MULTIPLICATIVE PROPERTIES OF POSITIVE MAPS

ERLING STØRMER

(Dedicated to the memory of Gert K. Pedersen)

Abstract

Let ϕ be a positive unital normal map of a von Neumann algebra M into itself. It is shown that with some faithfulness assumptions on ϕ there exists a largest Jordan subalgebra C_{ϕ} of M such that the restriction of ϕ to C_{ϕ} is a Jordan automorphism and each weak limit point of $(\phi^n(a))$ for $a \in M$ belongs to C_{ϕ} .

1. Introduction

In the study of positive linear maps of C^* -algebras the multiplicative properties of such maps have been studied by several authors, see e.g. [9], [2], [3], [4], [6]. If $\phi: A \to B$ is a positive unital map between C^* -algebras A and B an application of Kadison's Schwarz inequality, [8] to the operators $a + a^*$ and $i(a - a^*)$ yields the inequality [10]

(1)
$$\phi(a \circ a^*) \ge \phi(a) \circ \phi(a)^*, \quad a \in A,$$

where $a \circ b = \frac{1}{2}(ab + ba)$ is the Jordan product. Thus one obtains an operator valued sesquilinear form

(2)
$$\langle a, b \rangle = \phi(a \circ b^*) - \phi(a) \circ \phi(b)^*, \quad a, b \in A.$$

If we apply the Cauchy-Schwarz inequality to $\omega(\langle a, b \rangle)$ for all states ω of *B* it was noticed in [6] that if $\phi(a \circ a^*) = \phi(a) \circ \phi(a)^*$ then $\langle a, b \rangle = 0$ for all $b \in A$. We call the set

$$A_{\phi} = \{a \in A : \phi(a \circ a^*) = \phi(a) \circ \phi(a)^*\}$$

the *definite set* of ϕ . It is a Jordan subalgebra of A, and if $a \in A_{\phi}$ then $\phi(a \circ b) = \phi(a) \circ \phi(b)$ for all $b \in A$.

In the present paper we shall develop the theory further. We first study positive unital normal, i.e. ultra weakly continuous, maps $\phi: M \to M$, where

Received June 22, 2006.

M is a von Neumann algebra. We mainly study properties of the definite set M_{ϕ} and some of its Jordan subalgebras of *M* plus convergence properties of the orbits $(\phi^n(a))$ for $a \in M$. We shall show that when there exists a faithful family \mathscr{F} of ϕ -invariant normal states there is a largest Jordan subalgebra C_{ϕ} of *M* called the multiplicative core of *M*, on which ϕ acts as a Jordan automorphism. Furthermore if $a \in M$ then every weak limit point of the orbit $(\phi^n(a))$ lies in C_{ϕ} , and if $\rho(a \circ b) = 0$ for all $b \in C_{\phi}$, then $\phi^n(a) \to 0$ weakly.

Much of the above work was inspired by a theorem of Arveson, [1]. In the last section we study the *C**-algebra case and the relation of our discussion with Arveson's work. Then $\phi: A \to A$ is a positive unital map, and we assume the orbits $(\phi^n(a))$ with $a \in A$ are norm relatively compact and that there exists a faithful family \mathscr{F} of ϕ -invariant states. It is then shown that the multiplicative core C_{ϕ} of ϕ equals the set of main interest in [1], namely the norm closure of the linear span of all eigenoperators $a \in A$ with $\phi(a) = \lambda a$, $|\lambda| = 1$, and that $\lim_{n\to\infty} ||\phi^n(a)|| = 0$ if and only if $\rho(a \circ b) = 0$ for all $b \in C_{\phi}$ and $\rho \in \mathscr{F}$.

2. Maps on von Neumann algebras

Throughout this section M denotes a von Neumann algebra, $\phi: M \to M$ is a positive normal unital map. M_{ϕ} denotes the definite set of ϕ and \langle, \rangle the operator valued sesquilinear form $\langle a, b \rangle = \phi(a \circ b^*) - \phi(a) \circ \phi(b)^*, a, b \in A$.

LEMMA 2.1. Let assumptions be as above, and suppose (a_{α}) is a bounded net in M which converges weakly to $a \in M$. If $\langle a_{\alpha}, a_{\alpha} \rangle \to 0$ weakly, then $a \in M_{\phi}$, and $\phi(a \circ b) = \phi(a) \circ \phi(b)$ for all $b \in M$.

PROOF. Let ω be a normal state on M. By the Cauchy-Schwarz inequality, if $b, c \in M$ we have

$$|\omega(\langle b, c \rangle)|^2 \le \omega(\langle b, b \rangle)\omega(\langle c, c \rangle).$$

By assumption, if a_{α} and a are as in the statement of the lemma, and $b \in M$ then $(a_{\alpha}, b_{\alpha})^2 = 1$; $(a_{\alpha}, b_{\alpha})^2$

$$\omega(\langle a, b \rangle)|^{2} = \lim_{\alpha} |\omega(\langle a_{\alpha}, b \rangle)|^{2}$$

$$\leq \lim_{\alpha} \omega(\langle a_{\alpha}, a_{\alpha} \rangle)\omega(\langle b, b \rangle) = 0.$$

Since this holds for all normal states ω , $\langle a, b \rangle = 0$, completing the proof.

In analogy with the definition of G-finite for automorphism groups we introduce

DEFINITION 2.2. With ϕ as above we say M is ϕ -finite if there exists a faithful family \mathcal{F} of ϕ -invariant normal states on the von Neumann algebra generated by the image $\phi(M)$.

ERLING STØRMER

LEMMA 2.3. Assume M is ϕ -finite. Then for $a \in M$ we have

- (i) Every weak limit point of the orbit $(\phi^n(a))$ of a belongs to M_{ϕ} .
- (ii) If $\rho(\phi^n(a) \circ b) = 0$ for all $b \in M_{\phi}$, $\rho \in \mathcal{F}$, then $\phi^n(a) \to 0$ weakly.

PROOF. If $\rho \in \mathscr{F}$ denote by $\|.\|_{\rho}$ the seminorm $\|x\|_{\rho} = \rho(x \circ x^*)^{\frac{1}{2}}$. Then by the inequality (1)

$$\|\phi^{n+1}(a)\|_{\rho}^{2} = \rho(\phi^{n+1}(a) \circ \phi^{n+1}(a)^{*})$$

$$\leq \rho(\phi(\phi^{n}(a) \circ \phi^{n}(a)^{*}))$$

$$= \|\phi^{n}(a)\|_{\rho}^{2}.$$

Thus the sequence $\|\phi^n(a)\|_{\rho}^2$ is decreasing, hence $\|\phi^n(a)\|_{\rho}^2 - \|\phi^{n+1}(a)\|_{\rho}^2 \to 0$. We have

$$\begin{split} \rho(\langle \phi^{n}(a), \phi^{n}(a) \rangle) &= \rho(\phi(\phi^{n}(a) \circ \phi^{n}(a)^{*}) - \phi(\phi^{n}(a)) \circ \phi(\phi^{n}(a)^{*})) \\ &= \rho(\phi^{n}(a) \circ \phi^{n}(a)^{*} - \phi^{n+1}(a) \circ \phi^{n+1}(a)^{*}) \\ &= \|\phi^{n}(a)\|_{\rho}^{2} - \|\phi^{n+1}(a)\|_{\rho}^{2} \to 0. \end{split}$$

Since this hold for all $\rho \in \mathscr{F}$ and \mathscr{F} is faithful, $\langle \phi^n(a), \phi^n(a) \rangle \to 0$ weakly. By Lemma 2.1, if a_0 is a weak limit point of $(\phi^n(a))$ then $a_0 \in M_{\phi}$, proving (i).

To show (ii) suppose $\rho(\phi^n(a) \circ b) = 0$ for all $b \in M_{\phi}$, $\rho \in \mathcal{F}$. Let a_0 be a weak limit point of $(\phi^n(a))$. Then $\rho(a_0 \circ b) = 0$ for all $b \in M_{\phi}$, in particular by part (i) $\rho(a_0 \circ a_0) = 0$. Since \mathcal{F} is faithful on the von Neumann algebra generated by $\phi(M)$, $a_0 = 0$. Thus 0 is the only weak limit point of $(\phi^n(a))$, so $\phi^n(a) \to 0$ weakly. The proof is complete.

It is not true in general that $\phi(M_{\phi}) \subseteq M_{\phi}$. We therefore introduce the following auxiliary concept. If $\phi: A \to A$ is positive unital with A a C^{*}-algebra, then $A_{\phi} = \{a \in A_{\phi} : \phi^k(a) \in A_{\phi}, k \in \mathbb{N}\}.$

LEMMA 2.4. Let M be ϕ -finite and M_{Φ} defined as above. Then M_{Φ} is a weakly closed Jordan subalgebra of M_{ϕ} such that $\phi(M_{\Phi}) \subseteq M_{\Phi}$, and if $a \in M$ then every weak limit point of $(\phi^n(a))$ belongs to M_{Φ} . Furthermore, if $\rho(\phi^n(a) \circ b) = 0$ for all $b \in M_{\Phi}$, $\rho \in \mathcal{F}$, then $\phi^n(a) \to 0$ weakly.

PROOF. Since M is weakly closed and ϕ is weakly continuous on bounded sets M_{Φ} is weakly closed. Since ϕ and its powers ϕ^k are Jordan homomorphisms on M_{Φ} it is straightforward to show M_{Φ} is a Jordan subalgebra of M. Furthermore it is clear from its definition that $\phi(M_{\Phi}) \subseteq M_{\Phi}$.

If $a \in M$ and a_0 is a weak limit point of $(\phi^n(a))$, then $a_0 \in M_{\phi}$ by Lemma 2.3. Then $\phi(a_0)$ is a weak limit point of $(\phi^{n+1}(a))$, hence belongs to M_{ϕ} ,

186

again by Lemma 2.3. Iterating we have $\phi^k(a_0) \in M_{\phi}$ for all $k \in \mathbb{N}$. Thus $a_0 \in M_{\Phi}$. The last statement follows exactly as in Lemma 2.3. The proof is complete.

It is not true that $\phi(M_{\Phi}) = M_{\Phi}$. To remedy this problem we introduce yet another Jordan subalgebra.

DEFINITION 2.5. Let $\phi: A \to A$ be positive unital with A a C^{*}-algebra. The *multiplicative core* of ϕ is the set

$$C_{\phi} = \bigcap_{n=0}^{\infty} \phi^n(A_{\Phi}).$$

LEMMA 2.6. C_{ϕ} satisfies the following:

- (i) C_{ϕ} is a Jordan subalgebra of A.
- (ii) $\phi(C_{\phi}) = C_{\phi}$.

Suppose the restriction of ϕ to C_{ϕ} is faithful. Then we have

- (iii) The restriction of ϕ to C_{ϕ} is a Jordan automorphism.
- (iv) C_{ϕ} is the largest Jordan subalgebra of A on which the restriction of ϕ is a Jordan automorphism.

PROOF. As in Lemma 2.4 C_{ϕ} is clearly a Jordan subalgebra of A such that $\phi(C_{\phi}) \subseteq C_{\phi}$ and is weakly closed in the von Neumann algebra case. Furthermore, since $\phi(A_{\Phi}) \subseteq A_{\Phi}$, we have $\phi^n(A_{\Phi}) \subseteq \phi^{n-1}(A_{\Phi})$, so that the sequence $(\phi^n(A_{\Phi}))$ is decreasing. Thus

$$C_{\phi} = \bigcap_{n=0}^{\infty} \phi^{n+1}(A_{\Phi}) = \phi(C_{\phi}),$$

so (i) and (ii) are proved.

We next show (iii). By (ii) the restriction of ϕ to C_{ϕ} is a Jordan homomorphism of C_{ϕ} onto itself. In particular since ϕ is faithful on C_{ϕ} , it is a Jordan automorphism of C_{ϕ} , proving (iii).

To show (iv) let *B* be a Jordan subalgebra of *A* such that $\phi|_B$ is a Jordan automorphism of *B*. Then clearly $B \subseteq A_{\Phi}$, and $\phi^n(B) = B$, so that

$$B = \bigcap_{n=0}^{\infty} \phi^n(B) \subseteq \bigcap_{n=0}^{\infty} \phi^n(A_{\Phi}) = C_{\phi}.$$

The proof is complete.

We can now prove our main result.

THEOREM 2.7. Let M be ϕ -finite, and \mathcal{F} a set of normal ϕ -invariant states which is faithful on the von Neumann algebra generated by $\phi(M)$. Let $a \in M$. Then we have

- (i) Every weak limit point of $(\phi^n(a))$ lies in C_{ϕ} .
- (ii) If $\rho(a \circ b) = 0$ for all $b \in C_{\phi}$, $\rho \in \mathcal{F}$, then $\phi^n(a) \to 0$ weakly.

PROOF. (i) Let a_0 be a weak limit point of $(\phi^n(a))$. By Lemma 2.4 $a_0 \in M_{\Phi}$. Choose a subnet $(\phi^{n_{\alpha}}(a))$ which converges weakly to a_0 . Let $k \in \mathbb{N}$, and let $(\phi^{m_{\beta}}(a))$ be a subnet of $(\phi^{n_{\alpha}-k}(a))$ which converges weakly to $a_1 \in M_{\Phi}$ (again using Lemma 2.4, since $(\phi^{m_{\beta}}(a))$ will be a subnet of $(\phi^n(a))$). Each m_{β} is of the form $n_{\alpha_j} - k$. The net $(\phi^{n_{\alpha_j}}(a))$ converges to a_0 , since it is a subnet of the converging net $(\phi^{n_{\alpha}}(a))$. Thus we have

$$\phi^{k}(a_{1}) = \lim \phi^{k}(\phi^{m_{\beta}}(a))$$
$$= \lim \phi^{k+(n_{\alpha_{j}}-k)}(a)$$
$$= \lim \phi^{n_{\alpha_{j}}}(a)$$
$$= a_{0}.$$

Thus $a_0 \in \phi^k(M_{\Phi})$ for all $k \in \mathbb{N}$, hence $a_0 \in C_{\phi}$.

To show (ii) suppose $\rho(a \circ b) = 0$ for all $\rho \in \mathcal{F}$, $b \in C_{\phi}$. Since $\phi^k(C_{\phi}) = C_{\phi}$ there exists $c \in C_{\phi}$ such that $b = \phi^k(c)$. Thus

$$\rho(\phi^k(a) \circ b) = \rho(\phi^k(a) \circ \phi^k(c))$$
$$= \rho(\phi^k(a \circ c))$$
$$= \rho(a \circ c) = 0.$$

By part (i) every weak limit point a_0 of $(\phi^n(a))$ lies in C_{ϕ} , so it follows by the above that $\rho(a_0 \circ b) = 0$ for all $b \in C_{\phi}$. In particular $\rho(a_0 \circ a_0) = 0$, so by faithfulness of \mathscr{F} , $a_0 = 0$, hence $\phi^n(a) \to 0$ weakly. The proof is complete.

One might believe that the converse of part (ii) in the above theorem is true. This is false. Indeed, let M_0 be a von Neumann algebra with a faithful normal tracial state τ_0 . Let $M_i = M_0$, $\tau_i = \tau_0$, $i \in \mathbb{Z}$, and let $M = \bigotimes_{-\infty}^{\infty} (M_i, \tau_i)$. Let ϕ be the shift to the right. Then $C_{\phi} = M$. However, if $a = \dots 1 \otimes a_0 \otimes 1 \dots \in M$ with $a_0 \in M_0$, then $\lim_{n\to\infty} \phi^n(a) = \tau_0(a_0)1$, so if $\tau_0(a_0) = 0$, then the weak limit is 0. But $\tau(a \circ b) \neq 0$ for some $b \in M = C_{\phi}$.

If we assume convergence in the strong-* topology then the converse holds, as we have

PROPOSITION 2.8. Let M be ϕ -finite. Let $a \in M$ and suppose the sequence $(\phi^n(a))$ converges in the strong-* topology. Then $\rho(a \circ b) = 0$ for all $b \in C_{\phi}, \rho \in \mathcal{F}$ if and only if $\phi^n(a) \to 0$ *-strongly.

PROOF. If $\rho(a \circ b) = 0$ for all $b \in C_{\phi}$, $\rho \in \mathcal{F}$ then $\phi^n(a) \to 0$ weakly by the theorem. Since the sequence converges *-strongly the limit must be 0.

Conversely, if $\phi^n(a) \to 0$ *-strongly, then for all $b \in C_{\phi}$, $\rho \in \mathscr{F}$

$$\rho(a \circ b) = \rho(\phi^n(a \circ b)) = \rho(\phi^n(a) \circ \phi^n(b)) \to 0,$$

since multiplication is *-strongly continuous on bounded sets. The proof is complete.

We have not in general found a nice description of the complement of C_{ϕ} in M, i.e. a subspace D such that M is a direct sum of C_{ϕ} and D. In the finite case with a faithful normal ϕ -invariant trace this can be done.

PROPOSITION 2.9. Suppose M has a faithful normal ϕ -invariant tracial state. Then there exists a faithful normal positive projection $P: M \to C_{\phi}$ which commutes with ϕ . Let $D = \{a - P(a) : a \in M\}$. Then $M = C_{\phi} + D$ is a direct sum, and if $a \in D$ then $\phi^n(a) \to 0$ weakly.

PROOF. Since *M* is finite the same construction as that of trace invariant conditional expectations onto von Neumann subalgebras yields the existence of a faithful trace invariant positive normal projection $P: M \to C_{\phi}$, see [7]. Let τ be the trace alluded to in the proposition. Since τ is faithful and ϕ -invariant, ϕ has an adjoint map $\phi^*: M \to M$ defined by $\tau(a\phi^*(b)) = \tau(\phi(a)b)$ for $a, b \in$ *M*. Clearly ϕ^* is τ -invariant, positive, unital, and normal, and its extension $\bar{\phi}^*$ to an operator on $L^2(M, \tau)$ is the usual adjoint of the extension $\bar{\phi}$ of ϕ . Since the restriction of $\bar{\phi}$ to the closure C_{ϕ}^- of C_{ϕ} in $L^2(M, \tau)$ is an isometry of $C_{\phi}^$ onto itself, so is $\bar{\phi}^*$. It follows that $\phi P = P\phi P = (P\phi^*P)^* = (\phi^*P)^* = P\phi$.

It is clear that $M = C_{\phi} + D$ is a direct sum. Suppose $a \in D$, i.e. P(a) = 0. Then $\tau(a \circ b) = 0$ for all $b \in C_{\phi}$. If we let $\mathscr{F} = \{\tau|_{C_{\phi}} \circ P\}$ then, since P commutes with ϕ, \mathscr{F} is a faithful family of normal ϕ -invariant states. By Theorem 2.7 $\phi^n(a) \to 0$ weakly, proving the proposition.

3. Maps of *C**-algebras

Arveson [1] proved the following result.

THEOREM 3.1 (Arveson). Let A be a C*-algebra, $\phi: A \to A$ a completely positive contraction such that the orbit ($\phi^n(a)$) is norm relative compact for all $a \in A$. Then there exists a completely positive projection $P: A \to A$ onto the norm closed linear span E_{ϕ} of the eigenoperators $a \in A$ with $\phi(a) = \lambda a$, with $|\lambda| = 1$, and $\alpha = \phi|_{E_{\phi}}$ is a complete isometry of E_{ϕ} onto itself. We have

$$\lim_{n\to\infty} \|\phi^n(a) - (\alpha \circ P)^n(a)\| = 0,$$

and A is the direct sum of E_{ϕ} and the set $\{a \in A : \lim_{n \to \infty} \|\phi^{n}(a)\| = 0\}$.

We shall now show how our previous results yield a result which is in a sense complementary to Arveson's theorem.

THEOREM 3.2. Let A be a unital C^{*}-algebra and $\phi: A \to A$ a positive unital map such that the orbit $(\phi^n(a))$ is norm relative compact for all $a \in A$. Let C_{ϕ} be the multiplicative core for ϕ in A, and let E_{ϕ} denote the set of eigenoperators $a \in A$ such that $\phi(a) = \lambda a$, with $|\lambda| = 1$. Assume there exists a set \mathcal{F} of ϕ -invariant states which is faithful on the C^{*}-algebra generated by $\phi(A)$. Then we have

- (i) $E_{\phi} = C_{\phi}$ is a Jordan subalgebra of A.
- (ii) The restriction $\phi|_{E_{\phi}}$ is a Jordan automorphism of E_{ϕ} .
- (iii) Let $a \in A$. Then $\rho(a \circ b) = 0$ for all $\rho \in \mathscr{F}, b \in C_{\phi}$ if and only if $\lim_{n \to \infty} \|\phi^n(a)\| = 0$.

PROOF. We first show (ii). If $\phi(a) = \lambda a$ then $\phi(a^*) = \overline{\lambda}a^*$, so E_{ϕ} is self-adjoint. Furthermore by inequality (1)

$$\phi(a \circ a^*) \ge \phi(a) \circ \phi(a^*) = \lambda a \circ \lambda a^* = a \circ a^*.$$

Composing by $\rho \in \mathscr{F}$ and using that \mathscr{F} is faithful on $C^*(\phi(A))$ it follows that $\phi(a \circ a^*) = \phi(a) \circ \phi(a^*)$, so $a \in A_{\phi}$, the definite set of ϕ . Since $a \in E_{\phi}$ is an eigenoperator, so is a^2 , hence E_{ϕ} is a Jordan subalgebra of A_{ϕ} . Note that if $\phi(a) = \lambda a$ then $\phi(\phi(a)) = \phi(\lambda a) = \lambda \phi(a)$, so $\phi(a) \in E_{\phi}$. Thus $\phi: E_{\phi} \to E_{\phi}$. If $a = \sum \mu_i a_i \in E_{\phi}$ where $\phi(a_i) = \lambda_i a_i$, then $a = \sum \mu_i \overline{\lambda_i} \phi(a_i) \in \phi(E_{\phi})$, so by density of such a's, $\phi(E_{\phi}) = E_{\phi}$. Thus by faithfulness of \mathscr{F} the restriction $\phi|_{E_{\phi}}$ is a Jordan automorphism, proving (ii).

It follows from Lemma 2.6 that $E_{\phi} \subseteq C_{\phi}$. To show the converse inclusion we use that the orbit $(\phi^n(a))_{n \in \mathbb{N}}$ is norm relative compact for all $a \in A$. By Lemma 2.6 the restriction of ϕ to C_{ϕ} is a Jordan automorphism, hence in particular an isometry. We assert that if $a \in C_{\phi}$ then the orbit $(\phi^n(a))_{n \in \mathbb{N}}$ is relative norm compact. For this it is enough to show that the set $(\phi^{-n}(a))_{n \in \mathbb{N}}$ is relative norm compact, or equivalently that each sequence $(\phi^{-n_k}(a))$ has a convergent subsequence. By assumption $(\phi^{n_k}(a))$ has a convergent subsequence $(\phi^{m_l}(a))$. Since this sequence is Cauchy, and

$$\|\phi^{-n}(a) - \phi^{-m}(a)\| = \|\phi^{n+m}(\phi^{-n}(a) - \phi^{-m}(a))\| = \|\phi^{n}(a) - \phi^{m}(a)\|,$$

it follows that $(\phi^{-m_l}(a))$ is Cauchy, and therefore converges. Thus the set $(\phi^{-n}(a))_{n \in \mathbb{N}}$ is relative norm compact, as is $(\phi^n(a))_{n \in \mathbb{Z}}$. By a well known result on almost periodic groups, see e.g. Lemma 2.8 in [1], $\phi|_{C_{\phi}}$ has pure point spectrum. Thus $C_{\phi} \subseteq E_{\phi}$, proving (i).

It remains to show (iii). As in the proof of Lemma 2.3 we find that every norm limit point a_0 of $(\phi^n(a))$ belongs to A_{ϕ} , and by the proof of Lemma 2.4 $a_0 \in A_{\Phi} = \{x \in A_{\phi} : \phi^k(x) \in A_{\phi}, k \in \mathbb{N}\}$. A straightforward modification of the proof of Theorem 2.7(i), replacing weak by norm, shows that $a_0 \in C_{\phi}$. Let $a \in A$ satisfy $\rho(a \circ b) = 0$ for all $b \in C_{\phi}, \rho \in \mathscr{F}$. Then by the proof of Theorem 2.7(ii), every norm limit point of $(\phi^n(a))$ is 0. Thus there is a subsequence $(\phi^{n_k}(a))$ of $(\phi^n(a))$ such that for all $\varepsilon > 0$ there is k_0 such that $\|\phi^{n_k}\| \le \varepsilon$ when $k \ge k_0$. But then $n > n_k$ for $k \ge k_0$ implies

$$\|\phi^n(a)\| = \|\phi^{n-n_k}(\phi^{n_k}(a)\| \le \|\phi^{n_k}\| < \varepsilon.$$

Thus $\|\phi^n(a)\| \to 0$.

Conversely, if $\|\phi^n(a)\| \to 0$ then for $b \in C_{\phi}$, $\rho \in \mathscr{F}$

$$\rho(a \circ b) = \rho(\phi^n(a \circ b)) = \rho(\phi^n(a) \circ \phi^n(b)) \to 0,$$

for $n \to \infty$. Thus $\rho(a \circ b) = 0$, completing the proof of the theorem.

It was shown in [5] that if A is a C^* -algebra, and $P: A \to A$ is a faithful positive unital projection then the image P(A) is a Jordan subalgebra of A. The following corollary proves more.

COROLLARY 3.3. Let A be a C^{*}-algebra and P: A \rightarrow A a faithful positive unital projection. Then $E_P = C_P = P(A)$. Hence P(A) is in particular a Jordan subalgebra of A.

PROOF. Since $P^2 = P$ the orbit of each $a \in A$ is finite, so compact. Since P is faithful the set of states $\mathscr{F} = \{\omega|_{P(A)} \circ P\}$ with ω a state on A, is a faithful family of P-invariant states. Thus by Theorem 3.2 we have $E_P = C_P$. Since P is a projection the only nonzero eigenvalue of P is 1, and the corresponding eigenoperators are the elements in P(A). Thus $E_P = P(A)$, proving the corollary.

REFERENCES

- 1. Arveson, W., *Asymptotic stability I: completely positive maps*, Internat. J. Math. 15(3) (2004), 289–312.
- 2. Broise, B. M., letter to the author (1967).
- 3. Choi, M.-D., Positive linear maps on C*-algebras, Thesis, University of Toronto (1972).
- 4. Choi, M.-D., Positive linear maps of C*-algebras, Canad. J. Math. 24 (1972), 520-529.
- Effros, E., and Størmer, E., *Positive projections and Jordan structure in operator algebras*, Math. Scand. 45 (1979), 127–138.
- Evans, D., and Høegh-Krohn, R., Spectral properties of positive maps on C*-algebras, J. London Math. Soc. 17 (1978), 345–355.

ERLING STØRMER

- Haagerup, U., and Størmer, E., Positive projections of von Neumann algebras onto JWalgebras, Rep. Math. Phys. 36 (1995), 317–330.
- 8. Kadison, R. V., A general Schwarz inequality and algebraic invariants for operator algebras, Ann. of Math. 56 (1952), 494–503.
- 9. Kadison, R. V., *The trace in finite von Neumann algebras*, Proc. Amer. Math. Soc. 12 (1961), 973–977.
- 10. Størmer, E., Positive linear maps of operator algebras, Acta Math. 110 (1963), 233-278.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF OSLO 0316 OSLO NORWAY *E-mail:* erlings@math.uio.no