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Abstract
We formulate and prove the analogue of the Baum-Connes conjecture for coactions of connected
compact groups.

1. Introduction

Let G be a second countable locally compact group. Let A be a separable
C∗-algebra with a strongly continuous action of G and let G �r A be the
reduced crossed product, again a separable C∗-algebra. The aim of the Baum-
Connes conjecture (with coefficients) is to compute the K-theory of G �r A.
For A = C endowed with the trivial action of G, this becomes a computation
of K(C∗r (G)), the K-theory of the reduced C∗-algebra of G. One defines a
certain graded Abelian group Ktop(G,A), called the topological K-theory of
G with coefficients in A, and a homomorphism

(1) μA: Ktop(G,A)→ K(A�r G),

which is called the Baum-Connes assembly map. The Baum-Connes conjecture
for G with coefficients in A asserts that this map is an isomorphism. It has
important applications in topology and ring theory. The conjecture is known
to hold in many cases, for instance, for amenable groups ([8]). A recent survey
article on the Baum-Connes conjecture is [7].

Our goal is to construct an analogue of topological K-theory and the Baum-
Connes assembly map for certain discrete quantum groups and their crossed
products. In this paper we will implement this program for the first non-trivial
case, that of a coaction of a compact group.

Debashish Goswami and A. O. Kuku have proposed such a construction
in [5]. Their approach is to extend the usual formulation of the Baum-Connes
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assembly map to the quantum group case. We shall follow a different route, the
main reason being as follows. The point of the Baum-Connes conjecture for
groups is that Ktop(G,A) should be easier to compute than K(G�rA). This is
true, but not obvious from the definition of Ktop(G,A), for the case of locally
compact groups. It is not clear at the moment how to compute the topological
K-theory for a discrete quantum group as it is defined by Goswami and Kuku.

Our approach to the Baum-Connes assembly map μ is inspired by an al-
ternative construction of μ (at least for discrete groups with commutative
coefficients) due to James Davis and Wolfgang Lück ([4]). Their construction
is purely topological, and the computability of Ktop(G) is more or less built in.
As it turns out, there exists a manageable translation of the methods from al-
gebraic topology in [4] into the setting ofC∗-algebras and bivariant KK-theory,
which gives a construction of the Baum-Connes assembly map for groups in
purely C∗-algebraic terms. Our approach has two advantages. We do not need
to use the classical concept of classifying space, which, in the quantum group
case has no natural analogue, and we do not use the concept of a proper group
action. Instead, we only need the notion of a proper homogeneous space, which
extends in an evident way to quantum groups. Moreover, the construction of
the assembly map comes right away with methods to compute Ktop(G,A), also
formulated in C∗-algebraic terms and therefore extend without any change to
quantum groups.

The main result of this paper is, loosely stated,

Theorem. Suppose thatG is a compact connected second countable group.
Then every element of KKĜ can be constructed using only proper homogen-
eous Ĝ-algebras.

The rest of this introduction contains an explanation of this statement.

1.1. Homological approach in the group case

Since the basic idea is the extension of the methods and results from [12],
we will start by recalling some basics from this paper. Let G be a locally
compact, second countable group. KKG denotes the category, whose objects
are separable C∗-algebras with continuous action ofG and whose morphisms
are given by the biequivariant KKG

0 -functors. The composition of morphisms
is provided by the Kasparov product

KKG(A,B)× KKG(B,C)→ KKG(A,C).

KKG, while not an abelian category, can be endowed with a triangulated struc-
ture, given as follows.
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(1) The shift is given by the (inverse) suspension:

A→ A[−1] = C0(R)⊗min A

(2) Distinguished triangles are the ones conjugate (in KKG) to the triangles
associated to cones over ∗-homomorphisms:

A
φ−−−−−−→ B

↖
� �↙ [1]

Cφ

Just as a reminder, let φ:A→ B be a G-equivariant ∗-homomorphism. Then
its mapping cone is given by

Cφ := {(a, b) ∈ A× C0(]0, 1], B) | φ(a) = b(1)}.
In KKG any morphism is conjugate to one given by a ∗-homomorphism [11],
and the following holds

Theorem 1.1 (see [12]). KKG with the above structure is a triangulated
category closed under countable direct sums.

For generalities on triangulated categories see [15].
Let CC denote the full subcategory of KKG consisting of all objects van-

ishing in KKK , for all compact subgroups K of G. Then one can form the
“quotient category”

KKG/CC.

As it turns out, this quotient category is equivalent to the localising subcategory
P of KKG generated by all properG-algebras. The general theory of triangu-
lated categories produces the machinery of functors localised with respect to
CC. To be more precise, given any covariant homological functor from KKG

to the category of say, abelian groups Ab,

F : KKG→ Ab,

there exists a left derived functor

LF : KKG/CC → Ab

and a natural transformation

μ : LF �⇒ F

such that F = LF on P . In particular, the following holds.
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Theorem 1.2 ([12]). In the above notation, let F(A) = K∗(A�r G). Then

KG
top(A) = LF(A)

and the assembly map coincides with the natural transformation LF �⇒ F .

The general machinery of derived functors provides a “simplicial approx-
imation” (see [2]) for arbitrary objects by objects of P . In our case, all that is
involved are G-algebras constructed by induction from H -algebras, where
H varies over the set of compact subgroups of G. In particular there ex-
ists a universal Dirac-element, i.e. a proper G-algebra PC and a morphism
D ∈ KKG(PC,C), the so called “simplicial approximation” of C, constructed
from proper homogeneous actions using standard methods of homological al-
gebra and such that both the derived functors and the assembly map for them
can be expressed by

LF(A) = F(PC ⊗min A)
D⊗1A−−−−→ F(A)

In this language various forms of the Baum-Connes conjecture have a very
natural, functorial description. Below we will be mainly interested in the fol-
lowing version, which is usually known as the “γ = 1”-property of G.

Strong Baum-Connes conjecture. The inclusion functor P ↪→ KKG

is an equivalence of categories.

1.2. Coaction of compact group case

We will assume from now on that G is a compact, second countable group. A
morphism φ : A→ B of not necessarily unital C∗-algebras is, by definition,
given by a ∗-homomorphism from A to the multiplier algebra M(B) of B,
satisfying the non-degeneracy condition

φ(A)B = B.
A morphism ofC∗-algebras extends to a strictly continuous ∗-homomorphism
of their multiplier algebras.

KKĜ denotes the category of G-comodules (or, equivalently Ĝ-modules),
i.e. separable C∗-algebras A with a coaction � of G, i.e. a morphism

� : A→ A⊗min C
∗(G),

satisfying two conditions:

• coassociativity: (�⊗ 1C∗(G)) ◦� = (1A ⊗�C∗(G)) ◦�, and
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• non-degeneracy: �(A)(1⊗ C∗(G)) and (1⊗ C∗(G))�(A) are both norm
dense in A⊗min C

∗(G)

Morphisms in KKĜ are given by elements of equivariant KK-theory (see [1]):

MorKKĜ (A, B) := KKĜ
0 (A,B).

C denotes a Ĝ-algebra with the coaction given by

1→ 1⊗ 1 ∈M(C⊗min C
∗(G)).

We endow KKĜ with a triangulated structure using the equivalence of categor-
ies induced by the crossed product functor:

KKG � A→ A�G ∈ KKĜ,

(see [1]) to transfer the triangulated structure of KKĜ introduced in [12].

1.3. Quantum homogeneous spaces

Let us start with a provisoric:

Definition 1.3. Let H be a quantum group ([10]). The standard notion
of a quantum homogeneous H -space is a ∗-coideal in H , i.e. a subalgebra
Q ⊂M(H ) such that

∇H : Q→M(H ⊗min Q)

(M stands for multiplier algebra). The classical property of properness for a
homogeneous G-space translates into:

Q ⊂ H .

Example 1.4. As an example, let Hi , i = 1, 2 be quantum groups, π :
H1 → H2 a Hopf ∗-homomorphism. We can define a coaction of H2 on H1

by
H1 � x → ∇(x) = ι⊗ π(∇1(x)) ∈ H1 ⊗min H2

The corresponding quantum homogeneous space is

Q = {x ∈ H1 | ∇(x) = x ⊗ 1},
where the coaction of H1 on Q is given by:

∇1 : Q→ H1 ⊗min Q
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This kind of quantum homogeneous space deserves the name classical, with
the “stabiliser” H2. However, not every quantum homogeneous space is of this
type.

Example 1.5 (Cocommutative quantum group case). A “cocommutative
quantum group” is just a classical group. The above just means:

H1 = C(G) and H2 = C(H); π(f ) = f ◦ φ, where φ : H → G is a group
homomorphism with closed range; ∇(f )(g, h) = f (gφ(h)); f ∈ Q⇐⇒ for
all h ∈ H f (gφ(h)) = f (g), i.e. Q is C0(G/φ(H)).

Example 1.6 (Commutative discrete quantum group). A commutative dis-
crete quantum group Ĝ is the dual of a compact groupG. The objects in KKĜ

are C∗-algebras with a coaction of G and, in the terms of the definition 1.3,
H = C∗(G). For the convenience of the reader, let us recall the precise mean-
ing of the “dual” in this case. Let W be the (multiplicative) unitary operator
on L2(G×G)) given by

Wξ(g, h) = ξ(g, gh).
For any φ ∈ B(L2(G))∗, we set

aφ = (φ ⊗ idB(L2(G)))(W) and âφ = idB(L2(G))⊗φ(W).
Then C∗(G) is the norm closure of the algebra generated by {aφ | φ ∈
B(L2(G))∗} and C(G) is the norm closure of the algebra generated by {âφ |
φ ∈ B(L2(G))∗}, both in B(L2(G)). The bilinear form

B(aφ, âψ) = (φ ⊗ ψ)(W)
defines a non-degenerate pairing between dense subsets of C∗(G) and C(G).

In more concrete terms, let λ : C(G) → C∗(G) be the integrated left
regular representation ofG and L = id : C(G)→ C(G) be the integrated left
regular representation of Ĝ. Then the pairing above reduces to

B(λ(f ), L(g)) =
∫
G

fg dμ,

where dμ is the Haar measure on G. Note that B does not extend to all of
C∗(G)× C(G).

Let Calg(G) denote the subalgebra of C(G) generated by the matrix coeffi-
cients of irreducible subrepresentations of the left regular representation. The
Peter-Weyl theory implies the following facts.
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• λ(Calg(G)) is dense in C∗(G) and consists of finite rank operators, in
fact, C∗(G) is a (C∗-algebraic) direct sum of a countable family of finite-
dimensional matrix algebras,

C∗(G) = ⊕̂πMdπ (C), π irreducible representation of G

and Calg(G) is the subalgebra given by the algebraic direct sum

⊕alg
π Mdπ (C);

• for any C∗-co-ideal Q in C∗(G), Qalg = Q ∩ λ(Calg(G)) is a dense ∗-
subalgebra of Q;

• for any C∗-subalgebra Q of C∗(G), Qalg is a direct sum of matrix algebras
and

�C∗(G)(Qalg) ⊂ Qalg ⊗alg C
∗(G)alg.

Suppose that Q is a (left, norm closed) coideal in C∗(G). Then the annihilator
of Qalg,

I = {f ∈ C(G) | B(X,L(f )) = 0 for all X ∈ Qalg}
is a norm closed ideal in C(G) and hence there exists an open subset H of G
such that I = {f ∈ C(G) | f |G\H = 0}. In other words, for f ∈ C(G),

λ(f ) ∈ Q⇐⇒ supp(f ) ⊂ H.
Since Q is a ∗-subalgebra of C∗(G), H has to be an open subgroup of G and
Q = C∗(H) as a subalgebra of C∗(G). All together, we obtained a bijection:

proper homogeneous subspaces of C∗(G)←→ open subgroups of G,

Note that there is no analogue of H2 (the stabiliser subgroup) in this case,
unless the open subgroup in question is normal.

In the case of actions of locally compact groups G the class of proper
homogeneous spaces already generates all proper actions ofG. As it turns out,
this is not quite enough, even for our simplest example of a quantum group
which is the dual of a compact group. Before giving the definition, we will
need a bit more notation.

Notation 1.7. For any locally compact group K and any two-cocycle
ω ∈ H 2(K, T ),we let (λω, L2(K)) denote the projective unitary representation
of K on L2(K)) given by

(λω(k)f )(l) = ω(k, l)f (k−1l).
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Given such a pair (K, ω), Cω will denote the C∗-algebra of compact operators
on L2(K) with the Ad λω action of K .

Given a compact, separable group G, we denote by IG the family of G-
coalgebras of the form

(2) (IndKK0
Cω)�G

where:

(i) K is a Lie-group quotient of G, K0 its component of identity and ω ∈
H 2(K0, T ) a finite valued cocycle;

(ii) IndKK0
Cω is the induced K-C∗-algebra with the action of G induced by

the homomorphism G→ K .

Definition 1.8. AG-coalgebra is called a proper homogeneous Ĝ-algebra
if it belongs to IG;

AG-coalgebraA ∈ KKĜ is called a cofibrant Ĝ-algebra if it belongs to the
localising subcategory of KKĜ generated by the elements of the form Y⊗minP

with Y a trivial Ĝ-algebra and P a proper homogeneous Ĝ-algebra. We will
denote this subcategory by P .

Remark 1.9. In the case of connected compact groups, the above amounts
to defining proper homogeneous Ĝ-algebras to be of the form C∗(G,ω), with
ω a finite-valued two cocycle on the group. Even if Ĝ has no “classical torsion”,
it still may have “quantum torsion”, coming from twisting of the product by
torsion 2-cocycles. The term “cofibrant” instead of proper as used in the group
case, comes from homological properties of the subcategory P .

1.4. Baum-Connes isomorphism for duals of compact groups

As usual, Baum-Connes isomorphism say nothing in the case of duals of finite
groups. This makes the case of the connected compact groups more transparent,
and we will deal mainly with this case. The precise statements, proved in the
last section of this paper, are as follows (see Theorems 3.6).

Theorem. Let G be a compact connected group. Every object in KKĜ is
cofibrant.

As an example of an application, let us note the following:

Corollary. Let G be a connected second countable compact group and
B a separable C∗-algebra with action of G. Suppose that G has a sequence
of subgroupsHk such that ∩kHk = {e} andG/Hk is a Lie group with torsion-
free fundamental group. Then, if K∗(BHk � (G/Hk)) = 0 for all k, then the
K-theory of B vanishes.
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For the complete statement and the proof see the corollary 3.8. The particular
case of connected simply connected Lie groups has been studied in [17].

2. The case of C and C(G/T ) � G

Let us recall that, given a triangulated category C and a family T of objects of
C , the localising subcategory of C generated by T is the smallest subcategory
of C containing T and closed under the shift, the mapping cone construction
and retracts.

Proposition 2.1. Suppose that G is a compact connected Lie group and
T its maximal torus. Then the G-module C(G/T ) belongs to the localising
subcategory of KKG generated by the G-modules of the form Cω, where ω is
a torsion class (i.e. has a finite-valued representative) in H 2(G, S1).

Proof. The proof will be done in two steps.

2.0.1. Hodgkins groups. Given a compact groupG, we will useRG to denote
its representation ring which is isomorphic to KKG(C,C). For any A and B
in KKG, KKG(A,B) has a natural left RG-module structure given by the
Kasparov exterior tensor product:

KKG(C,C)× KKG(A,B)→ KKG(A⊗ C, B ⊗ C) = KKG(A,B).

Lemma 2.2. Let G be a compact Lie group and let T denote its maximal
torus. Suppose that π1(G) is torsion free (i.e. G is a Hodgkins group). Let
S denote the localising subcategory of KKG generated by C(G/T ) and C.
Given any A ∈ Obj(S ), the natural homomorphism of abelian groups

jA : RT ⊗RG KKG(A,C)→ KKT (A,C)

given by the restriction of the second factor to KKT followed by multiplication
is an isomorphism.

Proof. Since the map is given by a natural transformation between two
cohomological functors, it is enough to check the claim on the generators of
S .

(i) For A = C. Since the trivial representation of G acts as a unit on RT ,

RT ⊗RG KKG(C,C) = RT ⊗RG RG jC−→ RT

is an isomorphism.
(ii) For A = C(G/T ). Since G is connected and π1(G) is torsion free, the

following are true.

• RT ⊗RG RT = K(C(G/T )� T ) (see McLeod [13]);



310 ralf meyer and ryszard nest

• Poincare duality:

KKG(C(G/T ),C) � KKG(C, C(G/T ))

as RG-modules ([17]);

• Green-Julg theorem ([6]): K(A� T ) = KKT (C, A);

• induction-restriction adjunction in KKG – given a G-algebra A and a T -
algebra B, the following holds:

KKT (A,B) = KKG(A, IndGT (B))

(see [17]).

The claim follows by noting that jC(G/T ) is given by the string of isomorphisms:

RT ⊗RG KKG(C(G/T ),C) � RT ⊗RG RT � K(C(G/T )� T )

� KKT (C,C(G/T )) � KKT (C(G/T ),C).

2.0.2. Proof of Proposition 2.1. Suppose first thatπ1(G) is torsion free. Then
(by [18]), RT is finitely generated and free over RG. Let n denote its rank. The
above lemma shows that the two representable functors on S :

A �⇒ KKG(A,C(G/T )) = KKT (A,C)

and
A �⇒ RT ⊗RG KKG(A,C) � KKG(A,Cn)

coincide. By the Yoneda lemma this implies that

(3) C(G/T ) = Cn in S and hence in KKG.

Let now G be an arbitrary connected compact Lie group. Let G̃ be a finite
connected covering group of G with a finite central subgroup Z such that
π1(G̃) is torsion free and G = G̃/Z. By the above,

(4) C(G̃/T̃ ) ∈ 〈C〉
holds in KKG̃.

Let us recall the partial descent functor [3]

F�Z : KKG̃ � A→ A� Z ∈ KKG

constructed as follows. Given a G̃-C∗-algebra A, the crossed product A � G̃

admits a coaction� of G̃ given by idA⊗�G̃ and hence the coaction ofG given
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by (idA⊗q) ◦ (idA⊗�G̃), where q : G̃→ G denotes the quotient map. The
double crossed product

(A� G̃)� Ĝ

has a natural (dual) action ofG and representsF�Z(A) in KKG. By construction
F�Z commutes both with the suspension and the mapping cone construction,
hence is triangulated and the equation (4) implies that

F�Z(C(G̃/T̃ )) ∈ 〈F�Z(C)〉.
It is easy to see that F�Z(C(G̃/T̃ )) splits as a direct sum of G-modules of
the form Cω ⊗min C(G/T ), where ω runs over all two-cocycles of G induced
by the characters of Z. In particular, one of the summands is C(G/T ). Since
F�Z(C) is given by the direct sum of G-modules of the form Cω, the claimed
result follows.

The following corollary of the proof will be useful later.

Corollary 2.3. Suppose thatG is a compact connected Lie group and T
its maximal torus. Then theG-module ⊕Cη⊗C(G/T ) contains aG-module
of the form Cω as a direct summand.

Corollary 2.4. Suppose thatG is a compact connected Lie group and T its
maximal torus. Then theG-moduleC(G) belongs to the localising subcategory
of KKG generated by theG-modules of the form Cω, whereω is a torsion class
(i.e. has a finite-valued representative) in H 2(G,T1).

Proof. Let T be a maximal torus in G. Then

(5) C(G) ∈ 〈C(G/T )〉 in KKG.

In fact, since T̂ = Zr is discrete abelian and torsion free, the strong Baum
Connes conjecture holds for T̂ , which in our language means that

C ∈ 〈c0(T̂ )〉 in KKT̂ .

By the (Takesaki-Takai) duality between KKT and KKT̂ ,

C(T ) = C∗(T̂ ) ∈ 〈C〉 in KKT .

Since the induction

KKT � A� IndGT (A) ∈ KKG

is a triangulated functor, this implies that

(6) C(G) = IndGT C(T ) ∈ 〈IndGT C〉 = 〈C(G/T )〉.
Together with the proposition 2.1 this implies the claim of the corollary.
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3. Non-trivial coefficients

3.1. The case of compact connected Lie groups

Let G be a compact connected Lie group and let T denote the maximal torus
of G. We will use the notation

A �⇒ �(A)

for the forgetful functor
KKG �⇒ KK.

Lemma 3.1. For any separable G-algebra A

A ∈ 〈IndGT (A⊗min Cω), ω ∈ H 2(G,T1) finite-valued〉
holds in KKG.

Proof. SinceA is aG-algebra, IndGT A � A⊗C(G/T ) and an application
of the corollary 2.3 implies the claimed result.

Lemma 3.2. For any separable G-algebra A,

A ∈ 〈�(A� T )〉
holds in KKT .

Proof. In fact, since the strong Baum-Connes conjecture holds for the free
abelian group T̂ ,

C ∈ 〈c0(T̂ )〉 in KKT̂

hence, taking crossed product with T̂ , we get

A � (A� T )� T̂ ∈ 〈((A� T )⊗min c0(T̂ ))� T̂ 〉
= 〈(�(A� T ))⊗min (c0(T̂ )� T̂ )〉 = 〈�(A� T )〉

as claimed.

Proposition 3.3. Suppose that G is a compact, connected Lie group and
A is a separable G-algebra. Then

A ∈ 〈�((A⊗min Cμ)� T )⊗min Cω, ω,μ ∈ H 2(G,T1) torsion〉
holds in KKG.

Proof. Using the above two lemmas we get, in KKG,

A ∈ 〈IndGT (A⊗min Cμ)〉 ⊂ 〈IndGT (�(A⊗min Cμ)� T )〉
= 〈�((A⊗min Cμ)� T )⊗min C(G/T )〉
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but, by Proposition 2.1,

〈�((A⊗min Cμ)� T )⊗min C(G/T )〉
⊂ 〈�((A⊗min Cμ)� T )⊗min Cω, ω,μ ∈ H 2(G, T )〉,

again in KKG.

Corollary 3.4. Let G be a compact, connected Lie group, T its maximal
torus, and B a separable G-coalgebra. Set

T (B) =
{
X

∣∣∣∣ X is a trivial G-comodule of the form

((B � Ĝ)⊗min Cω)� T , ω ∈ H 2(G,T1) torsion

}
.

Then, in KKĜ,

B ∈ 〈X ⊗min C
∗(G,ω) | X ∈ T (B), ω ∈ H 2(G, T ) torsion〉.

Proof. The claim follows immediately from above by writing B (up to
stable isomorphism) in the formA�G for aG-C∗-algebraA and by applying
the Baaj-Skandalis duality ([1]) from KKG to KKĜ.

3.2. The general connected compact group case

Theorem 3.5. Let G be a compact connected group. Every separable G-C∗-
algebra is KKG-equivalent to an object in the localising subcategory of KKG

generated by G-C∗-algebras of the form

Y ⊗min Cω

where

• K is a compact Lie group which is a quotient of G, ω is a finite valued
two-cocycle on K and

• Y is a separable C∗-algebra with trivial action of G.

Moreover, given a concrete A in KKG, the involved Y ’s are all of the form
(AH ⊗min Cμ) � T , where H is the kernel of the quotient homomorphism
G→ K , T is the maximal torus of K and μ is a finite valued two-cocycle on
K .

Proof. LetG be a connected compact group andA a separableG-algebra.
By the structure theory of second countable compact groups (cf. [14]), G can
be written as a projective limit

G = lim←−{G
n}
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of a sequence of compact connected Lie groupsGn. Let πn : G→ Gn denote
the induced homomorphisms. We can, and will, assume that πn are surjective.
Then πn induce functors

KKGn � KKG.

LetHn be the kernel of πn : G→ Gn. Set An = AHn

. Then An is a separable
Gn-algebra hence, by the proposition 3.3, An, as Gn- and hence G-module,
belongs to the localising category generated by the objects of the formY⊗minCω
as described in the theorem. Moreover

A = lim−→{An}.
In fact, let dμn denote the normalised Haar measure onHn. SinceG is compact,
for any a ∈ A,

lim
n→∞ sup

h∈Hn
‖h(a)− a‖ = 0,

hence the projections


n : A � a→
∫
Hn

h(a) dμn(h) ∈ An

satisfy
n(a)→ a as n→∞. Since localising subcategories are closed under
admissible countable direct limits [12], this implies that

A ∈
〈⋃
n

{Y ⊗min Cω, Y trivial Gn-module}
〉
.

Theorem 3.6. Suppose that G is a compact connected group. Then every
element of KKĜ is a cofibrant Ĝ-algebra.

More precisely, let Hk be any sequence of closed normal subgroups of G
such that∩kHk = {e} andG/Hk is a Lie group with the maximal torus Tk . Any
A ∈ KKĜ is KKĜ-equivalent to a C∗-algebra constructed (using mapping
cones, suspension, direct limits and retracts) from Ĝ-algebras of the form

Y ⊗min P

with P a proper homogeneous Ĝ-algebra and Y a C∗-algebra of the form

(7) ((A� Ĝ)Hk ⊗min Cω)� Tk,

with trivial Ĝ action.

Proof. This follows immediately by applying the crossed product functor
A� A�G to the theorem 3.5.
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Lemma 3.7. Suppose that G is a connected Lie group with maximal torus
T , and B is a separable C∗-algebra with continuous action of G. Then{

K∗((B ⊗min Cω)�G) = 0

for all finite-valued ω ∈ H 2(G,T1)

}
�⇒ {K∗(B � T ) = 0}

Proof. First of all, B � T is Morita equivalent to (B ⊗min C(G/T ))�G.
Applying theorem 3.6 above to the trivial Ĝ algebra C, we can conclude that, in
KKG, C(G/T ) is constructed from Cω’s. In particular,’ theK-theory of B�T

is constructed from the K-theory of (B ⊗min Cω)�G. This implies the claim
of the lemma.

Corollary 3.8. Let G be a connected compact group and B a separable
C∗-algebra with an action ofG. Suppose thatG has a sequence of subgroups
Hk such that ∩kHk = {e} and G/Hk

is a Lie group. Suppose moreover that, for all k,

K∗((BHk ⊗ Cω)� (G/Hk)) = 0

for all finite valued ω ∈ H 2(G/Hk,T1). Then

K∗(B) = 0.

In particular, if G is a connected Lie group and π1(G) has no torsion, then
vanishing of the K-groups of B �G implies vanishing of the K-groups of B
(see [16]).

Proof. Let Tk denote the maximal torus of G/Hk . Our assumptions to-
gether with the above lemma imply that, for all k,

K∗(BHk � Tk) = 0.

But then, by the theorem 3.5 and the Künneth formula, B belongs to the local-
ising subcategory of KK generated by a collection of elements with vanishing
K-groups and hence the K-groups of B have to vanish as well.
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