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Abstract

It is proved that an operator with bound not exceeding (n − 2)n−1 in a C∗-algebra is the mean of
n unitay operators in that algebra.

1. Introduction

In [3], it is proved that if ‖A‖ < 1 − 2
n

, then A = 1
n
(U1 + · · · + Un), where

A lies in a C∗-algebra � and U1, . . . , Un are in the unitary group U(�) of �.
The Russo-Dye theorem [6], “each A in (�)1, the closed unit ball ({A : ‖A‖ ≤
1, A ∈ �}) in �, is the norm limit of convex combinations of unitary operators
in �,” is an immediate consequence of this much sharper result. The launch
platform for the investigation in [3] was the observation by L. T. Gardner [1]
that

(∗) U(�) + (�)o1 ⊆ U(�) + U(�),

where (�1)
o = {A : ‖A‖ < 1, A ∈ �} (the open unit ball of �). To see this,

note that, with T in (�)o1 and V in U(�), 1
2 (V + T ) = 1

2V (I + V ∗T ) and
‖V ∗T ‖ = ‖T ‖ < 1. Thus I + V ∗T , and hence 1

2 (V + T ) are invertible. So,
1
2 (V +T ) = UH , with U in U(�) and H ≥ 0 in �. Now, ‖H‖ = ‖UH‖ ≤ 1,
whence H = 1

2 (U1+U2), with U1 and U2 in U(�). Thus V +T = UU1+UU2,
with UUj in U(�), and (∗) follows. Gardner proceeds from this observation
to his short proof of the Russo-Dye theorem.

At a lecture, about Gardner’s proof, to the Operator Algebra Seminar in
Copenhagen on 7 October 1983, the second-named author noted that a different
departure from Gardner’s observation allowed one to conclude that each T in
(�)o1 is a finite, convex combination of elements in U(�), from which the
Russo-Dye theorem is immediate. A few days of discussion after that lecture,
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led to the following argument from (∗) to the result in [3] noted at the beginning
of this article. With V in U(�) and T in (�)o1,

(∗∗)

V + (n − 1)T = V + T + (n − 2)T

= U1 + V1 + (n − 2)T

= U1 + U2 + V2 + (n − 3)T

= · · · = U1 + · · · + Un−2 + Vn−2 + T

= U1 + · · · + Un−2 + Un−1 + Un,

with each Uj and Vj in U(�). If n ≥ 3 and S ∈ (1 − 2
n
)(�)0

1, then ‖(n −
1)−1(nS−I )‖ ≤ (n−1)−1(n‖S‖+1) < 1. Replacing T by (n−1)−1(nS−I )

and V by I in (∗∗), we have

nS = U1 + · · · + Un (Un ∈ U(�)).

As noted in [3], n is as good an estimate as possible of the least number of
elements of U(�) needed in a convex sum equal to T in � when ‖T ‖ < 1− 2

n
,

for with V a non-unitary isometry on a Hilbert space H , and 1 − 2
n−1 <

an < 1 − 2
n

, anV has norm an and is a mean of n unitary operators on H

but no fewer. There are a number of other topics discussed, results proved,
and questions raised in [3]. Those questions are answered in a hail of further
results by M. Rørdam in his brilliant [7]. One question, raised by C. Olsen and
G. K. Pedersen in [4], remained unanswered: Is T in � a mean of n elements
of U(�) when ‖T ‖ = 1 − 2

n
? For � a von Neumann algebra, this question

is answered in the affirmative in [4]; indeed, the “unitary rank” of each T in
(�)1 is determined as well in terms of Olsen’s index for T [5] and the distance
of T from the group of invertible elements in �. For the general C∗-algebra
�, this question was daunting to many of us. There were partial results; for
example, the first-named author answered the question affirmatively when �
is commutative. (See Proposition 3.6 of [4].) The second-named author proved
(unpublished notes) that if

{
z : |z| ≤ 1− 2

n

}
is not the spectrum of T (that is, if

a single point of this disk is missing from the spectrum of T ), Then T in � is the
mean of n elements of U(�) when ‖T ‖ = 1 − 2

n
. The argument was intricate.

It could be made much simpler using later results and techniques of Rørdam
[7]. The full conjecture, however, remained elusive until the first-named author
proved it [2] (at the end of 1987). That proof was quite involved. Pedersen,
on receiving a copy of that proof, was able to simplify it considerably. The
“simplified” proof was still so complex that Pedersen remarked to the second-
named author, that despite having “simplified it,” he still did not understand it.
When the Pedersen version reached the second-named author, it was simplified
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and restructured further. It became “understandable,” well-motivated, but still
not “simple.” This last version of the first-named author’s proof is the one we
present in the next section. It remains attached to the same structure as the
original argument of the first-named author.

2. The proof

We begin with some notation, in addition to the notation established in the
preceding section. Throughout, � is a unital C∗-algebra, (�)+1 = {H : H ≥
0, H ∈ (�)1}, and P = {UH : H ∈ (�)+1 }. We denote by ‘sp(T )’ the
spectrum of T (in � relative to �). We prove the main theorem of this article
in what follows.

Theorem. If A ∈ � and ‖A‖ ≤ 1 − 2
n

(n = 3, 4, . . .), then A = 1
n
(U1 +

· · · + Un) with U1, . . . , Un in U(�).

With the aid of the lemma that follows:

Lemma 1. If T ∈ (�)1 and H is in (�)+1 , then

T + 2H = U + V + V ∗

for some U and V in U(�), where sp(U ∗V ) ⊆ {
eiθ : −π

2 ≤ θ ≤ π
}
, we can

prove:

Lemma 2. If T ∈ (�)1 and S ∈ P , then

T + 2S = U + 2R,

where U ∈ U(�) and R ∈ P .

With the aid of Lemma 2, we can prove our theorem. We prove the theorem
from Lemma 2 first.

Proof of Theorem. Let B be n
n−2A. Then B ∈ (�)1. From Lemma 2,

with S in P ,

nA + 2S = (n − 2)B + 2S = (n − 3)B + B + 2S = (n − 3)B + U1 + 2S1

= U1 + (n − 4)B + B + 2S1 = U1 + U2 + (n − 4)B + 2S2

= · · · = U1 + · · · + Un−2 + 2Sn−2,

where each Uj ∈ U(�) and each Sj ∈ P .
When T ∈ P , T = UH , with U in U(�) and H in (�)+1 , whence 2T =

UV +UV ∗, where V = H + i(I −H 2)
1
2 ∈ U(�). Thus 2Sn−2 = Un−1 +Un,

with Un−1 and Un in U(�), and

nA + 2S = U1 + U2 + · · · + Un.
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As 0 ∈ P and S is an arbitrary element of P , we may use 0 for S. Then
A = 1

n
(U1 + · · · + Un).

Proof of Lemma 2. Since S ∈ P , S = V H for some V in U(�) and H

in (�)+1 . From Lemma 1,

T + 2S = V (V ∗T + 2H) = V (W + V0 + V ∗
0 )

for some W and V0 in U(�), where sp(W ∗V0) ⊆ C0 and C0 = {
eiθ : −π

2 ≤
θ ≤ π

}
. The function f on C0, defined by f (eiθ ) = e

1
2 iθ , is continuous. Thus

f (W ∗V0) is an element U0 in �, U 2
0 = W ∗V0, and sp(U0) lies in the right

half-plane. Thus U0 + U ∗
0 = 2K , where K ∈ (�)+1 and

T + 2S = V (W + V0 + V ∗
0 ) = V W(I + W ∗V0 + W ∗V ∗

0 )

= V W(I + U 2
0 + W ∗V ∗

0 ) = V WU0(U
∗
0 + U0 + U ∗

0 W ∗V ∗
0 )

= V WU0(2K + U ∗
0 W ∗V ∗

0 ) = V V ∗
0 + 2V WU0K

= U + 2R,

where U = V V ∗
0 ∈ U(�) and V WU0K = R ∈ P .

Proof of Lemma 1. If we have foundU andV , thenT −U = V +V ∗−2H ,
which is self-adjoint. Thus 1

2i
(U −U ∗) must be B, where T = A+ iB with A

and B self-adjoint. Define U to be B ′ + iB, where the notation D′ will be used
to denote (I −D2)

1
2 , when −I ≤ D ≤ I . Then T +2H −U = A−B ′+2H =

V + V ∗. Define V to be C + iC ′, where C = 1
2 (A − B ′ + 2H). For this, we

must show that −I ≤ C ≤ I . Since A = 1
2 (T + T ∗) and B = 1

2i
(T − T ∗),

we have that
A2 + B2 = 1

2
(T T ∗ + T ∗T ) ≤ I,

since ‖T ‖ ≤ 1 (so that T T ∗ ≤ I and T ∗T ≤ I ). Thus A2 ≤ B ′2 and |A| ≤ B ′.
In particular, A ≤ B ′, whence A − B ′ + 2H ≤ 2H , and C ≤ H ≤ I . At the
same time, C ≥ 1

2 (A − B ′) ≥ −I , since ‖A − B ′‖ ≤ 2 (for ‖A‖ ≤ ‖T ‖ ≤ 1
and ‖B ′‖ ≤ 1).

To establish the spectrum condition on U ∗V , we assume that − cos θ −
i sin θ (= λ) is in sp(U ∗V ), where 0 < θ < 1

2π . Then U ∗V − λI and, hence,
V −λU are not invertible in �. Some maximal left or right ideal in � contains
V − λU , so that 0 = ρ(V − λU) for some (pure) state ρ of �. Now,

V − λU = C + cos θB ′ − sin θB + i(C ′ + cos θB + sin θB ′).

Since ρ is a state,

ρ(C + cos θB ′ − sin θB) = 0 = ρ(C ′ + cos θB + sin θB ′).
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Thus
ρ(cos θC − cos θ sin θB + cos2 θB ′) = 0

ρ(sin θC ′ + sin θ cos θB + sin2 θB ′) = 0,

and

0 = ρ(cos θC +B ′ + sin θC ′) = ρ(cos θ(C +B ′)+ (1− cos θ)B ′ + sin θC ′).

Note that C + B ′ = 1
2 (A + B ′ + 2H) ≥ 0, since −A ≤ |A| ≤ B ′, from our

earlier observations. By assumption 0 < θ < 1
2π , so that cos θ , 1 − cos θ , and

sin θ are positive numbers. As C + B ′, B ′, and C ′ are positive operators and ρ

is a state, we have that

ρ(C + B ′) = ρ(B ′) = ρ(C ′) = 0,

and 0 = ρ(C ′2) = 1 − ρ(C2). Hence

0 = ρ(CB ′) = ρ(B ′C) = ρ(B ′2) = ρ((C + B ′)2).

But then

0 = ρ((C + B ′)2) = ρ(C2 + CB ′ + B ′C + B ′2) = ρ(C2) = 1,

a contradiction. Thus λ, of the form described, is not in sp(U ∗V ).
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