⊗A E,
and x belongs to the closed submodule V1 ⊗A E. Thus V1 ⊗A E = (P ⊗
idE)(V2 ⊗A E). Then the projection on (V1 ⊗A E)⊥ is idV2⊗AE −P ⊗ idE =
(idV2 −P)⊗ idE , which by a similar argument has range ((id−P)V2)⊗AE =
V ⊥1 ⊗A E.

Proof of Proposition 2.4. The Hilbert-module direct sum is defined in
[14, Page 6]. Thus the right hand side of (2.7) is{

(y, {zk}k≥0) : y ∈ Y0, zk ∈ Zk, and
∑〈zk, zk〉 converges in A

}
,

with inner product given by〈
(y, {zk}), (y ′, {z′k})

〉 = 〈y, y ′〉 +∑
k

〈zk, z′k〉.
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For each (y, {zk}k≥0) in Y0⊕
(⊕∞

k=0 Zk
)
, the series

∑〈zk, zk〉 converges inA,
and hence

∑
k zk converges in Y∞. Thus � : (y, {zk}k≥0) �→ y +∑

k zk is a
well-defined map from Y0 ⊕

(⊕∞
k=0 Zk

)
into Y∞. This map is inner-product

preserving, and its range contains
⋃
k Yk , and hence is dense in Y∞; since the

range of an inner-product preserving map is closed, � is surjective. Thus� is
an isomorphism of Hilbert modules, and this is precisely what (2.7) means.

We know from Theorem 2.3 thatR is an isomorphism of Yk+1 onto Yk⊗AM ,
and that it carries the submodule Yk onto Yk−1 ⊗A M . Thus it takes Zk :=
Yk+1�Yk onto the complement ofYk−1⊗AM inYk⊗AM , which by Lemma 2.5
is Zk−1 ⊗A M . An induction argument now shows that Rk = (Rk−1 ⊗ id) ◦R
carries Zk onto Z0 ⊗A M⊗k , as claimed.

We aim to apply Theorem 2.3 with Y the free module AA over a unital
C∗-algebra and T the isometry Sm associated to a filterm in a correspondence
M over A (see Example 2.2). WhenM is essential as a left A-module, the left
actions of A give natural isomorphisms of A ⊗A M⊗k onto M⊗k , and under
these isomorphisms the maps T ⊗ idk fromA⊗AM⊗k into (A⊗AM)⊗AM⊗k
become the maps Tk defined by

(2.8) Tkn = Tk(1⊗ n) = (m · 1)⊗ n = m⊗ n for n ∈ M⊗k.
Let (M∞, ιk) := lim−→(M

⊗k, Tk). Then Theorem 2.3(a) says that there is an

isomorphism R : M∞ → M∞ ⊗A M characterised by R ◦ ιk+1 = ιk ⊗ id
for k ≥ 0, and that the submodules Yk := ιk(M⊗k) form a projective multi-
resolution analysis for M∞ with Y0

∼= AA.
To find concrete implementations of the pair (M∞, R) using part (b) of

Theorem 2.3, we need a Hilbert A-module X, an isomorphism D : X →
X⊗AM , and an inner-product preserving mapQ0 : A→ X such thatD◦Q0 =
(Q0 ⊗ id) ◦ Sm. The mapQ0 is determined by its value φ := Q01; notice that
φ must satisfy 〈φ, φ〉 = 1 and, remembering thatm ∈ M identifies with 1⊗m
in A⊗A M ,

Dφ = (D ◦Q0)1 = (Q0 ⊗ id)(Sm1)(2.9)

= (Q0 ⊗ id)(1⊗m) = (Q01)⊗m
= φ ⊗m.

Thus the mapQ0 is determined by a single vector φ ∈ X satisfying 〈φ, φ〉 = 1
and Dφ = φ ⊗ m. Following the classical case, we say that (X,D, φ) is a
scaling function for the filter m.

Corollary 2.6. SupposeM is a correspondence over a unitalC∗-algebra
A such thatM is essential as a leftA-module,m is a filter inM , and (X,D, φ)
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is a scaling function for m. Then there is a Hilbert module isomorphism R

of M∞ onto M∞ ⊗A M such that R ◦ ιk+1 = ιk ⊗ id, and there is an inner-
product preserving mapQ ofM∞ intoX such that (Q◦ ι0)1 = φ andD ◦Q =
(Q⊗ id) ◦ R. The family

{Vk := Q(ιk(M⊗k)) : k ≥ 0}
is a projective multi-resolution analysis for the submodule Q(M∞) of X, and
V0 is the free rank-one A-module generated by φ.

Proof. The formula Q0a = φ · a defines a module map A → X. Calcu-
lations like the ones giving (2.9) show that D ◦ Q0 = (Q0 ⊗ id) ◦ Sm, and
Theorem 2.3(b) gives an inner-product preserving map Q : M∞ → X with
the required properties.

3. Multi-resolution analyses from transfer operators

Our first applications involve correspondences built from transfer operators
for endomorphisms ofC∗-algebras. Suppose α is an endomorphism of a unital
C∗-algebra A. A positive linear map L : A→ A is a transfer operator for α
if L(aα(b)) = L(a)b for a, b ∈ A.

In [9], Exel constructs a crossed product A×α,L N using a correspondence
ML over A. To construct ML, he endows the vector space AL := A with the
right action of A given by m · a := mα(a) and the pre-inner product

(3.1) 〈m1,m2〉 = L(m∗1m2) for m1,m2 ∈ AL,
and completes to get a right Hilbert A-module ML. The completing process
includes modding out the vectors of length zero, and since ‖m · 1 − m‖2 is
always zero, we havem ·1 = m for everym ∈ ML, so thatML is essential as a
right A-module. The action of A by left multiplication on AL extends to a left
action ofA onML, which is implemented by a homomorphismA→ L (ML).
Exel’s module ML is also essential as a left A-module, so the right and left
module actions induce isomorphisms ML ⊗A A ∼= ML and A⊗A ML

∼= ML.
We now present some simple lemmas which will help us work with the

modules ML. The first concerns the powers Lk , which are easily seen to be
transfer operators for the powers αk of the endomorphism α. This lemma is
essentially the same as Proposition 2.1 of [15], but the conventions there are a
little different.

Lemma 3.1. For each k, l ∈ N, the map a ⊗ b �→ aαk(b) of A�A into A
induces an isomorphism of the correspondence MLk ⊗A MLl onto MLk+l .
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Proof. It is easy to check that the map is a bimodule homomorphism which
preserves the inner products, and hence extends to an injection of correspond-
ences. To see that it has dense range and is therefore surjective, note that for
a ∈ ALk+l we have a = a · 1 = aαk+l(1) inMLk+l , and hence a is the image of
a ⊗ αl(1) ∈ MLk ⊗A MLl .

Lemma 3.2. Suppose that L is a transfer operator for α ∈ EndA, and X
is a Hilbert A-module.

(a) The underlying vector space of X becomes a pre-inner-product A-
module with x ·L a := x · α(a) and 〈x, y〉L := L(〈x, y〉). The completion
is a Hilbert A-module, which we denote by XL.

(b) The map 
 of X � AL into X defined in terms of the right action of A
on X by 
(x ⊗ a) = x · a induces an isomorphism of X ⊗A ML onto XL.

(c) Suppose that T : Y → Z is an adjointable Hilbert A-module homo-
morphism. Then TL := T ⊗ id : YL = Y ⊗A ML→ Z ⊗A ML = ZL is given
by the formula TLy = Ty.

Proof. The claim of (a) follows from the defining properties of a transfer
operator. For (b), just verify that 
 is inner-product preserving and has dense
range. To prove (c), note that every y ∈ YL has the form 
(y ⊗ 1), and so
TLy = 
(T ⊗ id(y ⊗ 1)) = Ty.

Suppose that C is a compact space, σ : C → C is a surjective local
homeomorphism, and α : f �→ f ◦ σ is the associated endomorphism of
C(C). As in [10], the formula

(3.2) L(f )(c) = 1

|σ−1(c)|
∑
σ(d)=c

f (d)

defines a transfer operator for (C(C), α). The choice of |σ−1(c)|−1 as norm-
alising factor is not important: for any continuous function w : C → (0,∞),

Lw(f )(c) = w(c)
∑
σ(d)=c

f (d)

is also a transfer operator for α. (The function c �→ |σ−1(c)| is locally constant
and hence continuous.) We usually use (3.2) because for this choice, filters in
ML include the filters of wavelet theory (see Example 3.7 below). However, we
need the extra generality in the next lemma because we want to apply it to the
powers Lk of L, which are transfer operators for αk : f �→ f ◦ σ k , but which
need not have the obvious normalising factors |σ−k(c)|−1 (see Lemma 3.4).
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Lemma 3.3. For every (C(C), α, Lw) as above, and every Hilbert C(C)-
module X, the function ‖ · ‖w on X defined by

(3.3) ‖x‖2
w := ‖Lw(〈x, x〉)‖ = sup

c∈C

(
w(c)

∑
σ(d)=c

〈x, x〉(d)
)

is a norm which is equivalent to the given norm on X.

Proof. We first notice that ‖·‖w is the seminorm associated to the pre-inner
product 〈·, ·〉Lw used to defineXLw , and is in particular a seminorm. Choose δ,
M and K such that 0 < δ ≤ w(c) ≤ M and |σ−1(c)| ≤ K for every c ∈ C.
Then we trivially have ‖x‖2

w ≤ MK‖x‖2. On the other hand, since 〈x, x〉 is a
continuous non-negative function on a compact space, there exists c ∈ C such
that 〈x, x〉(c) = ‖〈x, x〉‖∞ = ‖x‖2,

and then

‖x‖2
w ≥ Lw(〈x, x〉)(σ (c)) = w(σ(c))

∑
σ(d)=σ(c)

〈x, x〉(d)
≥ δ〈x, x〉(c) = δ‖x‖2.

From this estimate we deduce, first, that ‖x‖w = 0 implies x = 0, so that ‖·‖w
is a norm, and, second, that ‖ · ‖w is equivalent to the given norm.

We now compute an explicit formula for Lk .

Lemma 3.4. The kth power of the transfer operator L defined in (3.2) is
given by

Lk(f )(c) =
∑

σ k(d)=c

( k∏
j=1

|σ−1(σ j (d))|−1

)
f (d).

Proof. By induction on k. For k = 1, the normalising factor is the one in
(3.2) because σ(d) = c. For the inductive step, we write

Lk+1(f )(c) = 1

|σ−1(c)|
∑
σ(d)=c

Lk(f )(d) =
∑
σ(d)=c

|σ−1(σ (d))|−1Lk(f )(d)

and expand Lk(f )(d).

Lemma 3.3 implies that, for the systems of the form (C(C), α, L), every
Hilbert C(C)-module X is already complete in the norm ‖ · ‖L used to define
XL, and XL has X as its underlying vector space. Thus the isomorphism
D : X → X ⊗C(C) ML which we use in Theorem 2.3 to identify the direct
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limit Y∞ is in particular a linear isomorphism of X onto X. (Though it is only
a module homomorphism when we use the correct module action of C(C)
on XL: we have D(x · f ) = (Dx) ·L f = (Dx) · α(f ).) This leads to more
familiar-looking reformulations of Theorem 2.3 and Corollary 2.6.

Proposition 3.5. Consider a system of the form (C(C), α, L), and Exel’s
correspondence ML. Suppose Y is a Hilbert C(C)-module and T : Y →
YL is adjointable and inner-product preserving. Then T is also adjointable
and inner-product preserving as a map of YLk into YLk+1 . Let (Y∞, ιk) =
lim−→(YLk , T ), and denote by R : Y∞ → (Y∞)L the map obtained from the
isomorphism of Theorem 2.3(a) by identifying Y∞ ⊗C(C) ML with (Y∞)L.

Now suppose thatX is a HilbertC(C)-module, thatD : X→ X is a linear
isomorphism of X onto X satisfying

(3.4) D(x · f ) = (Dx) · α(f ) and L(〈Dx,Dy〉) = 〈x, y〉,

and that Q0 : Y → X is inner-product preserving and satisfies D ◦ Q0 =
Q0 ◦ T . Then there is an inner-product preserving map Q of Y∞ into X such
thatQ ◦ ι0 = Q0 andD ◦Q = Q ◦R, and the submodules Vk := Q(ιk(YLk ))
of Q(Y∞) satisfy:

(i) V0 is a complemented C(C)-submodule of Q(Y∞);

(ii) Vk = D−k(V0) for k ≥ 0;

(iii) Vk is a complemented submodule of Vk+1 for k ≥ 0;

(iv)
⋃∞
k=0 Vk is dense in Q(Y∞).

Proof. It is easy to check by writing Lk+1 as Lk ◦L that T : YLk → YLk+1

has the required properties. The equations (3.4) say thatD is a Hilbert-module
isomorphism ofX ontoXL. The isomorphism ofX⊗C(C) ML ontoXL carries
x ⊗ f to x · f , and hence converts Q0 ⊗ id into Q0 : YL → XL; thus the
equation D ◦Q0 = Q0 ◦ T says that D ◦Q0 = (Q0 ⊗ id) ◦ T . Now part (b)
of Theorem 2.3 gives an inner-product preserving map Q : Y∞ → X which
satisfiesQ◦ ι0 = Q0 andD◦Q = (Q⊗ id)◦R; when we identifyX⊗C(C)ML

with XL, the second equation becomes D ◦Q = Q ◦ R.
Properties (i), (iii) and (iv) follow immediately from the corresponding

properties of Yk := ιk(YLk ) in Theorem 2.3. For (ii), note that the equationsR◦
ιk+1 = ιk⊗ id say thatR maps Yk+1 onto Yk⊗C(C)ML; since the identification
of Y∞ ⊗C(C) ML with (Y∞)L takes y ⊗ f into y · f (for the original action
of C(C) on Y∞), it takes Yk ⊗C(C) ML onto Yk . Thus, viewed as a map from
Y∞ to (Y∞)L, R carries Yk+1 onto Yk . The relation D ◦Q = Q ◦ R therefore
implies that D(Vk+1) = Vk , so that, at least as vector spaces, Vk = D−k(V0).
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Corollary 3.6. Consider a system of the form (C(C), α, L), let m be a
filter in Exel’s correspondenceML, and letM∞ = lim−→(M

⊗k
L , Tk) be the direct

limit of the system (M⊗kL , Tk) defined by (2.8). Suppose that X is a Hilbert
C(C)-module, φ ∈ X satisfies 〈φ, φ〉 = 1, and D : X → X is a linear
isomorphism of X onto X such that
(3.5)
D(x · f ) = (Dx) · α(f ), L(〈Dx,Dy〉) = 〈x, y〉, and Dφ = φ ·m.

Then (X,D, φ) is a scaling function for m, and there is a Hilbert-module
isomorphism Q of M∞ into X such that (Q ◦ ι0)1 = φ and D ◦Q = Q ◦ R.
Moreover, if V0 denotes the submodule Q(ι0(C(C))), then

{Vk = Q(ιk(M⊗kL )) = D−k(V0) : k ≥ 0}
is a projective multi-resolution analysis for Q(M∞).

Proof. As in Corollary 2.6, we defineQ0 : C(C)→ X byQ0(f ) = φ ·f ,
and Q0 is inner-product preserving because 〈φ, φ〉 = 1C(C). The isometry
T = Sm : C(C) → C(C) = C(C)L is given by T (f ) = mα(f ). Thus for
f ∈ C(C) we have

D ◦Q0(f ) = D(φ · f ) = (Dφ) · α(f ) = (φ ·m) · α(f )
= φ · (mα(f )) = φ · (Tf ) = Q0 ◦ T (f ),

and the result follows from Proposition 3.5.

Example 3.7. Let N ≥ 2 be an integer, take A = C(T) and α(f )(z) =
f (zN). Then

(3.6) L(f )(z) := 1

N

∑
wN=z

f (w)

defines a transfer operator for α. This fits the above structure with C = T and
σ(z) = zN , and the module ML is the one discussed in Example 2.1. A filter
m ∈ ML is a function m ∈ C(T) satisfying

(3.7) 1 = 〈m,m〉(z) = 1

N

∑
wN=z
|m(w)|2 for all z ∈ T,

so that if also m(1) = N1/2 then m is a low-pass filter in the sense of wavelet
theory. Providedm is low-pass and sufficiently smooth near 1 (see, for example,
[12, Lemma 5.37] or [4, Theorem 5.1.3]), the infinite product

φ(t) :=
∞∏
k=1

(
N−1/2m(exp(2πiN−kt))

)
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converges uniformly on compact subsets to a function φ satisfying the scaling
equation

(3.8) N1/2φ(Nt) = m(e2πit )φ(t) for t ∈ R,

and

(3.9)
∑
k∈Z

|φ(t − k)|2 = 1 for all t ∈ R.

The properties of the scaling function φ are naturally expressed in terms
of the Hilbert C(T)-module � of [19, §1] (see the discussion around our
Equations (0.1) and (0.2)). Because it is locally the uniform limit of continuous
functions, the scaling function φ is continuous, and (3.9) implies that φ is an
element of � satisfying 〈φ, φ〉 = 1C(T). With DN : � → � defined by
(DNξ)(t) = N1/2ξ(Nt), the scaling equation (3.8) becomes

(DNφ)(t) = m(e2πit )φ(t) = (φ ·m)(t) for all t ∈ R.

An easy calculation shows that DN(ξ · f ) = (DNξ) · α(f ), and

L(〈DNξ,DNη〉)(e2πit )

= 1

N

N−1∑
j=0

〈DNξ,DNη〉(e2πi(t−j)/N )

= 1

N

N−1∑
j=0

∑
k∈Z

(DNξ)((t − j)/N − k)(DNη)((t − j)/N − k)

=
N−1∑
j=0

∑
k∈Z

ξ(t − (j + kN))η(t − (j + kN))

=
∑
�∈Z

ξ(t − �)η(t − �)

= 〈ξ, η〉(e2πit ),

so that DN is an isomorphism of � onto �L.
Thus (�,DN, φ) satisfies the hypotheses of Corollary 3.6, and there is a

Hilbert-module isomorphism Q of M∞ onto a closed C(T)-submodule of �.
The subspaces Vk := Q(ιk(M⊗kL )) satisfy:

(1) V0 is the free rank-one A-module generated by φ = (Q ◦ ι0)1;

(2) Vk = D−kN (V0) for k ≥ 0;

(3) Vk ⊂ Vk+1 for k ≥ 0.
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These directly imply properties (1), (2) and (3) of [19, Definition 4]. Now
define Vk by (2) for k < 0. Then, since V0 is projective, Proposition 13 of [19]
implies that

⋂0
k=−∞ Vk = {0}, which is property (5) of [19, Definition 4]. Since

the filter m is low-pass, so that m(1) = N1/2, the scaling function φ satisfies
φ(0) = 1, and hence it follows from Proposition 14 of [19] that

⋃∞
k=0 Vk is

dense in �, which is property (4) of [19, Definition 4]. Thus the subspaces
{Vk : k ∈ Z} form a projective multi-resolution analysis for � in the sense of
[19, Definition 4].

4. Frames and orthonormal bases

Suppose that X is a Hilbert module over a unital C∗-algebra A. We say that
a countable subset {xj : j ∈ J } in X is an orthonormal basis1 for X if {xj }
generates X and 〈xj , xk〉 = δj,k1A. By modifying the standard Hilbert-space
argument we obtain the reconstruction formula

x =
∑
j

xj · 〈xj , x〉 for every x ∈ X,

where we are asserting that the partial sums for the series converge in norm
to x. Frames are, loosely speaking, sets {xj } which are not orthonormal but
still satisfy the reconstruction formula. Frames are particularly interesting in
the context of Hilbert modules, which need not have an orthonormal basis, but
nearly always have frames [11], [21].

A countable subset {xj : j ∈ J } in a Hilbert module X over a unital C∗-
algebra A is a Parseval frame for X if it satisfies the frame identity

(4.1) 〈x, x〉 =
∑
j∈J
〈x, xj 〉〈xj , x〉 for every x ∈ X,

where we require that the sum on the right-hand side converges in norm in A.
(These are called “standard modules frames” in [19] and “standard normalised
tight frames” in [11].) Equivalently, {xj } is a Parseval frame if and only if the
reconstruction formula

x =
∑
j∈J

xj · 〈xj , x〉 holds for every x ∈ X,

where again one is asserting that the sum converges in norm inX (this is proved
in [11] and generalised in [21, Theorem 3.4]). Although one is in principle more

1 In our classic Example 3.7, an orthonormal basis will consist of finitely many functions
xj : T → C, and an engineer would call such a basis “a filter bank with perfect reconstruction”.
That filter banks fit naturally into the setting of Exel’s correspondences has also been noticed by
other researchers, including Ionescu and Muhly [13].
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interested in the reconstruction formula, the frame identity is often easier to
manipulate than the reconstruction formula because it involves series whose
terms are positive elements of the C∗-algebra A.

Our definition of Parseval frame is at first sight a little incomplete, since
we have not specified any order on the index set J . So we pause to prove the
following reassuring lemma, which tells us exactly what we need to check to
see that a given countable set is a frame. We denote by F(J ) the set of finite
subsets of J , directed by inclusion.

Lemma 4.1. Suppose that X is a Hilbert module over a C∗-algebra, {xj :
j ∈ J } is a countable subset ofX, and x ∈ X. For each finite subsetF ∈ F(J ),
we write

sF :=
∑
j∈F
〈x, xj 〉〈xj , x〉.

Suppose that

(a) sF ≤ 〈x, x〉 for every F ∈ F(J ), and

(b) for every ε > 0 there exists F ∈ F(J ) such that ‖〈x, x〉 − sF‖ < ε.

Then ‖〈x, x〉 − sF‖ → 0 as F runs through (F (J ),≤).
Provided we order J so that the sets Fk := {j ∈ J : j ≤ k} are cofinal in

F(J ), Lemma 4.1 implies that the partial sums sk := sFk converge to 〈x, x〉 in
norm. This applies in particular to the order given by any enumeration of J ,
and also to the product order when J = K × L is a product of two ordered
sets with the same property. Notice that convergence with respect to any such
order implies (a) and (b), and hence convergence in one such order implies
convergence in all others. (This equivalence for enumerations was noted in
[11].)

Proof of Lemma 4.1. Fix ε > 0, and choose F as in (b). Then for any
G ∈ F(J ) such that F ⊂ G, we can apply (a) to sG, and

sF ≤ sF +
∑
j∈G\F

〈x, xj 〉〈xj , x〉 = sG ≤ 〈x, x〉;

subtracting gives
0 ≤ 〈x, x〉 − sG ≤ 〈x, x〉 − sF .

But 0 ≤ b ≤ c implies ‖b‖ ≤ ‖c‖, and hence

F ⊂ G �⇒ ‖〈x, x〉 − sG‖ ≤ ‖〈x, x〉 − sF‖ < ε.

Thus sG→ 〈x, x〉 in the given ordering on F(J ), as claimed.
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Proposition 4.2. Suppose that M is a correspondence over a unital C∗-
algebra A, that M is essential as a left A-module, and that {mj : j ≥ 0} is a
Parseval frame for M such that 〈m0,m0〉 = 1. Define Tk : M⊗k → M⊗(k+1)

by Tkn = m0 ⊗ n, and let (M∞, ιk) = lim−→(M
⊗k, Tk). Then

(4.2) {ι0(1)} ∪
{
ιk

( k⊗
l=1

mjl

)
: k ≥ 1, jl ≥ 0 and j1 > 0

}

is a Parseval frame forM∞. If {mj } is an orthonormal basis forM , then (4.2)
is an orthonormal basis for M∞.

If {ei} and {fj } are orthonormal bases for Hilbert spaces H and K , then
the tensor products {ei ⊗ fj } form an orthonormal basis for the tensor product
H ⊗K . In Proposition 4.2, though, we are dealing with tensor products which
are balanced over actions of a possibly non-commutative algebra A. So the
next lemma is not quite as obvious as it might seem.

Lemma 4.3. Suppose thatX is a HilbertA-module andM is a correspond-
ence over A. If {xi : i ∈ I } and {mj : j ∈ J } are Parseval frames for X and
M respectively, then

{xi ⊗mj : i ∈ I and j ∈ J }
is a Parseval frame for X ⊗A M .

Proof. First let y = x ⊗ m be an elementary tensor in X ⊗A M; we aim
to verify that {xi ⊗mj } has properties (b) and (a) of Lemma 4.1. By the frame
identity for {xi}, there is a finite subset F of I such that we have a norm
approximation

〈y, y〉 = 〈x ⊗m, x ⊗m〉 = 〈〈x, x〉 ·m,m〉(4.3)

∼
∑
i∈F

〈〈x, xi〉〈xi, x〉 ·m,m〉
=

∑
i∈F

〈〈xi, x〉 ·m, 〈xi, x〉 ·m〉
.

Now we apply the frame identity for {mj } to the elements 〈xi, x〉 ·m to find a
single finite subset G of J such that

〈y, y〉 ∼
∑
i∈F

∑
j∈G
〈〈xi, x〉 ·m,mj 〉〈mj, 〈xi, x〉 ·m〉(4.4)

=
∑
i∈F

∑
j∈G
〈y, xi ⊗mj 〉〈xi ⊗mj, y〉.
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Thus the set {xi ⊗ mj } satisfies (b). However, in the calculations (4.3) and
(4.4), we can replace the approximations∼ by inequalities≥, and deduce that
{xi ⊗mj } also satisfies (a) for this choice of y. Thus Lemma 4.1 implies that
{xi ⊗mj } satisfies the frame identity for elementary tensors y.

The frame identity extends to elements of the algebraic tensor productX�M
by linearity, but to see that it extends to elements of the completion X ⊗A M
seems to require some more work. We choose an enumeration yk = xi(k)⊗mj(k)
for the countable set {xi ⊗mj }. Then the frame identity implies that for each
y ∈ X�M , the sequence {〈y, yk〉} belongs to the Hilbert module l2(A), with

(4.5)
〈{〈y, yk〉}, {〈y, yk〉}〉 = 〈y, y〉.

Thus the formula F (y) = {〈y, yk〉} defines a linear map ofX�M into l2(A),
which by (4.5) and the polarisation identity is inner-product preserving. Since
l2(A) is a Hilbert module, F extends to an inner-product preserving map F of
the completionX⊗AM into l2(A). Since the maps F , {ak} �→ ak = 〈{ak}, el〉,
and y �→ 〈y, yk〉 are continuous, we have 〈F (y), el〉 = 〈y, yl〉 for all y in the
completionX⊗AM , and F (y) = {〈y, yk〉} for all y ∈ X⊗AM . In particular,
F (y) = {〈y, yk〉} belongs to l2(A), so the series

∞∑
k=1

〈y, yk〉〈yk, y〉

converges in norm with sum 〈F (y),F (y)〉 = 〈y, y〉 for every y ∈ X ⊗A M .
Since this last assertion implies that (a) and (b) hold for every y ∈ X ⊗A M ,
we deduce that {xi ⊗mj } satisfies the frame identity in the strongest possible
sense.

Remark 4.4. We have given a detailed proof of Lemma 4.3 because we
have found these convergence issues a little slippery. To see why we think
such detours might be necessary, observe that the calculations (4.3) and (4.4)
show that, if we start with sequential frames {xi} and {mj }, then for every
elementary tensor we have

(4.6) 〈x⊗m, x⊗m〉 = lim
k→∞

(
lim
n→∞

k∑
i=1

n∑
j=1

〈x⊗m, xi⊗mj 〉〈xi⊗mj, x⊗m〉
)
.

The asymmetry in the definition of the balanced tensor product means the
calculation has to be done this way round, and we don’t see any reason why
we should expect to be able to reverse the order of the limits in (4.6).
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Proof of Proposition 4.2. We begin by observing that plugging x = m0

into the frame identity (4.1) for the frame {mj } gives

〈m0,m0〉 = 〈m0,m0〉 +
∑
j≥1

〈m0,mj 〉〈mj,m0〉;

since each 〈m0,mj 〉〈mj,m0〉 is a positive element of the C∗-algebra A, it
follows that

(4.7) 〈m0,mj 〉 = 0 for every j > 0.

Next, we observe that the argument of [19, Theorem 2] applies to the direct
sum decomposition of Proposition 2.4, and deduce that it suffices to check that
for each k ≥ 1, {

ιk
( k⊗
l=1

mjl

)
: jl ≥ 0 and j1 > 0

}

is a Parseval frame for

Zk−1 := Yk � Yk−1 = ιk
(
M⊗k � Tk−1(M

⊗(k−1))
)
.

The orthogonality relation (4.7) implies that each
⊗k

l=1mjl with j1 > 0 be-
longs to the complement of Tk−1(M

⊗(k−1)) = {m0 ⊗ n : n ∈ M⊗(k−1)}. An
induction argument using Lemma 4.3 shows that

{ k⊗
l=1

mjl : jl ≥ 0
}

is a Parseval frame forM⊗k , and then the reconstruction formula for this frame
implies that {

ιk
( k⊗
l=1

mjl

)
: jl ≥ 0 and j1 > 0

}

satisfies the reconstruction formula in Zk−1, and hence is a frame for Zk−1.
We can verify by direct calculation that when {mj } is orthonormal, so is

each
{⊗k

l=1mjl : jl ≥ 0
}

for each fixed k. (It is crucial in this calculation
that M is essential, so that 1 · m = m for all m ∈ M .) Thus the last assertion
follows from the orthogonality of the summands Zk .

Now we suppose that (X,D, φ) is a scaling function for m0, and aim to
apply the isomorphismQ of Corollary 2.6 to obtain a frame for the submodule
Q(M∞) ofX. The isomorphismQ satisfiesQ◦ ιk = D−k ◦ (Q0⊗ idk), where
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Q0 : A → X is characterised by Q01 = φ. To apply Q0 ⊗ idk to
⊗k

l=1mjl ,
we need to recall that the isomorphism of A⊗A M⊗k ontoM⊗k takes 1⊗ n to
1 · n = n, and thus

(Q0 ⊗ idk)
( k⊗
l=1

mjl

)
= (Q0 ⊗ idk)

(
1⊗

( k⊗
l=1

mjl

))
= φ ⊗

( k⊗
l=1

mjl

)
.

Thus Proposition 4.2 gives:

Corollary 4.5. Suppose that {mj : j ≥ 0} is a Parseval frame forM with
〈m0,m0〉 = 1, and (X,D, φ) is a scaling function for m0. Then

(4.8) {φ} ∪
{
D−k

(
φ ⊗

( k⊗
l=1

mjl

))
: k ≥ 1, jl ≥ 0 and j1 > 0

}

is a Parseval frame for Q(M∞). It is orthonormal if {mj } is.

Example 4.6. Packer and Rieffel proved that if N ≥ 2, α ∈ EndC(T)
is defined by α(f )(z) = f (zN), and L is given by (3.6), then the module
ML admits an orthonormal basis. Indeed, their [18, Proposition 1] is much
more general than this: it applies to the endomorphism of C(Tn) = C(Rn/Zn)
induced by a dilation matrix A ∈ Mn(Z) with | detA| ≥ 2. The key question
considered in [18], however, asks which individual low-pass filters m0 can be
extended to an orthonormal basis {mj } forML. They gave positive answers to
this question in [18, Theorem 2], which says in particular that any low-pass
filter on Tn for n ≤ 4 will extend to an orthonormal basis.

However, Packer and Rieffel also show in [18, §4] that there exists a low-
pass filter m0 on T5 for a dilation matrix A with detA = 3 for which it is not
possible to find filtersm1 andm2 such that {m0,m1,m2} is an orthonormal basis
for the corresponding ML. The point of their construction is that for this m0,
the complement Sm0(C(T

5))⊥ = (m0 · C(T5))⊥ is a projective C(T5)-module
which is not free. However, since it is a direct summand of a free moduleML of
rank 3, it has a Parseval frame {m1,m2,m3}with three elements. (For example,
if {e1, e2, e3} is an orthonormal basis forML, we can takemj = (1−Sm0S

∗
m0
)ej .)

Then {m0,m1,m2,m3} is a Parseval frame for ML which has 〈m0,m0〉 = 1
but is not orthonormal. So there was some point in working out Corollary 4.5
for frames as well as orthonormal bases.

We now apply Corollary 4.5 to Exel’s modulesML for the systems (A, α, L)
= (C(C), α, L) discussed in Section 3. In this case the modulesX⊗AM⊗kL can
all be realised on the same underlying vector space: to see this, we first realise
M⊗kL asMLk using Lemma 3.1, and then use Lemma 3.2 to viewX⊗AM⊗kL as
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XLk , which by Lemmas 3.3 and 3.4 has underlying spaceX. The identification
of M⊗kL with MLk is defined on elementary tensors by

(4.9) mj1 ⊗mj2 ⊗ · · · ⊗mjk �→ mj1α(mj2) · · ·αk−1(mjk ),

where the product on the right is the product in the algebra C(C), which is
the underlying space of eachMLk . The map x ⊗m �→ x ·m defined using the
original action ofA onX is then an isomorphism ofX⊗AMLk ontoXLk . Thus
Corollary 4.5 gives:

Corollary 4.7. Consider the system (C(C), α, L) associated to a sur-
jective local homeomorphism σ of a compact space C, and suppose that
{mj : j ≥ 0} is a Parseval frame forML with 〈m0,m0〉 = 1. Suppose thatX is a
Hilbert C(C)-module, that φ ∈ X satisfies 〈φ, φ〉 = 1, and thatD : X→ XL
is an isomorphism of Hilbert C(C)-modules such that Dφ = φ ·m0. Then

(4.10) {φ} ∪
{
D−k

(
φ ·

( k∏
l=1

αl−1(mjl )

))
: k ≥ 1, jl ≥ 0 and j1 > 0

}

is a Parseval frame for the submodule Q((ML)∞) of X described in Corol-
lary 3.6. If {mj } is an orthonormal basis forML, then (4.10) is an orthonormal
basis for Q((ML)∞).

In the classical situation of Example 3.7, [18, Proposition 1] says that the
module ML is free, and hence we can apply Corollary 4.7 to the scaling func-
tion (�,D, φ), and thereby find module bases for �. For N = 2, we can do
the calculations explicitly, and it is interesting to compare the resulting mod-
ule basis with the analogous basis for L2(R) obtained by applying Mallat’s
construction.

Example 4.8. Let N = 2. A filter m0 in the module ML of Example 3.7
is a quadrature mirror filter: it satisfies

(4.11) |m0(z)|2 + |m0(−z)|2 = 2 for all z ∈ T.

(These are slightly different from the filters used in [16], where we normalised
so the sum in (4.11) was 1.) We assume that m0 is low-pass, so that there
exists a scaling function φ with respect to the usual dilation operator, and Co-
rollary 3.6 gives an isomorphism Q of (ML)∞ onto the module � of Packer
and Rieffel [19] (see Example 3.7). In this situation, we can write down spe-
cific functions m1 ∈ ML such that {m0,m1} is an orthonormal basis for ML:
m1(z) := zm0(−z) is the usual choice.
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After φ, the next element of our basis is the function

ψ(t) = D−1(φ ·m1)(t) = 2−1/2φ(2−1t)m1(e
πit )

= 2−1/2eπitφ(2−1t)m0(−eπit ).
This is the same as the function denoted by ψ in [16], and is the Fourier
transform of the usual dyadic mother wavelet. InL2(R), the functions given by
(ψ ·ek)(t) = e2πiktψ(t) form an orthonormal basis for the spaceW 0 := Q(Z0)

(which is the Fourier transform of the space usually denotedW0 in the wavelet
literature); here the single function ψ is a basis for the Hilbert C(T)-module
W0. At the next stage, the Hilbert moduleW1 := Q(Z1) is free of rank 2, with
module basis

ψl(t) = D−2(φ · (m1α(ml)))(t) = 2−1φ(2−2t)m1(e
πit/2)ml(e

πit )

= (D−1ψ)(t)ml(e
πit )

for l = 0, 1. To get a Hilbert-space basis for W 1 ⊂ L2(R) from this module
basis, we need to include both

(ψ0 · ek)(t) = e2πikt (D−1ψ)(t)m0(e
πit ) = D−1(ψ · e2k)(t)m0(e

πit )

and

(ψ1 · ek)(t) = e2πikt (D−1ψ)(t)m1(e
πit ) = D−1(ψ · e2k+1)(t)m0(−eπit ),

and the resulting basis forW 1 is slightly different from the usual Hilbert space
basis {D−1(ψ · ek)} for W 1. In general, as a C(T)-submodule of �, the space
Wk := Q(Zk) is free of rank 2k .

5. The projective multi-resolution analyses of Packer and Rieffel

Here we apply our constructions to the example studied in Sections 4 and 5 of
[19]. We begin by fixing integers c and d greater than 1, and consider the system
(C(T2), α, L) associated to the local homeomorphism σ : (w, z) �→ (wc, zd).
(We could handle c, d ∈ Z \ {0,±1} at the expense of adding lots of absolute
values.)

We next fix integers a and q with q > 0, and consider the Hilbert C(T2)-
module

(5.1) Y (q, a) := {ξ : T × R→ C : ξ(z, t − 1) = zaξ(z, t)},
with action (ξ · f )(z, t) = ξ(z, t)f (z, e2πiqt ) and inner product

(5.2) 〈ξ, η〉(z, t) =
q−1∑
k=0

ξ

(
z,
t − k
q

)
η

(
z,
t − k
q

)
.
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We aim to build projective multi-resolution analyses starting from isometries on
the Hilbert module Y (q, a), aiming for those constructed in [19, §5]. Because
our constructions require us to use only modules over C(T2), we have had to
use slightly different realisations of the Hilbert modules used in [19]. However,
the function 
(F)(z, t) := F(z, qt) is an isomorphism of the Hilbert C(T2)-
module X(q, a) described in [19, Proposition 17] onto Y (q, a) compatible
with the analogous isomorphism of C(R2/(Z× qZ)) onto C(T2).

We need an inner-product preserving adjointable map S : Y (q, a) →
Y (q, a)L. Since Lemma 3.3 implies that Y (q, a)L has the same underlying
space as Y (q, a), an adjointable operator must in particular map Y (q, a) to it-
self. For such a map to be a module homomorphism, it must send ξ ∈ Y (q, a)
to something involving the function (z, t) �→ ξ(zc, dt); this function belongs
to Y (q, cda), and to get back into Y (q, a), Packer and Rieffel multiply it by
an element of Y (q, (1− cd)a). With our normalisation, Y (q, (1− cd)a) has
the same underlying space as Y (1, (1 − cd)a), and it is an inner product for
this latter module which turns out to be relevant. We believe it is an advantage
of our approach that the condition onmwhich makes Sm an isometry is simply
expressed in terms of an inner product; Packer and Rieffel can only describe
their condition (which appears below as (5.5)) as “closely related to one of the
standard equations that a low-pass filter must satisfy” [19, page 459].

Proposition 5.1. Suppose thatm ∈ Y (1, (1−cd)a)L satisfies 〈m,m〉L = 1.
Then

(5.3) (Smξ)(z, t) = m(z, t)ξ(zc, dt)
defines an inner-product preserving adjointable map Sm : Y (q, a)→Y (q, a)L.

Proof. Let ξ ∈ Y (q, a). Then Smξ is certainly continuous, and

(Smξ)(z, t − 1) = m(z, t − 1)ξ(zc, d(t − 1))

= z(1−cd)am(z, t)(zc)adξ(zc, dt)
= zam(z, t)ξ(zc, dt) = za(Smξ)(z, t),

so Smξ ∈ Y (q, a). To find an adjoint for Sm, we let ξ, η ∈ Y (q, a) and



346 nadia s. larsen and iain raeburn

(z, t) ∈ T × R, and compute

〈Smξ, η〉L(z, t) = L(〈Smξ, η〉)(z, t)

= 1

cd

∑
wc=z

d−1∑
j=0

q−1∑
k=0

(Smξ)
(
w,

1

q

( t − j
d
− k

))
η
(
w,

1

q

( t − j
d
− k

))

= 1

cd

∑
wc=z

d−1∑
j=0

q−1∑
k=0

m
(
w,
t − j − kd

qd

)
ξ
(
z,
t − j − kd

q

)
η
(
w,
t − j − kd

qd

)
.

For the next step, we note that

{kd + j : 0 ≤ j ≤ d − 1, 0 ≤ k ≤ q − 1} = {n : 0 ≤ n ≤ qd − 1}
= {ql + k : 0 ≤ l ≤ d − 1, 0 ≤ k ≤ q − 1}.

Thus

〈Smξ, η〉L(z, t)

= 1

cd

q−1∑
k=0

∑
wc=z

d−1∑
l=0

m

(
w,
t − (ql + k)

qd

)
ξ

(
z,
t − (ql + k)

q

)
η

(
w,
t − (ql + k)

qd

)

= 1

cd

q−1∑
k=0

ξ

(
z,
t − k
q

)(∑
wc=z

d−1∑
l=0

m

(
w,
t − (ql + k)

qd

)
zalη

(
w,
t − (ql + k)

qd

))
.

Thus the function Tmη defined by

(5.4) (Tmη)(z, s) = 1

cd

∑
wc=z

d−1∑
l=0

m
(
w,
s − l
d

)
zalη

(
w,
s − l
d

)

satisfies 〈Smξ, η〉L = 〈ξ, Tmη〉. We need to show that the formula (5.4) defines
a function Tm from Y (q, a) = Y (q, a)L to Y (q, a), and then this equation says
that Sm is adjointable with adjoint S∗m = Tm (see [22, §2.2]).

The right-hand side of (5.4) gives a well-defined continuous function Tmη :
T × R → C, so we need to check that (Tmη)(z, s − 1) = za(Tmη)(z, s). We
compute:

(Tmη)(z, s − 1) = 1

cd

∑
wc=z

d−1∑
l=0

m
(
w,
s − (l + 1)

d

)
zalη

(
w,
s − (l + 1)

d

)

= 1

cd

∑
wc=z

d∑
l=1

m
(
w,
s − l
d

)
za(l−1)η

(
w,
s − l
d

)
.
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The l = d summand in the right-hand side is

m
(
w,
s − d
d

)
za(d−1)η

(
w,
s − d
d

)
= w(1−cd)am

(
w,

s

d

)
za(d−1)waη

(
w,

s

d

)
,

which is exactly what we’d get for l = 0. Thus we can replace
∑d

l=1 by
∑d−1

l=0 ,
factor out za , and deduce that (Tmη)(z, s − 1) = za(Tmη)(z, s). Thus Sm is
adjointable with S∗m = Tm given by (5.4).

For m, n ∈ Y (1, (1− cd)a)L, we compute

(S∗mSnξ)(z, t) = L(〈m, n〉Y (1,(1−cd)a))(z, t)ξ(z, t) = 〈m, n〉L(z, t)ξ(z, t),

which shows in particular that S∗mSm = 1 when 〈m,m〉L = 1.

We can now fix a unit vectorm ∈ Y (1, (1− cd)a)L and apply Theorem 2.3
to Sm : Y (q, a) → Y (q, a)L = Y (q, a) ⊗C(T2) ML. This gives a projective
multi-resolution analysis of a direct limit module Y (q, a)∞. Next we want to
use Proposition 3.5 to identify Y (q, a)∞ with the module� considered in [19],
and thereby obtain a projective multi-resolution analysis of �. This requires
restrictions on m.

It was proved in [19, §5] that there is a function m̃ in X(q, (1 − cd)a),
which satisfies

(5.5)
∑
wc=z

d−1∑
k=0

∣∣∣∣m̃
(
w, t + kq

d

)∣∣∣∣
2

= 1 for all (z, t) ∈ T × R,

and for which there exists σ̃ in � satisfying

(5.6)
∑
m,n∈Z

|σ̃ (x +m, y + qn)|2 = 1 for (x, y) ∈ R2

and

(5.7) σ̃ (cx, dy) = m̃(e2πix, y)σ̃ (x, y) for (x, y) ∈ R2.

It will also be important for us that the function σ̃ in [19] satisfies

(5.8) σ̃ (0, 0) = 1.

Recalling that
(F)(z, t) = F(z, qt) defines an isomorphism
 ofX(q, (1−
cd)a) onto Y (q, (1− cd)a), we take m := √cd 
(m̃) in Y (q, (1− cd)a) =
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Y (1, (1− cd)a), and define σ ∈ � by σ(x, y) := σ̃ (x, qy). Then

〈m,m〉L(z, e2πit ) = cd L(〈
(m̃),
(m̃)〉)(z, e2πit )

=
∑
wc=z

d−1∑
k=0

∣∣∣∣m̃
(
w,
qt − qk
d

)∣∣∣∣
2

,

which is identically 1 by (5.5). A calculation using (5.6) shows that σ satisfies
〈σ, σ 〉 = 1 for theC(T2)-valued inner product on�, and from (5.7) we deduce
that σ satisfies the scaling equation

(5.9)

√
cd σ(cx, dy) = √cd σ̃ (cx, qdy)

= √cd m̃(e2πix, qy)σ̃ (x, qy)

= m(e2πix, y)σ (x, y).

Define D : �→ � by (Dξ)(x, y) = √cd ξ(cx, dy). Then D is certainly
linear, and it is an isomorphism because we can write down an inverse. A
straightforward calculation shows thatD(ξ ·f ) = (Dξ) ·α(f ), and for ξ, η ∈
�, we have

〈Dξ,Dη〉L(e2πix, e2πiy)

= 1

cd

c−1∑
k=0

d−1∑
l=0

∑
m,n∈Z

(DξDη)

(
x − k
c
−m, y − l

d
− n

)

= 1

cd

c−1∑
k=0

d−1∑
l=0

∑
m,n∈Z

cd (ξη)(x − k − cm, y − l − dn)

=
∑
p,q∈Z

(ξη)(x − p, y − q)

= 〈ξ, η〉(e2πix, e2πiy).

Thus D satisfies the hypotheses (3.4) of Proposition 3.5.
For ξ ∈ Y (q, a), we define Q0ξ : R2 → C by

(Q0ξ)(x, y) = ξ(e2πix, y/q)σ (x, y/q).

We need to show that Q0ξ ∈ � and that Q0 is inner-product preserving from
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Y (q, a) to �. To see this, let ξ, η ∈ Y (q, a). Then since 〈σ, σ 〉 = 1, we have

〈ξ, η〉(e2πix, e2πiy)

=
q−1∑
k=0

(ξη)

(
e2πix,

y − k
q

)

=
q−1∑
k=0

(ξη)

(
e2πix,

y − k
q

)( ∑
m,n∈Z

∣∣∣∣σ
(
x −m, y − k

q
− n

)∣∣∣∣
2)
.

The function ξη satisfies (ξη)(z, t − n) = (ξη)(z, t) for n ∈ Z, and hence we
can pull (ξη)(e2πix,

y−k
q
) inside the second sum to get

〈ξ, η〉(e2πix, e2πiy)

=
q−1∑
k=0

∑
m,n∈Z

(ξη)

(
e2πix,

y − k
q
− n

)∣∣∣∣σ
(
x −m, y − k

q
− n

)∣∣∣∣
2

.

Next, we observe that y−k
q
− n = y−(k+nq)

q
, write l = k + nq and deduce that

(5.10)

〈ξ, η〉(e2πix, e2πiy) =
∑
m,l∈Z

(ξη)

(
e2πix,

y − l
q

)∣∣∣∣σ
(
x −m, y − l

q

)∣∣∣∣
2

=
∑
m,l∈Z

(Q0ξQ0η)(x −m, y − l).

When η = ξ , the right-hand side of (5.10) is
∑

m,l∈Z |Q0ξ(x − m, y − l)|2;
since the left-hand side 〈ξ, ξ〉 is continuous on T2, Equation (5.10) implies
that Q0ξ ∈ �. Now Equation (5.10) (for distinct ξ and η) says that Q0 is
inner-product preserving from Y (q, a) to �, as required.

We next need to check thatD◦Q0 = Q0◦Sm. For ξ ∈ Y (q, a), we compute
using the scaling equation (5.9):

((D ◦Q0)ξ)(x, y) =
√
cd (Q0ξ)(cx, dy)

= √cd ξ(e2πicx, dy/q)σ (cx, dy/q)

= m(e2πix, y/q)ξ(e2πicx, dy/q)σ (x, y/q)

= (Smξ)(e2πix, y/q)σ (x, y/q)

= Q0(Smξ)(x, y).
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We have now verified all the hypotheses of Proposition 3.5, and deduce that
there is an inner-product preserving map Q : Y (q, a)∞ → � such that Vk :=
D−k(Q0(Y (q, a))) have the properties (i)–(iv) of Proposition 3.5. However,
we also know from (5.8) that σ(0, 0) = σ̃ (0, 0) = 1, and since it is easy to find
elements ξ of Y (q, a) such that ξ(1, 0) �= 0, Q(Y0) contains functions which
do not vanish at (0, 0). Thus Proposition 14 of [19] implies that

⋃∞
k=0 Vk is

dense in �. Since the extra requirement
⋂0
k=−∞ Vk = {0} in [19] is automatic

for projective multi-resolution analyses of � (by [19, Proposition 13]), we
have recovered [19, Theorem 6].

We hope that our derivation helps to make it clear where some of the hypo-
theses in [19] come from, and why they are necessary. We do not claim to have
substantially simplified the arguments, since we have been content to rely on
key analytic results from [19].

6. Modules arising from directed graphs

In this section we discuss a new family of examples based on directed graphs.
We consider the moduleML associated to the backward shift on the one-sided
infinite-path space of the graph, and aim to realise the direct limit (ML)∞
as a module of functions on the two-sided infinite-path space. Part of our
construction is very general: direct limits of modules associated to inverse
systems can often be realised as modules of functions on the inverse limit.

6.1. Realisations as modules of functions on inverse limits

Suppose that rk : Ck+1 → Ck is an inverse system of compact spaces in which
each rk is a surjective local homeomorphism. Set w0 = 1, and suppose we
have functions wk ∈ C(Ck) satisfying the consistency condition

(6.1)
∑
rk(d)=c

|wk+1(d)|2 = |wk(c)|2 for every k ≥ 0 and every c ∈ Ck.

For k ≥ 1, we write r(k) := r0 ◦ r1 ◦ · · · ◦ rk−1 : Ck → C0. Then we can
make each C(Ck) into a Hilbert C(C0)-module Xk by defining (x · f )(c) =
x(c)f (r(k)(c)) and

〈x, y〉k(c) =
∑

r(k)(d)=c
x(d)y(d)|wk(d)|2,

and then completing (if necessary). Equation (6.1) implies that the functions
r∗k : C(Ck)→ C(Ck+1) defined by r∗k x = x ◦ rk satisfy

〈r∗k x, r∗k y〉k+1 = 〈x, y〉k,
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and thus (Xk, r∗k ) is a direct system of Hilbert C(C0)-modules.
Our goal is to identify the direct limit X∞ := lim−→Xk as a module of func-

tions on the inverse limit C∞ := lim←−Ck , which is itself a compact space. To
define the C(C0)-valued inner product on C(C∞), we need some measures
whose existence will follow from the following standard lemma. It is proved
in [2], for example.

Lemma 6.1. Suppose that rk : Ck+1 → Ck is an inverse system of compact
spaces with each rk surjective, and μk is a family of measures on Ck such that
μ0 is a probability measure and

(6.2)
∫
(x ◦ rk) dμk+1 =

∫
x dμk for x ∈ C(Ck).

Let C∞ = lim←−(Ck, rk), and denote the canonical map from C∞ to Ck by πk .
Then there is a unique probability measure μ on C∞ such that∫

(x ◦ πk) dμ =
∫
x dμk for x ∈ C(Ck).

We now fix c ∈ C0, and define measures μck on the fibres (r(k))−1(c) by

(6.3)
∫
x dμck :=

∑
r(k)(d)=c

x(d)|wk(d)|2.

The consistency condition (6.1) implies that the family {μck : k ≥ 0} satisfies
(6.2), and hence Lemma 6.1 gives a probability measure μc on the fibre

π−1
0 (c) = lim←−((r

(k))−1(c), rk)

such that

(6.4)
∫
(x ◦ πk) dμc =

∑
r(k)(d)=c

x(d)|wk(d)|2 for x ∈ C(Ck).

Proposition 6.2. With (x · f )(d) = x(d)f (π0(d)) and

〈x, y〉(c) :=
∫
π−1

0 (c)

x(d)y(d) dμc(d),

C(C∞) is an inner-product module over C(C0). We denote the completion by
X∞. Then the maps π∗k : C(Ck)→ C(C∞) extend to inner-product preserving
homomorphisms of Xk into X∞, and (X∞, π∗k ) is a direct limit for (Xk, r∗k ).
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Proof. It follows from (6.4) that 〈x, y〉 is continuous when x and y belong
toπ∗k (C(Ck)). The Stone-Weierstrass theorem implies that

⋃
k≥0 π

∗
k (C(Ck)) is

uniformly dense in C(C∞), and the map x �→ 〈x, y〉 is uniformly continuous,
so it follows that 〈x, y〉 is continuous for every x, y ∈ C(C∞). The algebraic
properties are easy to check, so we can indeed completeC(C∞) to get a Hilbert
module X∞.

The formula (6.4) implies that π∗k is inner-product preserving. Since

π∗k+1 ◦ r∗k = (rk ◦ πk+1)
∗ = π∗k ,

and since
⋃
k≥0 π

∗
k (C(Ck)) is dense inX∞, the mapsπ∗k induce an isomorphism

of lim−→Xk onto X∞.

6.2. Systems associated to directed graphs

Let E be a finite directed graph, consisting of a set E0 of vertices, a set E1

of edges, and maps r, s : E1 → E0 which identify the range and source of
edges. We assume throughout that E has no sources: every vertex receives at
least one edge. In general, our conventions about directed graphs are those
of [20]. A path of length k ≥ 1 is a sequence ν = ν1 . . . νk of edges such
that s(νi) = r(νi+1) for all i, and Ek denotes the set of paths of length k. We
denote by E∞ the set of right-infinite paths c = c0c1c2 · · ·, which have range
r(c) := r(c0) but no source. The space E∞ is a closed subset of the product
space

∏∞
k=0 E

1, and is therefore a compact Hausdorff space in the product
topology; the cylinder sets Z(ν) := {c ∈ E∞ : ci = νi+1 for i ≤ k − 1}
associated to finite paths ν form a base of compact-open sets for the topology
on E∞. For c ∈ E∞ and ν ∈ Ek , we denote by νc the right-infinite path
ν1ν2 · · · νkc0c1 · · ·.

For the rest of this section, we consider the system (C(E∞), α, L) associ-
ated to the backward shift on E∞ defined by σ(c0c1c2 · · ·) = c1c2c3 · · ·. The
transfer operator L is given by

(6.5) L(f )(c) = 1

|σ−1(c)|
∑
σ(d)=c

f (d) = 1

|s−1(r(c))|
∑

s(e)=r(c)
f (ec).

A filter in the corresponding module ML is determined by a weighting on
the edges of E. More precisely, for each vertex v ∈ E0 we choose a vector
(w(e) : e ∈ s−1(v)) in Cs

−1(v) such that
∑

e∈s−1(v) |w(e)|2 = |s−1(v)|, and then

(6.6) m =
∑
e∈E1

w(e)χZ(e)
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is a filter in ML. Our goal is to identify the associated direct limit M∞ :=
(ML)∞ as a concrete module of functions on the space E(−∞,∞) of doubly
infinite paths c = · · · c−2c−1c0c1c2 · · · in E.

Our first step is to realiseM⊗kL as the moduleMLk associated to the transfer
operator Lk for αk . The following formula for Lk follows from Lemma 3.4:

(6.7) Lk(f )(c) =
∑

{ν∈Ek : s(ν)=r(c)}

( k∏
j=1

|s−1(s(νj ))|−1

)
f (νc),

and the natural identification of M⊗kL with MLk is described in (4.9). Since
E has no sources, the coefficients in (6.7) are all non-zero, and Lemma 3.3
implies that the modulesMLk all have the same underlying space C(E∞). The
isometry Sm ⊗ idk : M⊗kL → M

⊗(k+1)
L is given by (Sm ⊗ idk)(n) = m ⊗ n

(see the discussion around Equation (2.8)), and this goes intoMLk+1 asmα(n).
Thus, viewed as an isometry Tk : MLk → MLk+1 , Sm ⊗ idk is given by the
formula

Tk(f )(c) = m(c)f (σ (c)) =
∑
e∈E1

w(e)χZ(e)(c)f (σ (c)) = w(c0)f (c1c2 · · ·).

We will identify lim−→(MLk , Tk)by replacing (MLk , Tk)with an isomorphic direct
system of the form discussed in Proposition 6.2.

For k ≥ 0, we introduce the path spaces

E[−k,∞) := {c = c−k · · · c−1c0c1 · · · : s(ci) = r(ci+1) for all i},

and the homeomorphisms σk : E∞ → E[−k,∞) defined by

σk(c0c1c2 · · ·) = d−kd−k+1d−k+2 · · · where d−k+j := cj .

With rk : E[−k−1,∞) → E[−k,∞) defined by rk(c−k−1c−k · · ·) = c−kc−k+1 · · ·,
we have an inverse system (E[−k,∞), rk) of compact spaces. The inverse limit
lim←−(E

[−k,∞), rk) is the two-sided infinite path space (E(−∞,∞), πk), with

πk(· · · c−2c−1c0c1c2 · · ·) = c−kc−k+1 · · · c−1c0c1c2 · · · .

We now define weight functions wk ∈ C(E[−k,∞)) by

(6.8) wk(c) :=
−1∏

j=−k
w(cj )|s−1(s(cj ))|−1/2,
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and, recalling that (w(e))s(e)=v ∈ Cs
−1(v) has norm |s−1(v)|1/2, verify that∑

rk(d)=c
|wk+1(d)|2

=
∑

s(e)=r(c)
|w(e)|2|s−1(s(e))|−1

( −1∏
j=−k
|w(cj )|2|s−1(s(cj ))|−1

)

=
( ∑
s(e)=r(c)

|w(e)|2
)
|s−1(r(c))|−1|wk(c)|2

= |wk(c)|2.
For this system, the functions r(k) are the projections of E[−k,∞) on E∞ =
E[0,∞), so

(r(k))−1(c) = {σk(νc) : ν ∈ Ek and s(ν) = r(c)}.
Thus the HilbertC(E∞)-moduleXk of the previous subsection has underlying
space C(E[−k,∞)), module action

(x · f )(c−kc−k+1 · · ·) = x(c−kc−k+1 · · ·)f (c0c1 · · ·),
and inner product

〈x, y〉k(c) =
∑

{ν∈Ek : s(ν)=r(c)}

( k∏
j=1

|w(νj )|2|s−1(s(νj ))|−1

)
x(σk(νc))y(σk(νc)).

Proposition 6.2 describes lim−→(Xk, r
∗
k ) as a completion of C(E(−∞,∞)).

To relate this direct limit to lim−→(MLk , Tk), we define Vk : Xk → MLk for
k ≥ 1 by

(Vkx)(c) =
(k−1∏
j=0

w(cj )

)
x(σk(c)) for c ∈ E∞;

calculations show that, provided the weights w(e) are all non-zero, Vk is a
Hilbert-module isomorphism ofXk ontoMLk . Then for k ≥ 1, x ∈ C(E[−k,∞))
= Xk and c ∈ E∞, we have rk ◦ σk+1 = σk ◦ σ , and

Tk ◦ Vk(x)(c) = w(c0)(Vkx)(σ (c)) = w(c0)

( k∏
j=1

w(cj )

)
x(σk ◦ σ(c))

=
( k∏
j=0

w(cj )

)
x(rk ◦ σk+1(c)) = Vk+1(r

∗
k x)(c).
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Thus we have a commutative diagram

(6.9)

C(E∞) T0−−−−−→ML
T1−−−−−→ML2

T2−−−−−→ · · ·
↑

id

↑
V1

↑
V2

C(E∞) r∗0−−−−−→ X1
r∗1−−−−−→ X2

r∗2−−−−−→ · · ·
In other words, the Vk form an isomorphism of direct systems. We deduce that
the two systems have isomorphic direct limits.

So we expect the projective multi-resolution analyses ofM∞ to give project-
ive multi-resolution analyses for the moduleX∞(E) := X∞ of Proposition 6.2.
It remains to identify the scaling function and the dilation operator.

Proposition 6.3. Suppose that {w(e) : e ∈ E1} are non-zero complex
numbers such that

∑
s(e)=v |w(e)|2 = |s−1(v)| for every v ∈ E0, define wk :

E[−k,∞) → C by (6.8), and define m by (6.6). Then m is a filter in Exel’s
correspondenceML; letM∞ = lim−→(M

⊗k
L , Tk) be the direct limit of the system

(M⊗kL , Tk) defined by (2.8). Let μc be the measure satisfying (6.4), and let
X∞(E) be the Hilbert C(E∞)-module obtained by completing C(E(−∞,∞))
in the inner product defined by the measures μc, as in Proposition 6.2. Let
h denote the backward shift homeomorphism on E(−∞,∞), and define D :
C(E(−∞,∞))→ C(E(−∞,∞)) by

(Dx)(c) = m(π0(c))x(h(c)).

ThenD extends to a linear isomorphism ofX∞(E) onto itself, (X∞(E),D, 1)
is a scaling function for m, and there is an isomorphism Q of M∞ onto
X∞(E) such that Vk := Q(ιk(MLk )) is a projective multi-resolution analysis
for X∞(E).

Proof. We verify the hypotheses (3.5) of Corollary 3.6. We first let x ∈
C(E(−∞,∞)), f ∈ C(E∞), and compute, observing that π0 ◦ h = σ ◦ π0:

D(x · f )(c) = m(π0(c))(x · f )(h(c))
= m(π0(c))x(h(c))f (π0(h(c)))

= (Dx)(c)f (σ (π0(c)))

= (Dx)(c)α(f )(π0(c))

= ((Dx) · α(f ))(c).
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Next, we consider x = x1 ◦ πk and y = y1 ◦ πk , and compute:

L(〈Dx,Dy〉)(c) = 1

|s−1(r(c))|
∑

s(e)=r(c)
〈Dx,Dy〉(ec)

=
∑

s(e)=r(c)
|s−1(s(e))|−1

∫
π−1

0 (ec)

(xy)(h(d))|m(ec)|2 dμec(d).

Since m(ec) = w(e) and we can write x ◦ h = x1 ◦ πk ◦ h = x2 ◦ πk−1,
y ◦ h = y2 ◦ πk−1, this is

∑
s(e)=r(c)

|s−1(s(e))|−1
∫
(r(k−1))−1(ec)

(x2y2)(d)|w(e)|2 dμeck−1(d).

Next, observe that (r(k−1))−1(ec) = {σk−1(νec) : ν ∈ Ek−1, s(ν) = r(e)},
recall from (6.3) the definitions of the measures μeck−1, notice that x2 ◦ σk−1 =
x1 ◦ σk , and continue:

L(〈Dx,Dy〉)(c)
=

∑
s(e)=r(c)

|s−1(s(e))|−1
∑

ν∈Ek−1∩s−1(r(e))

(x1y1)(σk(νec))|w(e)|2|wk−1(σk−1(νec))|2

=
∑

s(e)=r(c)

∑
ν∈Ek−1∩s−1(r(e))

(x1y1)(σk(νec))|wk(σk(νec))|2

=
∑

λ∈Ek∩s−1(r(c))

(x1y1)(σk(λc))|wk(σk(λc))|2

=
∫
π−1

0 (c)

x(d)y(d) dμc(d),

which is just 〈x, y〉(c). Thus D is isometric from C(E(−∞,∞)) ⊂ X∞(E) to
X∞(E)L, and extends to a linear isometry onX∞(E); sincem(π0(c)) = w(c0)

is never 0, every function of the form x1 ◦ πk is in the range of D, and hence
D is surjective.

Since the element φ = 1 trivially satisfies Dφ = φ ·m, Corollary 3.6 says
that (X∞(E),D, φ) is a scaling function for m, and that there is a Hilbert-
module isomorphism Q of M∞ into X∞(E). Since D−1 maps π∗k−1(Xk−1)

onto π∗k (Xk), and X0 is in the range of Q, the range of Q contains every
π∗k (Xk) and hence is dense in X∞(E). Since the range of every isometry is
closed, we deduce that Q is surjective.

Now we want to describe the structure of the modules V0 andWk := Vk+1�
Vk in the direct sum decompositionX∞(E) = V0⊕

( ⊕∞
k=0 Wk

)
obtained from
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Proposition 2.4. Since V0 is isomorphic to AA = C(E∞)C(E∞), it is free of
rank one. In general, though,W0 will not be free or even projective. To see why,
notice that we will not be able to expand our weight functionw : E1 → C to an
orthonormal basis forML unless the spaces Cs

−1(v) all have the same dimension
– that is, unless each vertex emits the same number of edges. Nevertheless, we
can still describe the module W0 in a very concrete way. We need a general
lemma.

Lemma 6.4. Suppose that X is a Hilbert A-module and m is an element
of X such that p := 〈m,m〉 is a projection in A. Then Sm : a �→ m · a is an
inner-product preserving map of pA onto a complemented submodule of X,
and SmS∗m is the orthogonal projection of X on Sm(pA).

Proof. It is easy to check that Sm is inner-product preserving on pA:

〈Sm(pa), Sm(pb)〉 = 〈m · (pa),m · (pb)〉 = a∗p〈m,m〉pb
= a∗pb = 〈pa, pb〉.

Next, we verify by direct computation that ‖m ·p−m‖2 = 0, and deduce that
m ·p = m. This formula implies that the adjoint S∗m of Sm in L (A,X), which
is given by S∗mx = 〈m, x〉, satisfies

p(S∗mx) = p〈m, x〉 = 〈m · p, x〉 = 〈m, x〉 = S∗mx,

and hence has range in pA. So S∗m is also an adjoint for Sm : pA→ X. Thus
Lemma 1.1 implies that Sm(pA) is a complemented submodule ofX, and that
SmS

∗
m is the projection onto Sm(pA).

We now return to the task of identifying the module W0 in the module
decomposition of X∞(E). We set N = max{|s−1(v)| : v ∈ E0}, and choose
functions wn : E1 → C for 1 ≤ n ≤ N such that for every v ∈ E0 the vectors

{
(|s−1(v)|−1/2wn(e))e∈s−1(v) : 1 ≤ n ≤ |s−1(v)|}

form an orthonormal basis for Cs
−1(v), such thatwn(e) = 0 for n > |s−1(s(e))|,

and such thatw1 is the weight functionwwe used to define the filterm in (6.6).
Define

mn =
∑
e∈E1

wn(e)χZ(e),
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so that in particular m1 = m. Then

〈mn,mn〉(c) = 1

|s−1(r(c))|
∑

s(e)=r(c)
|mn(ec)|2 = 1

|s−1(r(c))|
∑

s(e)=r(c)
|wn(e)|2

=
{

1 if n ≤ |s−1(r(c))|
0 if n > |s−1(r(c))|.

Thus 〈mn,mn〉 is the characteristic function pn := χ{c : n≤|s−1(r(c))|}, which is
a projection in A = C(E∞), and Lemma 6.4 says that the operators Smn are
isomorphisms of pnC(E∞) onto complemented submodules SmnS

∗
mn
(ML) of

ML.
We claim that ML = ⊕N

n=1 SmnS
∗
mn
(ML). Since the operators SmnS

∗
mn

are

projections in theC∗-algebra L (ML), it suffices to check that
∑N

n=1 SmnS
∗
mn
=

1. For f ∈ ML and c ∈ E∞, we have

N∑
n=1

SmnS
∗
mn
f (c) =

N∑
n=1

mn(c)〈mn, f 〉(σ (c))

=
N∑
n=1

wn(c0)

(
1

|s−1(r(c1))|
∑

s(e)=r(c1)

mn(eσ (c))f (eσ (c))

)

=
( ∑
s(e)=r(c1)

N∑
n=1

|s−1(r(c1))|−1wn(c0)wn(e)

)
f (eσ (c)).

Since the vectors (|s−1(r(c1))|−1/2wn(e))s(e)=r(c1) for 1 ≤ n ≤ |s−1(r(c1))|
are the columns of a unitary matrix, the rows are also pairwise orthogonal, and
hence the inside sum is 1 when e = c0 and 0 otherwise. Thus

N∑
n=1

SmnS
∗
mn
f (c) = f (c0σ(c)) = f (c),

and we have proved the claim.
In conclusion, then, we find that the module V1 has the form

V1
∼=

N⊕
n=1

SmnS
∗
mn
C(E∞) ∼=

N⊕
n=1

pnC(E
∞),

and the module W0 in the module decomposition of X∞(E) satisfies

W0
∼=

N⊕
n=2

pnC(E
∞).
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Remark 6.5. If every vertex in E emits the same number of edges, then
pn = 1 for every n, and the module W0 is free. In general, though, {c : n ≤
|s−1(r(c))|} will be a proper subset of E∞, pn will not be the identity of
C(E∞), and the modules in our “projective multi-resolution analysis” will not
be projective. We have stuck with the name because we wanted to emphasise
the connections with the work of Packer and Rieffel. However, our multi-
resolution analysis forX∞(E) seems to more closely resemble the generalised
multi-resolution analyses of Baggett, Medina and Merrill [3], with the function
c �→ |s−1(r(c))| playing the role of their multiplicity function.
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