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(Dedicated to the memory of Gert K. Pedersen)

Abstract

In this paper we generalize Brown’s spectral distribution measure to a large class of unbounded
operators affiliated with a finite von Neumann algebra. Moreover, we compute the Brown measure
of all unbounded R-diagonal operators in this class. As a particular case, we determine the Brown
measure z = xy−1, where (x, y) is a circular system in the sense of Voiculescu, and we prove that
for all n ∈ N, zn ∈ Lp(M, τ ) if and only if 0 < p < 2

n+1 .

1. Introduction

Let M be a finite von Neumann algebra with a faithful, normal, tracial state τ ,
and let

�(T ) = exp

(∫ ∞

0
log t dμ|T |(t)

)

denote the corresponding Fuglede-Kadison determinant. L. G. Brown proved
in [3] that for every T ∈ M, there exists a unique, compactly supported
measure μT ∈ Prob(C) with the property that

log�(T − λ1) =
∫

C
log |z− λ| dμT (z), λ ∈ C.

This measure is called Brown’s spectral distribution measure (or just the Brown
measure) of T . It was computed in a number of special cases in [9], [2], [5], and
[1]. In particular, it was proven in [9, Theorem 4.5] that if T ∈ M isR-diagonal
in the sense of Nica and Speicher [16], then μT can be determined from the
S-transform of the distribution μ|T |2 . For simplicity, assume that T ∈ M is
an R-diagonal element which is not proportional to a unitary and for which
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ker(T ) = 0. ThenμT is the unique probability measure on C which is invariant
under the rotations z �→ γ z, γ ∈ T, and which satisfies

μT
(
B

(
0,Sμ|T |2 (t − 1)−

1
2
)) = t, 0 < t < 1.

In this paper we extend the Brown measure to all operators in the set M� of
closed, densely defined operators T affiliated with M satisfying∫ ∞

0
log+ t dμ|T |(t) < ∞,

where log+ t = max{log t, 0}. Moreover, we extend [9, Theorem 4.5] to all
R-diagonal operators in M�. Finally, we will study a particular example of an
unbounded R-diagonal element, namely the operator z = xy−1, where (x, y)
is a circular system in the sense of Voiculescu.

The material in this paper is organized as follows: In section 2 we introduce
the class M� and generalize the Brown measure to all T ∈ M� by proving,
that for such T , there is a unique μT ∈ Prob(C) satisfying∫

C
log+ |z| dμT (z) < ∞

and
log�(T − λ1) =

∫
C

log |z− λ| dμT (z), λ ∈ C.

Moreover, we extend Weil’s inequality∫
C
|z|p dμT (z) ≤ ‖T ‖pp

to all T ∈ Lp(M, τ ). The main results in section 2 are stated in the appendix of
Brown’s paper [3] without proofs or with very sketchy proofs. Since the results
of the remaining sections of this paper and of our forthcoming paper [10] rely
heavily on these statements, we have decided to include complete proofs. We
will follow a different route than the one outlined in [3]. For instance, we do
not use the functions �t(T ) and sT (t) from [3, section 1].

In section 3 we introduce unbounded R-diagonal operators and we prove
the following generalization of [9, section 3]: The powers (Sn)∞n=1 of an R-
diagonal operator are R-diagonal, and the sum S + T and the product ST of
∗-free R-diagonal operators are again R-diagonal. Moreover,

μ|Sn|2 = μ�n
|S|2 ,

μ̃|S+T | = μ̃|S| � μ̃|T |,
μ|ST |2 = μ|S|2 � μ|T |2 ,
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where μ̃ = 1
2 (μ+ μ̌) denotes the symmetrization of a measure μ ∈ Prob(R),

and � (�, resp.) denotes the additive (multiplicative, resp.) free convolution
of measures (cf. [4]). These results are applied in section 4 to determine the
Brown measure of R-diagonal operators in M�.

In section 5 we consider the operator z = xy−1, where (x, y) is a circular
system in the sense of Voiculescu, and we prove that the Brown measure of z
is given by

dμz(s) = 1

π(1 + |s|2)2 d Re s d Im s.

Moreover, we show that for all n ∈ N, zn, z−n ∈ Lp(M, τ ) iff 0 < p < 2
n+1 ,

and when this holds,

‖zn‖pp = ‖z−n‖pp = (n+ 1) sin
(
πp

2

)
sin

(
(n+1)πp

2

) ,

and
‖(zn − λ1)−1‖p ≤ ‖z−n‖p, λ ∈ C.

The last two formulas play a key role in our forthcoming paper [10] on invariant
subspaces for operators in a general II1-factor.

2. The Brown measure of certain unbounded operators

In [3, Appendix] Brown described in outline how to define a Brown measure
for certain unbounded operators affiliated with M, where M is a von Neumann
algebra equipped with a faithful, normal, semifinite trace.

In this section we give a more detailed exposition on the subject in the
case where M is a finite von Neumann algebra with faithful, tracial state τ .
To be more explicit, we show how one can extend the definition of the Brown
measure to a class M� of closed, densely defined operators affiliated with M.
We also prove that many of the properties of the Brown measure for bounded
operators carry over to the unbounded case.

We let M̃ denote the set of closed, densely defined operators affiliated with
M. Recall that every operator T ∈ M̃ has a polar decomposition

(2.1) T = U |T | = U

∫ ∞

0
t dE|T |(t),

where U ∈ M is a unitary, and the spectral measure E|T | takes values in M.
In particular, for T ∈ M̃ we may define μ|T | ∈ Prob(R) by

(2.2) μ|T |(B) = τ(E|T |(B)), (B ∈ B).
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Definition 2.1. We denote by M� the set of operators T ∈ M̃ fulfilling
the condition

(2.3) τ (log+ |T |) =
∫ ∞

0
log+(t) dμ|T |(t) < ∞.

For T ∈ M�, the integral
∫ ∞

0
log t dμ|T |(t) ∈ R ∪ {−∞}

is well-defined, and we define the Fuglede-Kadison determinant of T ,�(T ) ∈
[0,∞), by

(2.4) �(T ) = exp

(∫ ∞

0
log t dμ|T |(t)

)
.

Note that for T ∈ M, �(T ) is the usual Fuglede-Kadison determinant of
T .

Remark 2.2. If T ∈ Lp(M, τ ) for some p ∈ (0,∞), then
∫ ∞

0
tp dμ|T |(t) < ∞,

implying that
∫ ∞

1
log t dμ|T |(t) = 1

p

∫ ∞

1
log(tp) dμ|T |(t) ≤ 1

p

∫ ∞

1
tp dμ|T |(t) < ∞,

and hence T ∈ M�.

Lemma 2.3. If T ∈ M� and �(T ) > 0, then T is invertible in M̃, T −1 ∈
M�, and �(T −1) = 1

�(T )
.

Proof. If T ∈ M� and �(T ) > 0, then

∫ 1

0
| log t | dμ|T |(t) < ∞.

Hence, τ(E|T |({0})) = μ|T |({0}) = 0, so that ker(T ) = {0}. Since M is finite,
also ker(T ∗) = {0}, which implies that T has a closed, densely defined inverse
T −1 ∈ M̃. Take a unitary U ∈ M such that T = U |T |. Then

|T −1| = U |T |−1U ∗.
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Hence, μ|T −1| = μ|T |−1 . Since μ|T |−1 is the push-forward measure of μ|T | via
the map t �→ 1

t
, we now have that

∫ ∞

1
log t dμ|T −1|(t) =

∫ ∞

1
log t dμ|T |−1(t) =

∫ 1

0
log

(
1

t

)
dμ|T |(t)

= −
∫ 1

0
log t dμ|T |(t) < ∞.

Hence, T −1 ∈ M� and

log�(T −1) =
∫ ∞

0
log

(
1

t

)
dμ|T |(t) = − log�(T ),

i.e. �(T −1) = 1
�(T )

.

Lemma 2.4. Let T ∈ M̃. Then the following are equivalent:

(a) T ∈ M�, i.e.
∫ ∞

0 log+(t) dμ|T |(t) < ∞.

(b) T = AB−1 for some A,B ∈ M with �(B) > 0.

(c) T = C−1D for some C,D ∈ M with �(C) > 0.

Moreover, if T ∈ M� and T = AB−1 = C−1D for some A,B,C,D ∈ M

with �(B),�(C) > 0, then

(2.5) �(T ) = �(A)

�(B)
= �(D)

�(C)
.

Proof. If T ∈ M�, then T = U |T | for some unitary U ∈ M, and T =
AB−1, where

(2.6) A = U |T |(|T |2 + 1)−
1
2 ∈ M

and

(2.7) B = (|T |2 + 1)−
1
2 ∈ M.

Since 1
2 log(t2 + 1) ≤ log(2t) when t ≥ 1, we get that

(2.8)

log�(B) = −1

2

∫ ∞

0
log(t2 + 1) dμ|T |(t)

≥ −1

2

∫
[0,1[

log 2 dμ|T |(t)−
∫

[1,∞[
log(2t) dμ|T |(t) > −∞,

that is, �(B) > 0.
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Also, T = U |T |U ∗U , and with

(2.9) S = U |T |U ∗,

(2.10) C = (S2 + 1)−
1
2 ∈ M,

and

(2.11) D = S(S2 + 1)−
1
2 ∈ M,

we have that T = C−1DU . Moreover,

log�(C) = −1

2

∫ ∞

0
log(t2 + 1) dμS(t)

= −1

2

∫ ∞

0
log(t2 + 1) dμ|T |(t) > −∞,

i.e. �(C) > 0.
Now we have shown that (a) implies (b) and (c). On the other hand, if

T = AB−1 for some A,B ∈ M with �(B) > 0, then we may assume that
B ≥ 0. Then

τ(log+ |T |) ≤ τ(log(1 + |T |2)) = τ(log(1 + B−1A∗AB−1)).

Since B−1A∗AB−1 ≤ ‖A‖2B−2, and since t �→ log(1 + t) is operator mono-
tone on [0,∞), we get that

τ(log+ |T |) ≤ τ(log(1 + ‖A‖2B−2))

≤ τ(log((1 + ‖A‖2)(1 + B−2)))

= log(1 + ‖A‖2)+ τ(log(1 + B−2)).

Since B is bounded and �(B) > 0,

τ(log(1 + B−2)) = τ(log(B2 + 1))− 2τ(logB)

≤ log(‖B‖2 + 1)− 2�(B)

< ∞.

This shows that T ∈ M�, i.e. (b) implies (a). It follows that if T = C−1D for
some C,D ∈ M with�(C) > 0, then T ∗ ∈ M�. Take a unitary U ∈ M such
that T = U |T |. Then |T ∗| = U |T |U ∗, implying that μ|T ∗| = μ|T |. Hence T
belongs to M� as well, and (c) implies (a).
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Now, let T ∈ M�. Then T = AB−1 = C−1D for some A,B,C,D ∈ M

with �(B),�(C) > 0. Moreover, for all such choices of A,B,C and D,

CA = C(AB−1)B = C(C−1D)B = DB.

Since � is multiplicative on M (cf. [7]), it follows that

�(C)�(A) = �(CA) = �(DB) = �(D)�(B).

Hence,

(2.12)
�(A)

�(B)
= �(D)

�(C)
.

In particular, with A and B as in (2.6) and (2.7), respectively, we have that
�(B) > 0, T = AB−1, and

log�(A) =
∫ ∞

0
log

(
t√
t2 + 1

)
dμ|T |(t),

and
log�(B) =

∫ ∞

0
log

(
1√
t2 + 1

)
dμ|T |(t),

so that
log�(T ) = log�(A)− log�(B).

Then by (2.12), for all choices of C,D ∈ M with �(C) > 0 and T = C−1D,

�(D)

�(C)
= �(A)

�(B)
= �(T ).

Then finally, by (2.12), for all choices of A,B ∈ M with �(B) > 0 and
T = AB−1, we also have that

�(A)

�(B)
= �(T ).

Proposition 2.5. If S, T ∈ M�, then ST ∈ M�, and

(2.13) �(ST ) = �(S)�(T ).

Proof. Let S, T ∈ M�. Take A,B,C,D ∈ M with �(B),�(C) > 0,
such that T = AB−1 and S = C−1D. Then

ST = C−1DAB−1,
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whereDAB−1 ∈ M�. Hence there exist E,F ∈ M with�(E) > 0 such that
DAB−1 = E−1F . It follows that

(2.14) ST = C−1E−1F = (EC)−1F,

where EC,F ∈ M, and �(EC) = �(E)�(C) > 0. That is, ST belongs to
M�.

To prove (2.13), we let A,B,C,D,E, F be as above. Applying (2.5) to
ST = (EC)−1F , S = C−1D and T = AB−1, we get that

�(ST ) = �(F)

�(EC)
= �(F)

�(E)�(C)
= �(DA)

�(B)

1

�(C)

= �(A)

�(B)

�(D)

�(C)
= �(S)�(T ).

Proposition 2.6. M� is a subspace of M̃. In particular, for T ∈ M� and
λ ∈ C, T − λ1 ∈ M�.

Proof. Clearly, if T ∈ M� and α ∈ C, then αT ∈ M�. If S, T ∈ M,
choose A,B,C,D ∈ M with �(B) > 0, �(C) > 0 and such that

S = C−1D, T = AB−1.

Then
S + T = C−1(DB + CA)B−1,

where DB + CA ∈ M and B−1, C−1 ∈ M� (cf. Lemma 2.3). Then, by
Proposition 2.5, S + T ∈ M�.

In the following we consider a fixed operator T ∈ M�. Then we define
f : C → [−∞,∞) by

(2.15) f (λ) = L(T − λ1) := log�(T − λ1), (λ ∈ C).

The next thing we want to prove is:

Theorem 2.7. f given by (2.15) is subharmonic in C, and

(2.16) dμT = 1

2π
∇2f dλ

(taken in the distribution sense) defines a probability measure on (C,B2). μT
is the unique probability measure on (C,B2) satisfying

(i) ∫
C

log+ |z| dμT (z) < ∞,
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(ii)

(2.17) ∀λ ∈ C : L(T − λ1) =
∫

C
log |λ− z| dμT (z).

Moreover,

(iii)

(2.18)
∫

C
log+ |z| dμT (z) = 1

2π

∫ 2π

0
f (eiθ ) dθ.

The following lemma was proven by F. Larsen in his unpublished thesis
(cf. [14, section 2]). For the convenience of the reader we include a (somewhat
different) proof.

Lemma 2.8. Let a, b ∈ M and let ε > 0. Define gε, g : C → R by

gε(λ) = 1
2τ(log((a − λb)∗(a − λb)+ ε1)),

and
g(λ) = log�(a − λb).

Then gε is subharmonic, and if g(λ) > −∞ for some λ ∈ C, then g is
subharmonic as well.

Proof. Let λ1 = Re(λ), λ2 = Im(λ), λ ∈ C. At first we show that
(λ1, λ2) �→ gε(λ1 + iλ2) is a C2-function in R2. Fix ε > 0, and define
h, k : C → M by

h(λ) = (a − λb)∗(a − λb)+ ε1,

k(λ) = (a − λb)(a − λb)∗ + ε1.

Then h and k are second order polynomials in (λ1, λ2) with coefficients in M,
and h(λ) ≥ ε1, k(λ) ≥ ε1 for all λ ∈ C. Hence, by [11, Lemma 4.6],

gε(λ) = 1
2τ(logh(λ)), λ ∈ C,

has continuous partial derivatives given by

∂gε

∂λj
= 1

2
τ

(
h−1 ∂h

∂λj

)
, j = 1, 2.

Therefore, by [11, Lemma 3.2], gε is a C2-function with
(2.19)
∂2gε

∂λi∂λj
= 1

2
τ

(
−h−1 ∂h

∂λi
h−1 ∂h

∂λj
+ h−1 ∂2h

∂λi∂λj

)
, i = 1, 2, j = 1, 2.
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Since gε is C2, gε is subharmonic if and only if its Laplacian

∂2gε

∂λ2
1

+ ∂2gε

∂λ2
2

is positive. Following standard notation, we let

∂

∂λ
= 1

2

(
∂

∂λ1
− i

∂

∂λ2

)
and

∂

∂λ
= 1

2

(
∂

∂λ1
+ i

∂

∂λ2

)
.

Then
∂2gε

∂λ2
1

+ ∂2gε

∂λ2
2

= 4
∂2gε

∂λ∂λ

By application of (2.19), we find that

(2.20)
∂2gε

∂λ∂λ
= 1

2
τ

(
−h−1 ∂h

∂λ
h−1 ∂h

∂λ
+ h−1 ∂

2h

∂λ∂λ

)
.

Since
h(λ) = a∗a − λa∗b − λb∗a + |λ|2b∗b + ε1,

we have
∂h

∂λ
= −a∗b + λb∗b = −(a − λb)∗b,

∂h

∂λ
= −b∗a + λb∗b = −b∗(a − λb),

and
∂2h

∂λ∂λ
= b∗b.

Applying the identity x(x∗x + ε1)−1 = (xx∗ + ε1)−1x to x = a − λb, we
find that

∂2h

∂λ∂λ
− ∂h

∂λ
h−1 ∂h

∂λ
= b∗b − b∗x(x∗x + ε1)−1x∗b

= b∗b − b∗(xx∗ + ε1)−1xx∗b

= b∗b − b∗(1 − ε(xx∗ + ε1)−1)b

= εb∗(xx∗ + ε1)−1b

= εb∗k−1b.
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Then by (2.20),

∂2gε

∂λ∂λ
= ε

2
τ
(
h(λ)−1b∗k(λ)−1b

)

= ε

2
τ
(
h(λ)−

1
2 b∗k(λ)−1bh(λ)−

1
2
) ≥ 0,

showing that gε is subharmonic.
Fix λ ∈ C, and let x = a − λb as above. Then

gε(λ) = 1

2

∫ ‖x‖

0
log(t2 + ε) dμ|x|(t),

and
g(λ) = 1

2

∫ ‖x‖

0
log(t2) dμ|x|(t).

Hence, gε is a monotonically decreasing function of ε > 0, and

g(λ) = lim
ε→0+

gε(λ).

According to [13], g is then either subharmonic or identically −∞.

Proposition 2.9. Let T ∈ M�. Then the function f : C → [−∞,∞[
given by

f (λ) = log�(T − λ1)

is subharmonic in C.

Proof. Define T1, T2 ∈ M by

(2.21) T1 = T (T ∗T + 1)−
1
2

and

(2.22) T2 = (T ∗T + 1)−
1
2 .

Then for every λ ∈ C,

T − λ1 = (T1 − λT2)T
−1

2 ,

where �(T2) > 0 (cf. (2.8)). Thus, T − λ1 ∈ M� with

�(T − λ1) = �(T1 − λT2)�(T2)
−1,

i.e.

(2.23) f (λ) = L(T − λ1) = L(T1 − λT2)− L(T2).
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Then by Lemma 2.8, f is either subharmonic or identically −∞. With

h(λ) = L(T2 − λT1)− L(T2),

h(0) = 0 > −∞, and it follows from Lemma 2.8 that h is subharmonic. In
particular, h(λ) > −∞ for almost every λ ∈ C w.r.t. Lebesgue measure. For
λ ∈ C \ {0},

f (λ) = h

(
1

λ

)
+ log |λ|.

Hence, f is not identically −∞.

Recall from [13, Section 3.5.4] that one can associate to every subharmonic
function u the socalled Riesz measure μu, which is a positive Borel measure
on R2 uniquely determined by

(2.24) ∀φ ∈ C∞
c (R

2) :
1

2π

∫
R2
u∇2φ dm =

∫
R2
φ dμu.

One uses the notation dμu = 1
2π∇2u dλ, and this is what is meant by (2.16).

In order to prove the rest of Theorem 2.7, we need some general lemmas
on subharmonic functions:

Lemma 2.10. Let g : C → [−∞,∞[ be a subharmonic function, and for
r > 0 define

m(g, r) = 1

2π

∫ 2π

0
g(reiθ ) dθ,(2.25)

M(g, r) = sup
|z|=r

g(z).(2.26)

Then

(2.27) g(0) = lim
r→0

m(g, r) = lim
r→0

M(g, r).

Proof. Clearly, m(g, r) ≤ M(g, r) for every r > 0. Moreover, since g is
subharmonic, g(0) ≤ m(g, r), (r > 0). It follows that

(2.28) g(0) ≤
{

lim supr→0 m(g, r) ≤ lim supr→0 M(g, r)

lim infr→0 m(g, r) ≤ lim infr→0 M(g, r)

Now, every upper semicontinuous function attains a maximum on every com-
pact set. In particular, there exists for every r > 0 a complex number zr of
modulus r such that g(zr) = M(g, r). zr → 0 as r → 0, and therefore

(2.29) g(0) ≥ lim sup
r→0

g(zr) = lim sup
r→0

M(g, r).
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It follows from (2.28) and (2.29) that

g(0) ≤ lim inf
r→0

m(g, r) ≤
⎧⎨
⎩

lim sup
r→0

m(g, r)

lim inf
r→0

M(g, r)

⎫⎬
⎭ ≤ lim sup

r→0
M(g, r) ≤ g(0),

so the four inequalities above are in fact identities, and this proves (2.27).

Lemma 2.11. f given by (2.15) satisfies

(2.30) lim
r→∞(M(f, r)− log r) = lim

r→∞(m(f, r)− log r) = 0.

Proof. Define h : C → [−∞,∞[ by

(2.31) h(λ) = L(T2 − λT1)− L(T2), λ ∈ C.

Then h is subharmonic with h(0) = 0, and it follows from Lemma 2.10 that

(2.32) 0 = lim
r→0

m(h, r) = lim
r→0

M(h, r).

Since

(2.33) h(λ) = log |λ| + f ( 1
λ
), λ �= 0,

we get that when r > 0,

M(f, r) = M
(
h, 1

r

) + log r,

m(f, r) = m
(
h, 1

r

) + log r,

and combining this with (2.32) we obtain the desired result.

Lemma 2.12. Let R > r > 0, and let g be subharmonic in C. Then with
dμ = 1

2π∇2g dλ and

ψ(z) =

⎧⎪⎨
⎪⎩

log
(
R
r

)
, |z| ≤ r

log
(
R
|z|

)
, r < |z| < R

0, |z| ≥ R

one has that

(2.34) m(g,R)−m(g, r) =
∫

C
ψ(z) dμ(z).

Proof. Cf. [13, (3.5.7)].
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Proof of Theorem 2.7. When R > 1 > 0 define ψR : C → R by

ψR(z) =
⎧⎨
⎩

logR, |z| ≤ 1

log
(
R
|z|

)
, 1 < |z| < R

0, |z| ≥ R

Then, according to Lemma 2.12,

(2.35)
∫

C
ψR(z) dμT (z) = m(f,R)−m(f, 1).

Now, 1
logRψR ↗ 1 as R → ∞, so by the Monotone Convergence Theorem,

(2.35) and Lemma 2.11,

μT (C) = lim
R→∞

m(f,R)−m(f, 1)

logR
= 1,

that is, μT is a probability measure.
When R > 1, let

(2.36) ωR(z) = logR − ψR(z), z ∈ C.

Then ωR(z) ↗ log+ |z| as R → ∞, and hence by one more application of
Lemma 2.11,
∫

C
log+ |z| dμT (z) = lim

R→∞

∫
C
ωR dμT = lim

R→∞(logR −m(f,R)+m(f, 1))

= m(f, 1),

proving (2.18). Note that since f is subharmonic, (2.18) imlies that∫
C log+ |z| dμT (z) < ∞.

To see that (2.17) holds, it suffices to consider the case λ = 0. Indeed, for
fixed λ ∈ C one easily sees that μT−λ1 is the push-forward measure of μT
under the map z �→ z− λ (cf. Lemma 2.14), and therefore

(2.37)
∫

C
log |z− λ| dμT (z) =

∫
C

log |z| dμT−λ1(z).

In the case λ = 0 one has to compute the integrals
∫

C log± |z| dμT (z). We have
just seen that

(2.38)
∫

C
log+ |z| dμT (z) = m(f, 1),
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and with

χr(z) =

⎧⎪⎨
⎪⎩

log 1
r
, |z| ≤ r

log 1
|z| , r < |z| ≤ 1

0, |z| ≥ 1

χr(z) ↗ log− |z| as r ↘ 0. Hence by Lemma 2.10 and Lemma 2.12,
∫

C
log− |z| dμT (z) = lim

r→0

∫
C
χr dμT = lim

r→0
(m(f, 1)−m(f, r))

= m(f, 1)− f (0).

Combining this with (2.38) we get that
∫

C
log |z| dμT (z) = f (0) = L(T ),

as desired.
In order to prove that μT is uniquely determined by (i) and (ii) of The-

orem 2.7, suppose ν ∈ Prob(C) satisfies

(2.39)
∫

C
log+ |z| dν(z) < ∞,

and

(2.40) ∀λ ∈ C :
∫

C
log |z− λ| dν(z) = L(T − λ1).

Note that (2.39) implies that
∫

C log |z− λ| dν(z) is well-defined, since

log |z− λ| ≤ log(|z| + |λ|),
and

|z| + |λ| ≤ (|λ| + 1) · max{1, |z|}.
Hence

(2.41) log |z− λ| ≤ log(|λ| + 1)+ log+ |z|.
Since μ and ν are both probability measures, it follows from a C∞-version

of Urysohn’s Lemma (cf. [8, (8.18)]) that if
∫

C
φ dμT =

∫
C
φ dν
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for every function φ ∈ C∞
c (R

2), then μT = ν. Then consider an arbitrary
function φ ∈ C∞

c (R
2). Since the Laplacian of w �→ 1

2π log |w − z| (in the
distribution sense) is the Dirac measure δz at z, one has that

(2.42)

∫
C
φ(z) dν(z) =

∫
C

(∫
C
φ(λ) δz(λ)

)
dν(z)

= 1

2π

∫
C

(∫
C
(∇2φ)(λ) log |z− λ| dλ

)
dν(z).

At this place we would like to reverse the order of integration, but it is not
entirely clear that this is a legal operation. Therefore we put M = ‖∇2φ‖∞,
and take χ ∈ C∞

c (R
2) such that 0 ≤ χ ≤ 1 and χ|supp(∇2φ)

= 1. With

ψ1 = 1

2
(M + ∇2φ)χ

and
ψ2 = 1

2
(M − ∇2φ)χ

one has that ψ1, ψ2 ∈ C∞
c (R

2)+, and ∇2φ = ψ1 − ψ2.
Also not that, according to (2.41),

h(λ, z) := log(|λ| + 1)+ log+ |z| − log |z− λ| ≥ 0.

Therefore by Tonelli’s Theorem
(2.43)∫

C
ψi(λ)

∫
C
h(λ, z) dν(z) dλ =

∫
C

∫
C
ψi(λ)h(λ, z) dλ dν(z), i = 1, 2.

The map λ �→ L(T − λ1) is subharmonic and therefore locally integrable.
Since∫

C
h(λ, z) dν(z) = log(|λ| + 1)+

∫
C

log+ |z| dν(z)− L(T − λ1),

where λ �→ L(T − λ1) is subharmonic and therefore locally integrable,
∫

C
ψi(λ)

∫
C
h(λ, z) dν(z) dλ < ∞, i = 1, 2.

It now follows from (2.43) that
∫

C
(∇2φ)(λ)

∫
C
h(λ, z) dν(z) dλ =

∫
C

∫
C
(∇2φ)(λ)h(λ, z) dλ dν(z),
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and since ∫
C
|(∇2φ)(λ)|

∫
C

log(|λ| + 1) dν(z) dλ < ∞,

and ∫
C
|(∇2φ)(λ)|

∫
C

log+ |z| dν(z) dλ < ∞,

we deduce that∫
C
φ(z) dν(z) = 1

2π

∫
C

(∫
C
(∇2φ)(λ) log |λ− z| dλ

)
dν(z)

= 1

2π

∫
C
(∇2φ)(λ)

∫
C

log |λ− z| dν(z) dλ

= 1

2π

∫
C
(∇2φ)(λ)L(T − λ1) dλ

=
∫

C
φ(z) dμT (z),

and this is the desired identity.

It follows from Theorem 2.7 that one can associate to every operator T ∈
M� a probability measure μT on (C,B2), such that in the case where T ∈ M,
μT agrees with the Brown measure of T . Therefore we make the following
definition:

Definition 2.13. For T ∈ M� we shall say that the probability measure
μT from Theorem 2.7 is the Brown measure of T .

In the remaining part of this section we will see that many of the properties
of the Brown measure for bounded operators carry over to this more general
setting.

Proposition 2.14. Let T ∈ M�. Then for every r > 0 and every λ ∈ C,
the Brown measure of rT + λ1, μrT+λ1, is the push-forward measure of μT
via the map z �→ rz+ λ.

Proof. Making use of Urysohn’s Lemma for C∞-functions on R2 (cf. [8,
(8.18)]) and the fact that both of the measures considered here are probability
measures, one easily sees that if∫

C
φ(z) dμrT+λ1(z) =

∫
C
φ(rz+ λ) dμT (z)

for every φ ∈ C∞
c (R

2), then the two measures in speak agree on compact sets
and hence on all of B2.
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Let φ ∈ C∞
c (R

2). Then by definition,

∫
C
φ(rz+ λ) dμT (z) = 1

2π

∫
C

(
∂2

∂z2
1

+ ∂2

∂z2
2

)
φ(rz+ λ) f (z) dz

= 1

2π

∫
C
r2

(
∂2

∂w2
1

+ ∂2

∂w2
2

)
φ(w)f

(
1

r
(w − λ)

)
1

r2
dw

= 1

2π

∫
C
∇2φ(w)f

(
1

r
(w − λ)

)
dw

= 1

2π

∫
C
∇2φ(w) [L(rT + λ1 − w1)− log r] dw

=
∫

C
φ(w) dμrT+λ1(w)− log r ·

∫
C
∇2φ(w) dw

=
∫

C
φ(w) dμrT+λ1(w),

where the last identity follows from Green’s Theorem.

Proposition 2.15. For every T ∈ M� and every m ∈ N, μTm is the push-
forward measure of μT via the map z �→ zm.

Proof. Let ν ∈ Prob(C) denote the push-forward measure of μT under the
map z �→ zm. According to Theorem 2.7 it suffices to prove that

∫
C

log+ |z| dν(z) < ∞,

and

∀ λ ∈ C :
∫

C
log |λ− z| dν(z) = L(T m − λ1).

Here
∫

C
log+ |z| dν(z) =

∫
C

log+ |zm| dμT (z) = m

∫
C

log+ |z| dμT (z) < ∞,

and if we let θ1, . . . , θm denote the m complex roots of Q(z) = zm − 1, then
for every λ ∈ C,

|λ− zm| =
m∏
k=1

∣∣θkλ 1
m − z

∣∣.
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Hence ∫
C

log |λ− z| dν(z) =
∫

C
log |λ− zm| dμT (z)

=
∫

C

m∑
k=1

log
∣∣θkλ 1

m − z
∣∣ dμT (z)

=
m∑
k=1

L
(
T − θkλ

1
m 1

)

= L

( m∏
k=1

(
T − θkλ

1
m 1

))

= L(T m − λ1),

as desired.

Proposition 2.16. If T ∈ M� with

(2.44)
∫ 1

0
log t dμ|T |(t) > −∞,

then μT ({0}) = μ|T |({0}) = 0, and T has an inverse T −1 ∈ M�. Moreover,
μT −1 is the push-forward measure of μT via the map z �→ z−1.

Proof. According to Theorem 2.7,

(2.45)
∫

C
log |z| dμT (z) = L(T ) =

∫ ∞

0
log t dμ|T |(t).

Hence, if (2.44) holds, then

(2.46) −∞ <

∫
C

log |z| dμT (z) < ∞,

and therefore μT ({0}) = μ|T |({0}) = 0. Moreover, |T | has an inverse |T |−1 ∈
M̃ with ∫ ∞

0
log+(t) dμ|T |−1(t) =

∫ ∞

0
log+

(
1

t

)
dμ|T |(t)

= −
∫ 1

0
log t dμ|T |(t) < ∞,

so |T |−1 ∈ M�. Take U ∈ U(M) such that T = U |T |. Then T −1 =
|T |−1U ∗ ∈ M�.
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Now, let ν denote the push-forward measure ofμT under the map z �→ z−1.
According to Theorem 2.7, if

(2.47)
∫

C
log+ |z| dν(z) < ∞,

and

(2.48) ∀λ ∈ C :
∫

C
log |z− λ| dν(z) = L(T −1 − λ1),

then ν = μT −1 . Applying (2.46) we find that
∫

C
log+ |z| dν(z) =

∫
C

log+
∣∣∣∣1

z

∣∣∣∣ dμT (z) = −
∫
(|z|≤1)

log |z| dμT (z) < ∞.

In order to prove that (2.48) holds, let λ ∈ C. If λ �= 0, then, using the
multiplicativity of � on M�, we find that

∫
C

log |z− λ| dν(z) =
∫

C
log

∣∣∣∣1

z
− λ

∣∣∣∣ dμT (z)

=
∫

C
log

∣∣∣∣1

z

(
1

λ
− z

)
λ

∣∣∣∣ dμT (z)

=
∫

C

(
log |λ| + log

∣∣∣∣1

λ
− z

∣∣∣∣ − log |z|
)
dμT (z)

= L(λ1)+ L

(
T − 1

λ
1
)

− L(T )

= L

(
λ1

(
T − 1

λ
1
)
T −1

)

= L(T −1 − λ1).

In the case λ = 0 we have:∫
C

log |z| dν(z) = −
∫

C
log |z| dμT (z) = −L(T ) = L(T −1).

Hence (2.48) holds, and ν = μT −1 .

Proposition 2.17. Let T ∈ M�. Then supp(μT ) ⊆ σ(T ).

Proof. Let λ ∈ C \ σ(T ). Then T − λ1 is invertible with bounded inverse.
Moreover, according to Proposition 2.16, μ(T−λ1)−1 is the push-forward meas-
ure of μT−λ1 via the map z �→ z−1, z ∈ C \ {0}. Since (T − λ1)−1 is bounded,
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we have from [3] that

supp(μ(T−λ1)−1) ⊆ σ((T − λ1)−1) ⊆ B(0, r),

where r = ‖(T − λ1)−1‖. Hence,

supp(μT−λ1) ⊆ {
z ∈ C | |z| ≥ 1

r

}
.

In particular, 0 /∈ supp(μT−λ1), which by Proposition 2.14 is equivalent to
λ /∈ supp(μT ). Hence, supp(μT ) ⊆ σ(T ).

Lemma 2.18. For every p ∈ (0,∞) and every t ∈ [0,∞[,

(2.49) tp = p2
∫ ∞

0
log+(at)a−p−1 da.

Proof. For t = 0 this is trivial. For t > 0 we find that∫ ∞

0
log+(at)a−p−1 da =

∫ ∞

1
t

log(at)a−p−1 da

=
[
− 1

p
log(at) a−p

]∞

1
t

−
∫ ∞

1
t

− 1

p a
a−p da

= 0 −
[
− 1

p2
a−p

]∞

1
t

= 1

p2
tp.

We will now prove Weil’s inequality for operators T in Lp(M) (cf. [3,
corollary 3.8] for the case T ∈ M):

Theorem 2.19. Let p ∈ (0,∞) and let T ∈ Lp(M). Then

(2.50)
∫

C
|z|p dμT (z) ≤ ‖T ‖pp .

In the proof of this theorem we shall need the following lemma, the proof
of which we postpone for a while:

Lemma 2.20. Let T ∈ M�. Then

(2.51)
∫

C
log+ |z| dμT (z) ≤ τ(log+ |T |).
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Proof of Theorem 2.19. Let a ≥ 0. Then, according to Lemma 2.14 and
Lemma 2.20,

∫
C

log+(a|z|) dμT (z) =
∫

C
log+ |z| dμaT (z)

≤
∫ ∞

0
log+ t dμ|aT |(t)

=
∫ ∞

0
log+(at)dμ|T |(t).

Hence by Lemma 2.18 and Tonelli’s Theorem,

∫
C
|z|pdμT (z) = p2

∫ ∞

0

(∫
C

log+(a|z|) dμT (z)
)
a−p−1 da

≤ p2
∫ ∞

0

(∫ ∞

0
log+(at) dμ|T |(t)

)
a−p−1 da

=
∫ ∞

0
tp dμ|T |(t) = τ(|T |p).

In order to prove Lemma 2.20 we shall need some additional results:

Lemma 2.21. Suppose A,B,C ∈ M� with A and B invertible in M� and

(
A C∗
C B

)
≥ 0.

Then

(2.52) �(C) ≤ �(A)
1
2�(B)

1
2 .

Proof. Note that A,B ≥ 0 and that
(

1 A− 1
2C∗B− 1

2

B− 1
2CA− 1

2 1

)
=

(
A− 1

2 0
0 B− 1

2

) (
A C∗
C B

) (
A− 1

2 0
0 B− 1

2

)

≥ 0,

which is equivalent to saying that
∥∥B− 1

2CA− 1
2

∥∥ ≤ 1, and this clearly implies
that

�
(
B− 1

2CA− 1
2
) ≤ 1.
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Lemma 2.22. For every S ∈ M�,

(2.53) �(1 + S) ≤ �(1 + |S|).

Proof. Take a unitary U ∈ M such that S = U |S|. Then
( |S| |S|

|S| |S|
)

≥ 0,

and (
1 U ∗
U 1

)
≥ 0,

whence ( |S| + 1 |S| + U ∗
|S| + U |S| + 1

)
≥ 0.

Now Lemma 2.21 implies that

�(S + 1) = �(U ∗(S + 1)) = �(U ∗(U |S| + 1))

= �(|S| + U ∗) ≤ �(|S| + 1)
1
2�(|S| + 1)

1
2 = �(|S| + 1),

as desired.

Lemma 2.23. Every S ∈ M� satisfies

(2.54) �(1 + |S2|) ≤ �(1 + |S|2),
implying that for arbitrary n ∈ N,

(2.55) �(1 + |S2n |) ≤ �(1 + |S|2n ).

Proof. Take a unitary U ∈ M such that S2 = U |S2|. Since
(
SS∗ S2

(S∗)2 S∗S

)
=

(
S

S∗

)
( S∗ S ) ≥ 0,

we find as in the foregoing proof that
(

1 + SS∗ U ∗ + S2

U + (S∗)2 1 + S∗S

)
≥ 0.

Again this implies that

�(1 + |S2|) = �(S2 + U ∗) ≤ �(1 + S∗S)
1
2�(1 + SS∗)

1
2 = �(1 + S∗S),
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where the last identity follows from the fact that S∗S and SS∗ have the same
distribution w.r.t. τ .

Proof of Lemma 2.20. According to (2.38) we have:

(2.56)
∫

C
log+ |z| dμT (z) = 1

2π

∫ 2π

0
f (eiθ ) dθ,

where

(2.57) f (λ) = τ(log |T − λ1|) = log�(T − λ1), λ ∈ C.

For every positive integer n define fn by

(2.58) fn(z) =
2n−1∑
k=0

f
(
e

2πk
2n iz

)
, z ∈ C.

Then clearly,

(2.59)
1

2π

∫ 2π

0
f (eiθ ) dθ = 1

2π2n

∫ 2π

0
fn(e

iθ ) dθ.

Applying Lemma 2.22 and Lemma 2.23 we obtain an estimate of fn(eiθ ):

fn(e
iθ ) =

2n−1∑
k=0

log�
(
e−iθ e−

2πk
2n iT − 1

) = log�

(2n−1∏
k=0

(
e−iθ e−

2πk
2n iT − 1

))

= log�
(
1 − e−i2

nθT 2n
) ≤ log�

(
1 + |T 2n |) ≤ log�

(
1 + |T |2n)

= τ
(
log

(
1 + |T |2n)).

Combining (2.56) and (2.59) with the above estimate we see that∫
C

log+ |z| dμT (z) ≤ 1

2n
τ
(

log
(
1 + |T |2n))

= 1

2n

∫
[0,∞[

log(1 + t2
n

) dμ|T |(t)

≤ 1

2n

∫
[0,1[

log 2 dμ|T |(t)

+ 1

2n

∫
[1,∞[

(log 2 + 2n log t) dμ|T |(t)

≤ 2 log 2

2n
+

∫
[0,∞[

log+ t dμ|T |(t).
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Finally, let n → ∞, and conclude that
∫

C
log+ |z| dμT (z) ≤

∫
[0,∞[

log+ t dμ|T |(t).

Proposition 2.24. Let T ∈ M�, and suppose P ∈ M is a non-trivial
T -invariant projection, i.e. PTP = TP . Then

(2.60) �(T ) = �PMP (PTP )
τ(P )�P⊥MP⊥(P⊥T P⊥)1−τ(P ),

where �PMP and �P⊥MP⊥ refer to the Fuglede-Kadison determinant com-
puted relative to the normalized traces 1

τ(P )
τ
∣∣
PMP

and 1
τ(P⊥) τ

∣∣
P⊥MP⊥ onPMP

and P⊥MP⊥, respectively.

Proof. Put T11 = PTP , T12 = PTP⊥ and T22 = P⊥TP⊥. Then, w.r.t. to
the decomposition H = P(H )⊕ P(H )⊥, we may write

T =
(
T11 T12

0 T22

)
=

(
1 0
0 T22

) (
1 T12

0 1

) (
T11 0
0 1

)
,

where
�

((
1 0
0 T22

))
= �P⊥MP⊥(P⊥TP⊥)1−τ(P ),

and
�

((
T11 0
0 1

))
= �PMP (PTP )

τ(P ).

Thus, (2.60) holds if

(2.61) �

((
1 T12

0 1

))
= 1.

To that (2.60) holds, note that

(
1 T12

0 1

)−1

=
(

1 −T12

0 1

)
,

and hence

(2.62) �

((
1 T12

0 1

))
�

((
1 −T12

0 1

))
= 1.

Also, (
1 −T12

0 1

)
=

(
1 0
0 −1

) (
1 T12

0 1

) (
1 0
0 −1

)
,
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so that
�

((
1 −T12

0 1

))
= �

((
1 T12

0 1

))
,

and then by (2.62),

�

((
1 T12

0 1

))
= 1,

as desired.

Lemma 2.25. Let p ∈ (0,∞), and let ε > 0. Then the map Lε : Lp(M, τ )

→ R given by

(2.63) Lε(T ) = 1
2 τ(log(T ∗T + ε1)), T ∈ Lp(M, τ ),

is continuous w.r.t. ‖ · ‖p.

Proof. Suppose T , Tn ∈ Lp(M, τ ) with

lim
n→∞ ‖T − Tn‖p = 0.

Then Tn → T in the measure topology (cf. [6]). Therefore, T ∗
n Tn → T ∗T in

measure, and then with respect to the weak topology on Prob(R),

(2.64) μT ∗T = lim
n→∞μT

∗
n Tn
.

Define a sequence (νn)∞n=1 of (finite) measures on (R,B) by

(2.65) dνn(t) = (
1 + t

p

2
)
dμT ∗

n Tn
(t),

and note that since limn→∞ ‖Tn‖p = ‖T ‖p,

(2.66) sup
n∈N

νn(R) < ∞.

Similarly, define a finite measure ν on (R,B) by

(2.67) dν(t) = (
1 + t

p

2
)
dμT ∗T (t).

Because of (2.64), we have that for every φ ∈ Cc(R),

(2.68)
∫ ∞

0
φ(t) dν(t) = lim

n→∞

∫ ∞

0
φ(t) dνn(t).

When φ ∈ C0(R), φ may be approximated (uniformly) by functions from
Cc(R). Thus, taking (2.66) and (2.68) into account, one easily sees that

(2.69)
∫ ∞

0
φ(t) dν(t) = lim

n→∞

∫ ∞

0
φ(t) dνn(t).
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In particular, with

(2.70) φ(t) = log(t + ε)

1 + t
p

2

, t ≥ 0,

(2.69) implies that

Lε(T ) =
∫ ∞

0
φ(t) dν(t) = lim

n→∞

∫ ∞

0
φ(t) dνn(t) = lim

n→∞Lε(Tn).

Corollary 2.26. For p ∈ (0,∞) the map L : Lp(M, τ ) → [−∞,∞[
given by

(2.71) L(T ) = log�(T ), T ∈ Lp(M, τ ),

is upper semicontinuous w.r.t. ‖ · ‖p.

Proof. Indeed, this follows from Lemma 2.25, since for every T ∈
Lp(M, τ ) we have that

L(T ) = inf
ε>0
Lε(T ).

3. Unbounded R-diagonal operators

Consider a von Neumann algebra M equipped with a faithful, normal, tracial
state τ .

Definition 3.1. For T ∈ M̃ with polar decomposition T = U |T |, we
denote byW ∗(T ) the von Neumann algebra generated byU and all the spectral
projections of |T |.

Note that T is affiliated with W ∗(T ) and that W ∗(T ) is the smallest von
Neumann subalgebra of M with this property.

If M1 and M2 are finite von Neumann algebras with faithful, normal, tracial
states τ1 and τ2, respectively, then any ∗-isomorphism φ : M1 → M2 with
τ1 = τ2◦φ is continuous w.r.t. the measure topologies on the two von Neumann
algebras and thus has a unique extension to a (surjective) ∗-isomorphism φ̃ :
M̃1 → M̃2.

Definition 3.2. Let S, T ∈ M̃.

(a) We say that S and T have the same ∗-distribution, in symbols S ∼∗D
T ,

if there exists a trace-preserving ∗-isomporphism φ from W ∗(S) onto
W ∗(T ) with φ̃(S) = T .

(b) We say that S and T are ∗-free if W ∗(S) and W ∗(T ) are ∗-free.
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Note that in case S and T are bounded, the two definitions (a) and (b) given
above agree with the ones given in [18] .

Recall from [16, p. 155ff.] that if U,H ∈ M are ∗-free elements with U
Haar unitary, then UH is R-diagonal in the sense of Nica and Speicher (cf.
[16]). Conversely, if T ∈ M is R-diagonal, then T has the same ∗-distribution
as a product UH , where U and H are ∗-free elements in some tracial C∗-
probability space, U is a Haar unitary, and H ≥ 0. We therefore define R-
diagonality for operators in M̃ as follows:

Definition 3.3. T ∈ M̃ is said to be R-diagonal if there exist a von
Neumann algebra N , with a faithful, normal, tracial state, and ∗-free elements
U and H in Ñ , such that U is Haar unitary, H ≥ 0, and such that T has the
same ∗-distribution as UH .

Remark 3.4. Note that if T ∈ M̃ is R-diagonal with ker(T ) = 0, then the
partial isometry V in the polar decomposition of T , T = V |T |, is a unitary
(M is finite). It follows from Definition 3.3 and Definition 3.2 that V is in fact
a Haar unitary which is ∗-free from |T |.

In this section we will see that certain algebraic operations on (sets of ∗-
free) R-diagonal operators preserve R-diagonality, exactly as in the bounded
case (cf. [9]). Our proofs are to a large extent inspired by the techniques used
in [9] and in [14]. In particular, we will repeatedly make use of [9, Lemma 3.7]
which we state here for the convenience of the reader:

Lemma 3.5. [9] Let U ∈ M be a Haar unitary, and suppose S ⊂ M is a
set which is ∗-free from U . Then for any n ∈ N,

(i) the sets S , USU ∗, U 2S (U ∗)2, . . . are ∗-free,

(ii) the sets S , USU ∗, . . . , Un−1S (U ∗)n−1, {Un} are ∗-free,

(iii) the sets USU ∗, . . . , UnS (U ∗)n, {Un} are ∗-free.

Proposition 3.6. If T ∈ M̃ is R-diagonal with ker(T ) = 0, then T has an
inverse T −1 ∈ M̃, and T −1 is R-diagonal as well.

Proof. Let T = V |T | be the polar decomposition of T with V ∈ M Haar
unitary and ∗-free from |T |. Since ker(T ) = 0, T has an inverse T −1 ∈ M̃:

T −1 = V ∗V |T |−1V ∗ = V ∗(V |T |V ∗)−1,

where V ∗ is Haar unitary and, according to Lemma 3.5, it is ∗-free from
V |T |V ∗ and thus from (V |T |V ∗)−1. This shows that T −1 is R-diagonal.

Lemma 3.7. Let S, T ∈ M̃, and let V ∈ M be a Haar unitary. If S, T and
V are ∗-free, then V S and T V S are R-diagonal.
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Proof. The case where S and T are bounded was treated by F. Larsen (cf.
[14, Lemma 3.6]). Our proof resembles the one given by F. Larsen.

Enlarging the algebra if necessary, we may assume that there are Haar
unitaries V1, V2 ∈ M, such that V1, V2 and S are ∗-free and V = V1V2.

Since W ∗(S) ⊆ M is finite, there is a unitary U1 ∈ W ∗(S) such that
S = U1|S|. Then V S = V1(V2U1)|S|, where

(i) V1 is ∗-free from |S| and V2U1,

(ii) τ(V1) = τ(V ∗
1 ) = 0 and τ(V2U1) = τ((V2U1)

∗) = 0,

(ii) for all A ∈ W ∗(|S|) with τ(A) = 0, τ(V2U1A) = τ(V2)τ (U1A) = 0,
τ(AU ∗

1V
∗

2 ) = τ(AU ∗
1 )τ (V

∗
2 ) = 0 and τ(V2U1A(V2U1)

−1) = τ(A) =
0.

It follows now from [17, Lemma 2.4] that V1(V2U1) is ∗-free from |S|. Thus,
if V1(V2U1) is Haar unitary, then V S is R-diagonal. By (ii) and the freeness
of V1 and V2U , we have that for all n ∈ N,

τ((V1V2U1)
n) = τ(V1(V2U1)V1(V2U1) · · ·V1(V2U1)) = 0.

Then τ((V1V2U1)
−n) = τ((V1V2U1)n) = 0, n ∈ N. That is, V1V2U1 is Haar

unitary, and it follows that V S = V1V2U1|S| is R-diagonal.
Now, T V S = V (V ∗T V S). Put

B1 = W ∗(V ), B2 = W ∗(T ), and B3 = W ∗(S).

Then B1, B2 and B3 are ∗-free. We may write T as T = U2|T | for a unitary
U2 ∈ B2. Then

(3.1) V ∗T V = (V ∗U2V )V
∗|T |V,

where V ∗|T |V is affiliated with V ∗B2V .
B3 and V ∗B2V are ∗-free, and according to Lemma 3.5, B1 and V ∗B2V

are ∗-free. But then V is ∗-free from B4 = B3 ∨ V ∗B2V .
Since S and V ∗T V are both affiliated with B4, their product, V ∗T V S, is

affiliated with B4, so V is ∗-free from V ∗T V S. It follows now from the first
part of the proof that T V S = V (V ∗T V S) is R-diagonal.

Proposition 3.8. If S, T ∈ M̃ are ∗-free R-diagonal elements, then ST is
R-diagonal as well. Moreover,

(3.2) μ(ST )∗ST = μS∗S � μT ∗T .

Proof. Taking a free product of tracial von Neumann algebras if necessary,
we can find a von Neumann algebra N with faithful, normal, tracial state ω
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and ∗-free elements U1, H1, U2, H2 ∈ Ñ such that U1, U2 are Haar unitaries,
H1, H2 ≥ 0, and S ∼∗D

U1H1 and T ∼∗D
U2H2.

Choose trace-preserving ∗-isomorphisms

φ1 : W ∗(S) → W ∗(U1H1),

φ2 : W ∗(T ) → W ∗(U2H2),

with φ̃1(S) = U1H1 and φ̃2(T ) = U2H2. φ1 and φ2 give rise to a trace-
preserving ∗-isomorphism

φ = φ1 ∗ φ2 : W ∗(S) ∗W ∗(T ) → W ∗(U1H1) ∗W ∗(U2H2)

(the free products are taken within the category of tracial von Neumann algeb-
ras) with

φ̃(ST ) = φ̃1(S)φ̃2(T ) = U1H1U2H2.

Thus,ψ :=φ|W ∗(ST ) is a trace-preserving ∗-isomorphism ontoW ∗(U1H1U2H2)

with ψ̃(ST ) = U1H1U2H2. According to Lemma 3.7, U1(H1U2H2) is R-
diagonal, and hence ST is R-diagonal.

In order to prove (3.2), note that if S = 0, then μS∗S = δ0, so that by the
definition of multiplicative free convolution given on p. 744 in [4],

μS∗S � μT ∗T = δ0 � μT ∗T = δ0.

This shows that μS∗S � μT ∗T = μ(ST )∗ST if S = 0. The same holds if T = 0.
Now assume that S, T �= 0. Note that

S∗S ∼∗D
H 2

1 ,

T ∗T ∼∗D
H 2

2 ,

(ST )∗ST ∼∗D
H2U

∗
2H

2
1U2H2.

Thus, (3.2) holds if
μH2U

∗
2H

2
1U2H2

= μH 2
1
� μH 2

2
.

For every n ∈ N, the bounded operators

Sn = U1H11[0,n](H1) and Tn = U2H21[0,n](H2)

are ∗-free. According to [9, Lemma 3.9] they are both R-diagonal in the sense
of Nica and Speicher (cf. [16]). Then, by [9, Proposition 3.6],

(3.3). μ(SnTn)∗SnTn = μS∗
nSn

� μT ∗
n Tn
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Since Sn → U1H1 and Tn → U2H2 in the measure topology, (SnTn)∗SnTn →
H2U

∗
2H

2
1U2H2 in measure as well. These facts imply that μS∗

nSn

w∗−→ μH 2
1
,

μT ∗
n Tn

w∗−→ μH 2
2

and μ(SnTn)∗SnTn
w∗−→ μH2U

∗
2H

2
1U2H2

. Moreover, μH 2
1

�= δ0 and
μH 2

2
�= δ0, because S∗S and T ∗T are non-zero. Hence, by [4, Corollary 6.7]

and by (3.3),

μH2U
∗
2H

2
1U2H2

= w∗ − lim
n→∞μS

∗
nSn

� μT ∗
n Tn

= μH 2
1
� μH 2

2
.

Proposition 3.9. Let S ∈ M̃ be R-diagonal, and let n ∈ N. Then Sn is
R-diagonal. Moreover,

(3.4) μ(Sn)∗Sn = μ�n
S∗S.

Proof. Choose a von Neumann algebra N with faithful, normal, tracial
state ω and with ∗-free elements U,H ∈ Ñ such that U is Haar unitary,
H ≥ 0, and S ∼∗D

UH . Then Sn ∼∗D
(UH)n. Since

(UH)n = Un[U 1−nHUn−1][U 2−nHUn−2] · · · [U−1HU ]H,

where
Un, U 1−nHUn−1, U 2−nHUn−2, . . . , U−1HU, H

are ∗-free (cf. Lemma 3.5 (ii)), and Un is Haar unitary, Lemma 3.7 gives us
that (UH)n is R-diagonal, and hence Sn is.

In order to prove (3.4), note that if μS∗S = δ0, then S = Sn = 0 and (3.4)
trivially holds.

Now assume that μS∗S �= δ0. For k ∈ N define Sk ∈ M and Tk ∈ N by

Sk = S 1[0,k](|S|) and Tk = U H 1[0,k](H).

Then Tk ∼∗D
Sk . Moreover, by Lemma 3.7, Tk isR-diagonal in the sense of Nica

and Speicher, so Sk is R-diagonal. It now follows from [9, Proposition 3.10]
that

(3.5) μ[(Sk)n]∗(Sk)n = μ[(Tk)n]∗(Tk)n = μ�n
T ∗
k Tk

= μ�n
S∗
k Sk
.

As k tends to infinity, S∗
k Sk → S∗S and [(Sk)n]∗(Sk)n → (Sn)∗Sn in the

measure topology. Since μS∗S �= δ0, we infer from [4, Corollary 6.7] and from
(3.5) that

μ(Sn)∗Sn = w∗ − lim
k→∞μ[(Sk)n]∗(Sk)n = w∗ − lim

k→∞μ
�n
S∗
k Sk

= μ�n
S∗S.
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Definition 3.10. For μ ∈ Prob(R,B) let μ̃ denote the symmetrization of
μ. That is, μ̃ ∈ Prob(R,B) is given by

μ̃(B) = 1
2 (μ(B)+ μ(−B)), (B ∈ B).

Proposition 3.11. Let S, T ∈ M̃ be ∗-free R-diagonal elements. Then

(3.6) μ̃|S+T | = μ̃|S| � μ̃|T |.

Proof. As in the proof of Proposition 3.8, choose (N , ω) and ∗-free ele-
ments U1, H1, U2, H2 ∈ Ñ such that U1, U2 are Haar unitaries, H1, H2 ≥ 0,
and S ∼∗D

U1H1 and T ∼∗D
U2H2.

Again, for n ∈ N, let

Sn = U1H1 1[0,n](H1)

and
Tn = U2 H2 1[0,n](H2).

Then Sn and Tn are ∗-free and R-diagonal and therefore, according to [9,
Proposition 3.5],

(3.7) μ̃|Sn+Tn| = μ̃|Sn| � μ̃|Tn|.

|Sn| → H1 and |Tn| → H2 in measure, implying that μ|Sn|
w∗−→ μH1 = μ|S|

and μ|Tn|
w∗−→ μH2 = μ|T |. Then we also have weak convergence of the

symmetrized measures:
μ̃|Sn|

w∗−→ μ̃|S|

and
μ̃|Tn|

w∗−→ μ̃|T |.

Let d denote the Lévy metric on Prob(R,B) (cf. [4, p. 743]). Then d induces
the topology of weak convergence, and according to [4, Proposition 4.13] and
the above observations,

d(μ̃|S|�μ̃|T |, μ̃|Sn|�μ̃|Tn|) ≤ d(μ̃|S|, μ̃|Sn|)+d(μ̃|T |, μ̃|Tn|) → 0 as n → ∞.

It follows that

μ̃|S| � μ̃|T | = w∗ − lim
n→∞ μ̃|Sn| � μ̃|Tn|

= w∗ − lim
n→∞ μ̃|Sn+Tn|.(3.8)
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Since S and T (U1H1 and U2H2, resp.) are ∗-free with S ∼∗D
U1H1 and T ∼∗D

U2H2, it follows that S + T ∼∗D
U1H1 + U2H2. Moreover, |Sn + Tn| →

|U1H1 +U2H2| ∼∗D
|S+T | in measure, and thus μ̃|Sn+Tn|

w∗−→ μ̃|S+T | . Finally,

this implies that
μ̃|S| � μ̃|T | = μ̃|S+T |.

We close this section by proving two simple results on the S-transform of
probability measures on (0,∞) (cf. [4]).

For μ ∈ Prob((0,∞),B) define ψμ : C \ (0,∞) → C by

(3.9) ψμ(z) =
∫ ∞

0

1

1 − zt
dμ(t)− 1, z ∈ C \ (0,∞).

Then ψμ is analytic and satisfies

(i) ψ ′
μ(t) > 0, t ∈ (−∞, 0),

(ii) ψμ(z) → −1 as z → −∞,

(iii) ψμ(z) → 0 as z → 0.

Hence,ψμ maps a (connected) neighbourhood Uμ of (−∞, 0) injectively onto
a neighbourhood Vμ of (−1, 0). Define χμ, Sμ : Vμ → C by

χμ(z) = ψ−1
μ (z), z ∈ Vμ,(3.10)

Sμ(z) = z+ 1

z
χμ(z), z ∈ Vμ.(3.11)

Proposition 3.12. The map μ �→ Sμ is one-to-one on Prob((0,∞),B).

Proof. Suppose μ, ν ∈ Prob((0,∞),B) with Sμ = Sν . That is, in a
neighbourhood V = Vμ ∩ Vν of (−1, 0), χμ agrees with χν . It follows that on
(−∞, 0),ψμ agrees withψν , and then, by uniqueness of analytic continuation,

(3.12) ψμ

(
1

λ

)
= ψν

(
1

λ

)
, λ ∈ C \ [0,∞[.

That is, the Stieltjes-transforms Gμ and Gν agree on C \ [0,∞[. Recall that

(3.13) dμ(x) = − 1

π
lim
y→0+

Gμ(x + iy) dx

(weak convergence of measures), and similarly,

(3.14) dν(x) = − 1

π
lim
y→0+

Gν(x + iy) dx.

Thus μ = ν.
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Proposition 3.13. Let M be a II1-factor with tracial state τ , and let
a ∈ M̃+ with ker(a) = {0}. Then for all z in a neighbourhood of (−1, 0),

(3.15) Sμa−1 (z) = 1

Sμa (−1 − z)
.

Proof. Let z ∈ C \ [0,∞[. Then

ψa−1(z) =
∫ ∞

0

1

1 − zt
dμa−1(t)− 1

=
∫ ∞

0

1

1 − z
t

dμa(t)− 1

=
∫ ∞

0

z

t − z
dμa(t),

and hence

(3.16) ψa−1

(
1

z

)
= −

∫ ∞

0

1

1 − zt
dμa(t) = −(ψa(z)+ 1).

It follows that for all z ∈ C \ [0,∞[,

(3.17) z = χa(ψa(z)) = χa

(
−1 − ψa−1

(
1

z

))
,

implying that w = ψa−1

(
1
z

)
satisfies

(3.18) χa−1(w) = 1

z
= 1

χa(−1 − w)
,

and thus

(3.19) Sμa−1 (w) · Sμa (−1 − w) = 1.

(3.19) holds for all w ∈ ψa−1(C \ [0,∞[) and in particular for all w in a
neighbourhood of (−1, 0).
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4. The Brown measure of an unbounded R-diagonal operator

The Brown measure of a general bounded R-diagonal operator was computed
in [9, Theorem 4.4]. We will generalize this result to unbounded R-diagonal
elements in M�. Our proof will take a different route than the one in [9].
This new approach will enable us to obtain an estimate of the p-norm of the
resolvent (T − λ1)−1, 0 < p < 1, for special R-diagonal elements T (cf.
Section 5).

Lemma 4.1. Let T ∈ M̃ be an R-diagonal element, and let U ∈ M be a
Haar unitary which is ∗-free from T . Then for every λ ∈ C,

(4.1) |T − λ1| ∼∗D
|T + |λ|U |.

Proof. By passing to a larger algebra, we may assume that T = V |T |
where V ∈ M is a Haar unitary andU,V and |T | are ∗-free. The case λ = 0 is
trivial. For λ �= 0, let α = − λ

|λ| . Then αU ∗V is a Haar unitary which is ∗-free
from T . Hence,

αU ∗V |T | ∼∗D
T .

Therefore,

|T − λ1| ∼∗D
|αU ∗V |T | − λ1| = |T − αλU | = |T + |λ|U |.

Lemma 4.2. Let T ∈ M̃ be an R-diagonal operator, and define

h(s) = s τ
(
(T ∗T + s21)−1

)
, s > 0.

Moreover, for λ ∈ C \ {0}, set

hλ(s) = s τ
(
[(T − λ1)∗(T − λ1)+ s21]−1

)
.

Then there exists an sλ > 0 such that for s > sλ,

h(s) = hλ

(
s +

√
1 − 4|λ|2h(s)2 − 1

2h(s)

)
.

Proof. By passing to a larger algebra, we may assume that there exists a
Haar unitary U ∈ M which is ∗-free from T . Then, according to Lemma 4.1,

|T − λ1| ∼∗D
|T + |λ|U |.
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It follows now from Proposition 3.11 that

μ̃|T−λ1| = μ̃|T | � μ̃|λ|1 = μ̃|T | � ν,

where ν = 1
2 (δ−|λ| + δ|λ|).

For β > 0 define

�β = {
w ∈ C

∣∣ 0 < |w| < β, 5π
4 < arg(w) < 7π

4

}
.

According to [4, Corollary 5.8], there is a β > 0 such that for every w ∈ �β ,

Rμ̃|T−λ1|(w) = Rμ̃|T |(w)+ Rν(w),

where

Rν(w) =
√

1 + 4|λ|2w2 − 1

2w
,

and
Gμ̃|T |(is) = −ih(s), s > 0,

whence

Rμ̃|T |(−ih(s))+ 1

−ih(s) = G
〈−1〉
μ̃|T | (−ih(s)) = is, s > 0.

Take sλ > 0 such that for every s > sλ, −ih(s) ∈ �β . Then, when s > sλ,

Rμ̃|T−λ1|(−ih(s)) = is + 1

ih(s)
+

√
1 − 4|λ|2h(s)2 − 1

−2ih(s)
,

implying that

h(s) = hλ

(
s +

√
1 − 4|λ|2h(s)2 − 1

2h(s)

)
.

That is, when s > sλ and

t = s +
√

1 − 4|λ|2h(s)2 − 1

2h(s)
,

then h(s) = hλ(t).

Note that if

t = s +
√

1 − 4|λ|2h(s)2 − 1

2h(s)
,

then (s, t) satisfies the following equation:

(4.2) (s − t)

(
1

h(s)
− s + t

)
= |λ|2.
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In the following we will investigate this equation further.

Definition 4.3. Let m, n ∈ N, and let U be an open set in Rm. A map
f : U → Rn is said to be analytic if it has a power series expansion in m
variables in a neighborhood of every x ∈ U .

We shall need the following two well-known lemmas about analytic func-
tions of several variables:

Lemma 4.4. Let U be a connected, open subset of Rm. If f, g : U → Rn

are two analytic functions which coincide on a non-empty, open subset V of
U , then f = g.

Lemma 4.5. Let U ⊆ Rm be open and let f : U → Rm be an analytic
function for which the Jacobian J (x0) = det f ′(x0) is non-zero for some
x0 ∈ U . Then f is one-to-one in some neighborhood V of x0, and the inverse
of f |V is analytic in a neighborhood of f (x0).

Lemma 4.6. Let μ be a probability measure on [0,∞), and define

(4.3) h(s) =
∫ ∞

0

s

s2 + u2
dμ(u), s > 0.

Then h is analytic on (0,∞). Moreover, if μ is not a Dirac measure, then for
all s > 0,

0 < h(s) <
1

s
and h′(s) <

h(s)

s
− 2h(s)2.

Proof. Since

h(s) = 1

2

∫ ∞

0

(
1

s + iu
+ 1

s − iu

)
dμ, s > 0,

h has a complex analytic extension

h̃ : {z ∈ C | Im z > 0} → C

given by the same formula. In particular,h is an analytic function of s ∈ (0,∞).
If μ is not a Dirac measure, then μ �= δ0, and so h(s) > 0 for all s > 0.
Moreover,

sh(s) =
∫ ∞

0

s2

s2 + u2
dμ(u) < 1, s > 0.
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Finally, for s > 0,

h(s)2 =
∫ ∞

0

∫ ∞

0

s

s2 + u2

s

s2 + v2
dμ(u) dμ(v)

≤
∫ ∞

0

∫ ∞

0

1

2

(( s

s2 + u2

)2 +
( s

s2 + v2

)2
)
dμ(u) dμ(v)

=
∫ ∞

0

s2

(s2 + u2)2
dμ(u)

= 1

2

(∫ ∞

0

s2 + u2

(s2 + u2)2
dμ(u)+

∫ ∞

0

s2 − u2

(s2 + u2)2
dμ(u)

)

= 1

2

(
h(s)

s
− h′(s)

)
.

Hence,
h′(s) ≤ h(s)

s
− 2h(s)2,

and equality holds if and only if the product measure μ⊗μ is concentrated on
the diagonal {(u, u) | u > 0}. But this would imply that μ is a Dirac measure.
Thus, if μ is not a Dirac measure, then

h′(s) <
h(s)

s
− 2h(s)2, s > 0

Lemma 4.7. Let μ be a probability measure on [0,∞) which is not a Dirac
measure, and put

λ1(μ) =
(∫ ∞

0

1

u2
dμ(u)

)− 1
2

and λ2(μ) =
(∫ ∞

0
u2 dμ(u)

) 1
2

,

with the convention that ∞− 1
2 = 0. Then 0 ≤ λ1(μ) < λ2(μ) ≤ ∞.

Proof. Clearly, λ1(μ) < ∞, and since μ �= δ0, λ2(μ) > 0. The lemma is
then trivially true if λ1(μ) = 0 or λ2(μ) = +∞. Thus, we can assume that
λ1(μ), λ2(μ) ∈ (0,∞). Then, by the Schwartz inequality,

λ2(μ)

λ1(μ)
=

(∫ ∞

0
u2 dμ(u)

) 1
2
(∫ ∞

0

1

u2
dμ(u)

) 1
2

≥
∫ ∞

0
u

1

u
dμ(u) = 1,
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and equality holds if and only if for some c ∈ (0,∞), 1
u

= cu holds for μ-a.e.
u ∈ [0,∞). However, this can not be the case when μ is not a Dirac measure.

Lemma 4.8. Let μ, λ1(u) and λ2(μ) be as in Lemma 4.7, and let h be as in
Lemma 4.6. Then put

k(s, t) = (s − t)

(
1

h(s)
− s + t

)
, s > 0, t ∈ R.

Then k is an analytic function on (0,∞) × R. Moreover, for t > 0 the map
s �→ k(s, t) is a strictly increasing bijection of (t,∞) onto (0,∞), and for
t = 0 the map s �→ k(s, t) is a strictly increasing bijection of (0,∞) onto
(λ1(μ)

2, λ2(μ)
2).

Proof. Clearly, k is analytic. Moreover,

(4.4)
∂k

∂s
(s, t) = 1

h(s)
− (s − t)

(
2 + h′(s)

h(s)2

)
.

For s ∈ (0,∞), we get from Lemma 4.6 that

∂k

∂s
(s, 0) = s

h(s)2

(
h(s)

s
− 2h(s)2 − h′(s)

)
> 0,

and
∂k

∂s
(s, s) = 1

h(s)
> s.

Since the right-hand side of (4.4) is an affine function of t ∈ R, it follows that

(4.5)
∂k

∂s
(s, t) > t, s > 0, t ∈ [0, s].

Hence, s �→ k(s, t) is a strictly increasing function of s ∈ (t,∞) for every
t ∈ [0,∞). For s > t > 0,

(4.6) k(s, t) =
∫ s

t

∂k

∂s ′
(s ′, t) ds ′ >

∫ s

t

t ds ′ = t (s − t).

Hence, when t > 0,
lim
s→∞ k(s, t) = ∞,

and
lim
s→t+ k(s, t) = k(t, t) = 0.

Thus, s �→ k(s, t) is a bijection of (t,∞) onto (0,∞).
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Next, consider the case t = 0. We have already seen that s �→ k(s, 0) is
strictly increasing on (0,∞). Note that for s > 0,

k(s, 0) = 1 − sh(s)

h(s)/s
= n(s)

d(s)

where

n(s) =
∫ ∞

0

u2

s2 + u2
dμ(u) and d(s) =

∫ ∞

0

1

s2 + u2
dμ(u).

By the monotone convergence theorem,

lim
s→0+ n(s) = 1,

lim
s→0+ d(s) =

∫ ∞

0

1

u2
dμ(u) = 1

λ1(μ)2
,

lim
s→∞ s

2n(s) =
∫ ∞

0
u2 dμ(u) = λ2(μ)

2,

and
lim
s→∞ s

2d(s) = 1.

Hence,
lim
s→0+ k(s, 0) = λ1(μ)

2,

and
lim
s→∞ k(s, 0) = λ2(μ)

2.

This shows that s �→ k(s, 0) is a bijection of (0,∞) onto
(
λ1(μ)

2, λ2(μ)
2
)
.

Definition 4.9. Letμ, λ1(u) and λ2(μ) be as in Lemma 4.7, let h be as in
Lemma 4.6, and let k be as in Lemma 4.8. For λ, t ∈ (0,∞), let s(λ, t) denote
the unique solution s ∈ (t,∞) to the equation k(s, t) = λ2 (cf. Lemma 4.8),
and for λ ∈ (λ1(μ), λ2(μ)), let s(λ, 0) denote the unique solution s ∈ (0,∞)

to the equation k(s, 0) = λ2.

Lemma 4.10. The function (λ, t) �→ s(λ, t) is analytic in (0,∞)× (0,∞).
Moreover, for λ ∈ (λ1(μ), λ2(μ)),

(4.7) lim
t→0+ s(λ, t) = s(λ, 0).

Proof. Let
� = {(s, t) ∈ R2 | 0 < t < s}.
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According to Lemma 4.8, k is a strictly positive, analytic function in �. Let

F(s, t) = (√
k(s, t), t

)
, (s, t) ∈ �.

Then F is analytic in �, and by Lemma 4.8, F is a one-to-one map of � onto
(0,∞)× (0,∞). Moreover, its inverse F−1 : (0,∞)× (0,∞) → � is given
by

F−1(λ, t) = (s(λ, t), t), s, t > 0.

The Jacobian of F is

J (F )(s, t) = ∂

∂s

√
k(s, t) = 1

2
√
k(s, t)

∂k

∂s
(s, t),

which by (4.5) is strictly positive for all (s, t) ∈ �. Hence, by Lemma 4.5, F−1

is analytic in (0,∞) × (0,∞). In particular, s(λ, t) is analytic in (0,∞) ×
(0,∞).

Now, let λ0 ∈ (λ1(μ), λ2(μ)) and put s0 = s(λ0, 0). Then k(s0, 0) = λ2
0,

and by the proof of Lemma 4.8, ∂k
∂s
(s0, 0) > 0. Let

F0(s, t) := (√
k(s, t), t

)
.

F0 is then analytic in some neighborhoodU0 of (s0, 0). Moreover, J (F0)(s0, 0)
�= 0, and therefore, by Lemma 4.5, F0 has an analytic inverse F−1

0 in a neigh-
borhood V0 of F0(s0, 0) = (λ0, 0). Clearly, F−1

0 (λ, t) = F−1(λ, t), whenever
(λ, t) ∈ V0 ∩ [(0,∞)× (0,∞)], and F−1

0 (λ, t) ∈ �.
Note that

(4.8) lim
t→0+F

−1
0 (λ0, t) = F−1

0 (λ0, 0) = (s0, 0),

and since the second coordinate ofF−1
0 (λ0, t) is t , we conclude thatF−1

0 (λ0, t)

∈ �, eventually as t → 0+. Hence,

(s0, 0) = lim
t→0+F

−1
0 (λ0, t) = lim

t→0+F
−1(λ0, t) = lim

t→0+(s(λ0, t), t),

and therefore,
lim
t→0+ s(λ0, t) = s0 = s(λ0, 0).

Remark 4.11. We get from Lemma 4.10 that

(4.9) lim
t→0+ s(λ, t) = 0, 0 < λ ≤ λ1(μ),
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and

(4.10) lim
t→0+ s(λ, t) = +∞, λ ≥ λ2(μ).

Indeed, for fixed t > 0, λ �→ s(λ, t) is a monotonically increasing function of
λ. Hence, if 0 < λ ≤ λ1(μ), then

lim sup
t→0+

s(λ, t) ≤ lim sup
t→0+

s(λ′, t) = s(λ′, 0),

for all λ′ ∈ (λ1(μ), λ2(μ)).
But λ′ �→ s(λ′, 0) is the inverse function of s �→ √

k(s, 0), and hence
λ′ �→ s(λ′, 0) is a bijection of (λ1(μ), λ2(μ)) onto (0,∞). It follows that
lim supt→0+ s(λ, t) = 0, and this proves (4.9).

For λ ≥ λ2(μ), a similar argument shows that lim inf t→0+ s(λ, t) = +∞,
and this proves (4.10).

Lemma 4.12. Let λ > 0. Then

(i) limt→∞(s(λ, t)− t) = 0, and

(ii) there exists a tλ > 0 such that when t > tλ and s = s(λ, t), then

t = s +
√

1 + 4λ2h(s)2 − 1

2h(s)
.

Proof. Fix t > 0, and put s = s(λ, t). Then by Definition 4.9, s > t and
k(s, t) = λ2. According to (4.6), k(s, t) > t(s − t). Hence,

0 < s − t <
λ2

t
.

This proves (i). With s and t as above,

λ2 = k(s, t) = (s − t)

(
1

h(s)
− s + t

)
.

Solving this equation for t , we get that t is one of the two numbers

t± = s − 1

h(s)
±

√
1 + 4λ2h(s)2

2h(s)
.

If t = t−, then

s − t >
1

2h(s)
,
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and since 1
h(s)

→ ∞ as s → ∞, this can not hold for large t because of (i).
Hence, t = t+ for t sufficiently large.

Combining the previous lemmas we get:

Proposition 4.13. Let T ∈ M̃ be an R-diagonal element, let λ ∈ C \ {0},
and define h(s) and hλ(s) as in Lemma 4.2. Let μ = μ|T |, and let s(|λ|, t) be
as in Definition 4.9. Then

hλ(s(|λ|, t)) = h(t), t > 0.

Proof. According to Lemma 4.12, if t > t|λ| and s = s(|λ|, t), then

t = s +
√

1 + 4λ2h(s)2 − 1

2h(s)
.

Since s(|λ|, t) > t , we infer from Lemma 4.2 that for t sufficiently large,

hλ(t) = h(s(|λ|, t)).
Hence, by Lemma 4.4 and Lemma 4.10, the same formula holds for all t > 0.

Lemma 4.14. Let T be an unbounded R-diagonal element in M�, let
λ ∈ C \ {0}, and let t > 0. With μ = μ|T | and s(|λ|, t) as in Definition 4.9 we
then have:
(4.11)

�
(
(T −λ1)∗(T −λ1)+ t21

) = |λ|2
|λ|2 + (s(|λ|, t)− t)2

�
(
T ∗T + s(|λ|, t)21

)
.

Proof. Since T is R-diagonal, T ∼∗D
cT for all c ∈ T. Hence, the left-hand

side of (4.11) depends only on |λ|. It therefore suffices to consider only the
case λ > 0. For λ, t > 0, let

H(t) = 1
2 log�(T ∗T + t21)

and
Hλ(t) = 1

2 log�
(
(T − λ1)∗(T − λ1)+ t21

)
.

Then with μλ = μ|T−λ1|,

H(t) = 1

2

∫ ∞

0
log(u2 + t2) dμ(u),

and
Hλ(t) = 1

2

∫ ∞

0
log(u2 + t2) dμλ(u).
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Since T and T − λ1 belong to M�, H and Hλ take values in R. Moreover, H
and Hλ are differentiable with derivatives H ′(t) = h(t) and H ′

λ(t) = hλ(t).
Also, since T ∈ M�,

(4.12) lim
t→∞(H(t)− log t) = 1

2
lim
t→∞

∫ ∞

0
log

(
1 + u2

t2

)
dμ(u) = 0,

and similarly

(4.13) lim
t→∞(Hλ(t)− log t) = 0.

Fix λ > 0 and t0 > 0. There is a constant C such that

Hλ(t) =
∫ t

t0

hλ(t
′) dt ′ + C.

Moreover, according to Proposition 4.13,

hλ(t) = h(s(λ, t)), t > 0.

Put s(t) = s(λ, t) and u(t) = t−s(t). Then s(t)+u(t) = t and s ′(t)+u′(t) =
1. Moreover, by Definition 4.9,

(s(t)− t)

(
1

h(s(t))
− s(t)+ t

)
= λ2.

Hence,
u(t)

(
1

h(s(t))
− u(t)

)
= λ2,

implying that
h(s(t)) = u(t)

λ2 + u(t)2
.

It follows that∫ t

t0

hλ(v) dv

=
∫ t

t0

h(s(v))(s ′(v)+ u′(v)) dv

=
∫ t

t0

(
h(s(v))s ′(v)+ u(v)

λ2 + u(v)2
u′(v)

)
dv

= H(s(t))−H(s(t0))+ 1

2
log

(
λ2

λ2 + u(t)2

)
+ 1

2
log

(
λ2 + u(t0)

2

λ2

)
.
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Hence,

Hλ(t) = H(s(t))+ 1

2
log

(
λ2

λ2 + (s(t)− t)2

)
+ C ′,

for a constant C ′. Recall that s(t) − t → 0 as t → ∞ (cf. Lemma 4.12). It
then follows from (4.12) and (4.13) that C ′ must be 0. This finally shows us
that

exp(2Hλ(t)) = λ2

λ2 + (s(t)− t)2
exp(2H(t)),

and this proves (4.11).

Theorem 4.15. Let T ∈ M� beR-diagonal, let μ = μ|T |, and let s(|λ|, 0)
be as in Definition 4.9.

(i) If λ1(μ) < |λ| < λ2(μ), then

�(T − λ1) =
( |λ|2

|λ|2 + s(|λ|, 0)2
�(T ∗T + s(|λ|, 0)21)

) 1
2

.

(ii) If |λ| ≤ λ1(μ), then �(T − λ1) = �(T ).

(iii) If |λ| ≥ λ2(μ), then �(T − λ1) = |λ|.
Proof. The theorem is obviously true for λ = 0. Moreover, as in the proof

of Lemma 4.14, it suffices to consider the case λ > 0. Note that

(4.14) �(T − λ1)2 = lim
t→0+�

(
(T − λ1)∗(T − λ1)+ t21

)
.

Hence, (i) follows from Lemma 4.10 and Lemma 4.14. If 0 < λ ≤ λ1(μ),
then by Remark 4.11, limt→0+ s(λ, t) = 0. Hence, (ii) also follows from
Lemma 4.14. Now suppose λ ≥ λ2(μ). Then s(λ, t) → ∞ as t → 0+. The
right-hand side of (4.11) is equal to

λ2s(λ, t)2

λ2 + (s(λ, t)− t)2

�(T ∗T − s(λ, t)21)
s(λ, t)2

,

where the first factor converges to λ2 as t → 0+, and the second factor
converges to 1 (cf. (4.12)). (iii) now follows from (4.11) and (4.14).

Remark 4.16. Note that

λ2(μ) =
(∫ ∞

0
u2 dμ|T |(u)

) 1
2

= ‖T ‖2

and

λ1(μ) =
(∫ ∞

0
u−2 dμ|T |(u)

)− 1
2

= ‖T −1‖−1
2 ,
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where ‖T −1‖2 := +∞ in case ker(T ) �= 0.

Theorem 4.17. LetT be anR-diagonal element in M� with Brown measure
μT , and suppose μ|T | is not a Dirac measure.

(a) If ker(T ) = 0, then

supp(μT ) = {
λ ∈ C | ‖T −1‖−1

2 ≤ |λ| ≤ ‖T ‖2
}
.

Moreover, the S-transform ofμ|T |2 is well-defined and strictly increasing
on (−1, 0) with

Sμ|T |2 ((−1, 0)) = (‖T ‖−2
2 , ‖T −1‖2

2

)
,

and μT is the unique probability measure on C which is invariant under
rotations and satisfies

μT
(
B(0,Sμ|T |2 (t − 1)−

1
2 )

) = t, 0 < t < 1.

(b) If ker(T ) �= 0, let P denote the projection onto ker(T ). Then

supp(μT ) = {λ ∈ C | |λ| ≤ ‖T ‖2}.
Moreover, the S-transform ofμ|T |2 is well-defined and strictly increasing
on (τ (P )− 1, 0) with

Sμ|T |2 ((τ (P )− 1, 0)) = (‖T ‖−2
2 ,∞),

and μT is the unique probability measure on C which is invariant under
rotations and satisfies

μT
(
B(0,Sμ|T |2 (t − 1)−

1
2 )

) = t, τ (P ) < t < 1.

Proof. By definition, dμT (λ) = 1
2π∇2

(
log�(T − λ1)

)
dλ (in the distri-

bution sense). Hence, μT can be determined from Theorem 4.15 in the same
way as [9, Theorem 4.4.] is obtained from [9, (4.5)]:

Using the same notation as in [9], we define functions f, g : (0,∞) → R
by

f (v) =
∫ ∞

0

1

1 + v2w2
dμ|T |(w),

and
g(v) = 1 − f (v)

v2f (v)
.
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Moreover, for λ ∈ (‖T −1‖−2
2 , ‖T ‖2

2), let v(λ) denote the unique v ∈ (0,∞)

such that g(v) = λ2. Then, in our notation,

f (v) = τ
(
(1 + v2T ∗T )−1

) = v−1h(v−1),

and
g(v) = v−1

(
1

h(v−1)
− v−1

)
= k(v−1, 0).

Hence,

v(λ) = 1

s(λ, 0)
,

and it follows that the formula (4.15) in [9],

log�(T − λ1) = 1

2

∫ ∞

0
log(1 + v2w2) dμ|T |(w)+ 1

2
log

(
λ2

1 + v2λ2

)
,

λ ∈ (‖T −1‖−2
2 , ‖T ‖2

2), is equivalent to the one in Theorem 4.15 (i). The rest
of the proof of Theorem 4.17 is identical to the second part of the proof of [9,
Theorem 4.4], since boundedness of T is not a necessary assumption in the
latter.

Remark 4.18. Let T ∈ M� be R-diagonal. Then supp(μT ) ⊆ σ(T ), and
according to Theorem 4.17,

supp(μT ) = {λ ∈ C | ‖T −1‖−1
2 ≤ |λ| ≤ ‖T ‖2}.

Moreover, by arguments similar to the ones given in [9, proof of Proposi-
tion 4.6], one can show that

(a) if 0 < |λ| < ‖T −1‖−1
2 , then λ ∈ σ(T ) iff T does not have a bounded

inverse, and

(b) if |λ| > ‖T ‖2, then λ ∈ σ(T ) iff T is not bounded.

5. Properties of z = xy−1

Let M = L(F4) be the von Neumann algebra associated with the free group
on 4 generators. According to [17] or [18], M is a II1-factor generated by
a semicircular system (s1, s2, s3, s4), i.e. the si’s are freely independent self-
adjoint elements w.r.t. the unique tracial state τ on M, and si has distribution

dμsi (t) = 1

2π

√
4 − t2 1[−2,2](t) dt, 1 ≤ i ≤ 4.
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Put
x = s1 + is2√

2
and y = s3 + is4√

2
.

Then M = W ∗(x, y), and (x, y) is a circular system in the sense of [18]. Also,
by [18], |y| has the distribution

dμ|y|(t) = 2

π

√
4 − t2 1[0,2](t) dt.

In particular, ker(y) = 0. In this section we will study the unbounded operator

z = xy−1

as well as its powers zn, n = 2, 3, . . .. We will need the following simple
observation:

Lemma 5.1. Let (μn)∞n=1 andμ be probability measures on R with densities

(fn)
∞
n=1 and f , respectively, w.r.t. Lebesgue measure. If fn

n→∞−→ f a.e. w.r.t.

Lebesgue measure, then μn
n→∞−→ μ weakly.

Proof. Recall that μn
n→∞−→ μ weakly iff for all φ ∈ C0(R),

(5.1) lim
n→∞

∫
R
φ dμn =

∫
R
φ dμ.

Clearly, it suffices to consider φ ∈ C0(R)with 0 ≤ φ ≤ 1, and for such φ, (5.1)
follows for such φ by application of Fatou’s Lemma to each of the sequences
of integrals

(∫
R φfn dm

)∞
n=1 and

(∫
R(1 − φ)fn dm

)∞
n=1.

Theorem 5.2. Let (M, τ ) and z = xy−1 be as above.

(a) z is an unbounded, R-diagonal operator.

(b) The distribution of z is given by

(5.2) dμ|z|(t) = 2

π

1

1 + t2
1(0,∞)(t) dt.

(c) For p ∈ (0, 1), z, z−1 ∈ Lp(M, τ ), and

(5.3) ‖z‖pp = ‖z−1‖pp =
[
cos

(pπ
2

)]−1
< ∞.

(d) z, z−1 ∈ M�, and the Brown measure of z is given by

(5.4) dμz(s) = 1

π(1 + |s|2)2 ds,

where ds = d Re s d Im s is Lebesgue measure on C.
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Proof. (a) Let x = u|x| and y = v|y| be the polar decompositions of x
and y. Then, according to [18], u, |x|, v and |y| are ∗-free elements, and u and
v are Haar unitaries. In particular, x and y are R-diagonal and so is y−1 (cf.
Proposition 3.6). Moreover, y−1 has polar decomposition

y−1 = v∗(v|y|−1v∗) = v∗|y∗|−1,

which implies that y−1 is affiliated with W ∗(y). Hence, x and y−1 are ∗-free,
and it follows from Proposition 3.8 that z = xy−1 is R-diagonal with

Sμ|z|2 (t) = Sμ|x|2 (t)Sμ|y−1 |2 (t), t ∈ (−1, 0).

The distribution of |x|2 has density

dμ|x|2(t) = 1

2π

√
4 − t

t
1(0,4)(t) dt,

and thus Sμ|x|2 is given by

Sμ|x|2 (t) = 1

1 + t

for all t in a neighborhood of (−1, 0) (cf. [9, example 5.2]). Since |y−1| =
|y∗|−1 ∼∗D

|y|−1 ∼∗D
|x|−1, we get from Proposition 3.13 that

Sμ|y−1 |2 (t) = 1

Sμ|x|2 (−1 − t)
= −t, t ∈ (−1, 0).

Then

(5.5) Sμ|z|2 (t) = − t

1 + t
, t ∈ (−1, 0),

and

χμ|z|2 (t) = t

1 + t
Sμ|z|2 (t) = −

(
t

1 + t

)2

, t ∈ (−1, 0).

The inverse function of χμ|z|2 is then

ψμ|z|2 (u) = −√−u
1 + √−u, u ∈ (−∞, 0),

and it follows that

(5.6) Gμ|z|2 (λ) = 1

λ

(
1 + ψμ|z|2

(
1

λ

))
= 1

λ− √−λ, λ < 0.
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Let
√
w denote the principal value of the square root of w for w ∈ C \ (∞, 0].

Then both sides of (5.6) are analytic in C \ [0,∞). Thus, (5.6) holds for all
λ ∈ C \ [0,∞), and it follows that for t > 0,

(5.7) − 1

π
lim
u→0+ ImGμ|z|2 (t + iu) = − 1

π
Im

(
1

t + i
√
t

)
= 1

π

1√
t(t + 1)

.

For β ∈ (0, 1),

(5.8)
∫ ∞

0

tβ−1

1 + t
dt = π

sin(βπ)
,

(cf. [12, p. 592, formula 613]). The right-hand side of (5.7) therefore defines
the density of a probability measure, and then, by Lemma 5.1, the probability
measures

1

π
ImGμ|z|2 (t + iu) dt, u > 0,

converge weakly to

(5.9)
1

π

1√
t(t + 1)

1(0,∞)(t) dt,

as u → 0+. Hence, by the inverse Stieltjes transform, dμ|z|2(t) is given by
(5.9), and then

dμ|z|(t) = 2

π

1

1 + t2
1(0,∞)(t) dt.

This proves (a) and (b).
In order to prove (c), note that according to (5.8),

τ(|z|p) = 2

π

∫ ∞

0

tp

1 + t2
dt = 1

π

∫ ∞

0

w
p−1

2

1 + w
dw =

[
sin

(
π(p + 1)

2

)]−1

,

proving (c). Since Lp(M, τ ) ⊆ M�, p > 0, z, z−1 ∈ M�. According to
Theorem 4.17,μz is then the unique probability measure on C which is invariant
under rotations and satisfies

μz
(
B(0,Sμ|z|2 (t − 1)−

1
2 )

) = t, 0 < t < 1.

Then by (5.5),

μz

(
B

(
0,

√
t

1 − t

))
= t, 0 < t < 1,
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that is,

μz(B(0, r)) = r2

1 + r2
, r > 0.

Hence, d
dr
μz(B(0, r)) = 2r

(1+r2)2
, and combining this with the fact that μz is

invariant under rotations, we find that μz has density w.r.t. Lebesgue measure
on C given by

1

2πr

2r

(1 + r2)2
= 1

π

1

(1 + r2)2
, r > 0,

where r = |s|, s ∈ C \ {0}. This proves (d).

Lemma 5.3. Let μ be a probability measure on [0,∞) and, as in section 5,
put

h(s) =
∫ ∞

0

s

s2 + u2
dμ(u), s ∈ (0,∞).

Then for 0 < p < 2,

(5.10)
∫ ∞

0
u−p dμ(u) = 2

π
sin

(πp
2

) ∫ ∞

0
s−ph(s) ds.

Proof. By Tonelli’s theorem,
∫ ∞

0
s−ph(s) ds =

∫ ∞

0

(∫ ∞

0

s1−p

s2 + u2
ds

)
dμ(u).

Letting s = ut
1
2 , we find (using (5.8)) that

∫ ∞

0

s1−p

s2 + u2
ds = 1

2
u−p

∫ ∞

0

t−
p

2

1 + t
dt = π

2

[
sin

(πp
2

)]−1
u−p.

This proves (5.10).

Theorem 5.4. Let (M, τ ) and z be as in Theorem 5.2, and let n ∈ N.

(a) zn is an unbounded R-diagonal operator.

(b)

(5.11)
∫ ∞

0

s

s2 + u2
dμ|z|n (u) =

(
s + s

n−1
n+1

)−1
, s > 0.

(c) For p ∈ (
0, 2

n+1

)
, zn and z−n both belong to Lp(M, τ ), and

(5.12) ‖zn‖pp = ‖z−n‖pp = (n+ 1) sin
(
πp

2

)
sin

(
(n+1)πp

2

) .
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(d) If p ∈ (
0, 2

n+1

)
and λ ∈ C, then ker(zn − λ1) = 0. Moreover, (zn −

λ1)−1 ∈ Lp(M, τ ) with

(5.13) ‖(zn − λ1)−1‖p ≤ ‖z−n‖p.

Proof. According to Proposition 3.9, zn is R-diagonal. Moreover, since

Sμ|z|2 (t)
n =

(
− t

1 + t

)n
, t ∈ (−1, 0),

χμ|zn |2 (t) = 1

1 + t
Sμ|zn |2 (t) = −

(
− t

1 + t

)n+1

, t ∈ (−1, 0),

with inverse function

ψμ|zn |2 (u) = − (−u) 1
n+1

1 + (−u) 1
n+1

, u ∈ (−∞, 0).

Hence, for λ ∈ (−∞, 0),

(5.14) Gμ|zn |2 (λ) = 1

λ

(
1 + ψμ|zn |2

(
1

λ

))
= 1

λ
(
1 + (−λ)− 1

n+1
) .

Let
hn(s) =

∫ ∞

0

s

s2 + u2
dμ|zn|(u), s ∈ (0,∞).

Then

hn(s) = s τ
(
(s21 + |zn|2)−1

) = −s Gμ|zn |2 (−s2)
(5.14)=

(
s + s

n−1
n+1

)−1
.

This proves (b).
Since z = xy−1, where (x, y) is a circular family, it is clear that z−n ∼∗D

zn

for all n ∈ N. Hence, ‖zn‖p = ‖z−n‖p for all p > 0. Note that for p > 0,

‖z−n‖pp = τ(|z−n|p) = τ(|(zn)∗|−p) = τ(|zn|−p).
Thus, by Lemma 5.3, for p ∈ (0, 2),

(5.15) ‖z−n‖pp =
∫ ∞

0
u−p dμ|zn|(u) = 2

π
sin

(πp
2

) ∫ ∞

0
s−phn(s) ds.

By application of (5.11) we find that

∫ ∞

0
s−phn(s) ds =

∫ ∞

0

s−p− n−1
n+1

s
2
n+1 + 1

ds = n+ 1

2

∫ ∞

0

t−
(n+1)p

2

1 + t
dt.
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Then by (5.15) and (5.8), for 0 < p < 2
n+1 ,

(5.16)

‖z−n‖pp = (n+ 1) sin
(πp

2

) [
sin

(
π

(
1 − (n+ 1)p

2

))]−1

= (n+ 1) sin
(πp

2

) [
sin

(
(n+ 1)πp

2

)]−1

,

and this proves (c). Note that the right-hand side of (5.16) converges to ∞
as p → 2

n+1−. Hence, z−n /∈ L
2
n+1 (M, τ ), and the same holds for zn. In

particular, zn is not bounded, and this proves (a). In order to prove (d), let
λ ∈ C \ {0}, and put

hn,λ(t) =
∫ ∞

0

t

t2 + u2
dμ|zn−λ1|(u), t > 0.

Then by Proposition 4.13,

hn,λ(t) = hn(sn(|λ|, t)), t > 0,

where sn(|λ|, t) is given by Definition 4.9 in the case μ = μ|zn|. Note that,
according to Definition 4.9,

sn(|λ|, t) > t, t > 0.

Moreover, by (5.11), hn is monotonically decreasing on (0,∞). Thus,

hn,λ(t) ≤ hn(t), t > 0.

It now follows from Lemma 5.3 that for p ∈ (0, 2),

(5.17)
∫ ∞

0
u−p dμ|zn−λ1|(u) ≤

∫ ∞

0
u−p dμ|zn|(u).

According to (c), the right-hand side of (5.17) is finite forp ∈ (
0, 2

n+1

)
. Hence,

for such p, ker(zn − λ1) = 0, (zn − λ1)−1 ∈ Lp(M, τ ), and

‖(zn − λ1)−1‖pp ≤ ‖z−n‖pp .

Remark 5.5. Note that Theorem 5.4 (a) and (c) generalize Theorem 5.2
(a) and (c) to all n ∈ N. It is not hard to generalize Theorem 5.2 (b) and (d) as
well. One finds that the distribution of |zn| is given by

dμ|zn|(t) = 2

π

sin
(
π
n+1

)
t
(
t

2
n+1 + 2 cos

(
π
n+1

) + t−
2
n+1

)
r

1(0,∞)(t) dt,
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and the Brown measure of zn is given by

dμzn(s) = 1

nπ

|s| 2
n
−2

(
1 + |s| 2

n

)2 d Re s d Im s.

We leave the details of proof to the reader.
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