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MULTIPLICATIVE PROPERTIES OF POSITIVE MAPS

ERLING STØRMER

(Dedicated to the memory of Gert K. Pedersen)

Abstract

Let φ be a positive unital normal map of a von Neumann algebra M into itself. It is shown that
with some faithfulness assumptions on φ there exists a largest Jordan subalgebra Cφ of M such
that the restriction of φ to Cφ is a Jordan automorphism and each weak limit point of (φn(a)) for
a ∈ M belongs to Cφ .

1. Introduction

In the study of positive linear maps of C∗-algebras the multiplicative properties
of such maps have been studied by several authors, see e.g. [9], [2], [3], [4],
[6]. If φ: A → B is a positive unital map between C∗-algebras A and B an
application of Kadison’s Schwarz inequality, [8] to the operators a + a∗ and
i(a − a∗) yields the inequality [10]

(1) φ(a ◦ a∗) ≥ φ(a) ◦ φ(a)∗, a ∈ A,

where a ◦ b = 1
2 (ab + ba) is the Jordan product. Thus one obtains an operator

valued sesquilinear form

(2) 〈a, b〉 = φ(a ◦ b∗) − φ(a) ◦ φ(b)∗, a, b ∈ A.

If we apply the Cauchy-Schwarz inequality to ω(〈a, b〉) for all states ω of B

it was noticed in [6] that if φ(a ◦ a∗) = φ(a) ◦ φ(a)∗ then 〈a, b〉 = 0 for all
b ∈ A. We call the set

Aφ = {a ∈ A : φ(a ◦ a∗) = φ(a) ◦ φ(a)∗}
the definite set of φ. It is a Jordan subalgebra of A, and if a ∈ Aφ then
φ(a ◦ b) = φ(a) ◦ φ(b) for all b ∈ A.

In the present paper we shall develop the theory further. We first study
positive unital normal, i.e. ultra weakly continuous, maps φ: M → M , where
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M is a von Neumann algebra. We mainly study properties of the definite set
Mφ and some of its Jordan subalgebras of M plus convergence properties of
the orbits (φn(a)) for a ∈ M . We shall show that when there exists a faithful
family F of φ-invariant normal states there is a largest Jordan subalgebra
Cφ of M called the multiplicative core of M , on which φ acts as a Jordan
automorphism. Furthermore if a ∈ M then every weak limit point of the orbit
(φn(a)) lies in Cφ , and if ρ(a ◦b) = 0 for all b ∈ Cφ , then φn(a) → 0 weakly.

Much of the above work was inspired by a theorem of Arveson, [1]. In the
last section we study the C∗-algebra case and the relation of our discussion
with Arveson’s work. Then φ: A → A is a positive unital map, and we assume
the orbits (φn(a)) with a ∈ A are norm relatively compact and that there exists
a faithful family F of φ-invariant states. It is then shown that the multiplicative
core Cφ of φ equals the set of main interest in [1], namely the norm closure of
the linear span of all eigenoperators a ∈ A with φ(a) = λa, |λ| = 1, and that
limn→∞ ‖φn(a)‖ = 0 if and only if ρ(a ◦ b) = 0 for all b ∈ Cφ and ρ ∈ F .

2. Maps on von Neumann algebras

Throughout this section M denotes a von Neumann algebra, φ: M → M is a
positive normal unital map. Mφ denotes the definite set of φ and 〈, 〉 the operator
valued sesquilinear form 〈a, b〉 = φ(a ◦ b∗) − φ(a) ◦ φ(b)∗, a, b ∈ A.

Lemma 2.1. Let assumptions be as above, and suppose (aα) is a bounded
net in M which converges weakly to a ∈ M . If 〈aα, aα〉 → 0 weakly, then
a ∈ Mφ , and φ(a ◦ b) = φ(a) ◦ φ(b) for all b ∈ M .

Proof. Let ω be a normal state on M . By the Cauchy-Schwarz inequality,
if b, c ∈ M we have

|ω(〈b, c〉)|2 ≤ ω(〈b, b〉)ω(〈c, c〉).
By assumption, if aα and a are as in the statement of the lemma, and b ∈ M

then |ω(〈a, b〉)|2 = lim
α

| ω(〈aα, b〉)|2

≤ lim
α

ω(〈aα, aα〉)ω(〈b, b〉) = 0.

Since this holds for all normal states ω, 〈a, b〉 = 0, completing the proof.

In analogy with the definition of G-finite for automorphism groups we
introduce

Definition 2.2. With φ as above we say M is φ-finite if there exists a
faithful family F of φ-invariant normal states on the von Neumann algebra
generated by the image φ(M).
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Lemma 2.3. Assume M is φ-finite. Then for a ∈ M we have

(i) Every weak limit point of the orbit (φn(a)) of a belongs to Mφ .

(ii) If ρ(φn(a) ◦ b) = 0 for all b ∈ Mφ , ρ ∈ F , then φn(a) → 0 weakly.

Proof. If ρ ∈ F denote by ‖.‖ρ the seminorm ‖x‖ρ = ρ(x ◦ x∗) 1
2 . Then

by the inequality (1)

‖φn+1(a)‖2
ρ = ρ(φn+1(a) ◦ φn+1(a)∗)

≤ ρ(φ(φn(a) ◦ φn(a)∗))

= ‖φn(a)‖2
ρ.

Thus the sequence ‖φn(a)‖2
ρ is decreasing, hence ‖φn(a)‖2

ρ − ‖φn+1(a)‖2
ρ →

0. We have

ρ(〈φn(a), φn(a)〉) = ρ(φ(φn(a) ◦ φn(a)∗) − φ(φn(a)) ◦ φ(φn(a)∗))

= ρ(φn(a) ◦ φn(a)∗ − φn+1(a) ◦ φn+1(a)∗)

= ‖φn(a)‖2
ρ − ‖φn+1(a)‖2

ρ → 0.

Since this hold for all ρ ∈ F and F is faithful, 〈φn(a), φn(a)〉 → 0 weakly.
By Lemma 2.1, if a0 is a weak limit point of (φn(a)) then a0 ∈ Mφ , proving
(i).

To show (ii) suppose ρ(φn(a) ◦ b) = 0 for all b ∈ Mφ, ρ ∈ F . Let a0 be a
weak limit point of (φn(a)). Then ρ(a0 ◦ b) = 0 for all b ∈ Mφ , in particular
by part (i) ρ(a0 ◦ a0) = 0. Since F is faithful on the von Neumann algebra
generated by φ(M), a0 = 0. Thus 0 is the only weak limit point of (φn(a)),
so φn(a) → 0 weakly. The proof is complete.

It is not true in general that φ(Mφ) ⊆ Mφ . We therefore introduce the
following auxiliary concept. If φ: A → A is positive unital with A a C∗-
algebra, then A� = {a ∈ Aφ : φk(a) ∈ Aφ, k ∈ N}.

Lemma 2.4. Let M be φ-finite and M� defined as above. Then M� is
a weakly closed Jordan subalgebra of Mφ such that φ(M�) ⊆ M�, and if
a ∈ M then every weak limit point of (φn(a)) belongs to M�. Furthermore, if
ρ(φn(a) ◦ b) = 0 for all b ∈ M�, ρ ∈ F , then φn(a) → 0 weakly.

Proof. Since M is weakly closed and φ is weakly continuous on bounded
sets M� is weakly closed. Since φ and its powers φk are Jordan homomorph-
isms on M� it is straightforward to show M� is a Jordan subalgebra of M .
Furthermore it is clear from its definition that φ(M�) ⊆ M�.

If a ∈ M and a0 is a weak limit point of (φn(a)), then a0 ∈ Mφ by Lem-
ma 2.3. Then φ(a0) is a weak limit point of (φn+1(a)), hence belongs to Mφ ,
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again by Lemma 2.3. Iterating we have φk(a0) ∈ Mφ for all k ∈ N. Thus
a0 ∈ M�. The last statement follows exactly as in Lemma 2.3. The proof is
complete.

It is not true that φ(M�) = M�. To remedy this problem we introduce yet
another Jordan subalgebra.

Definition 2.5. Let φ: A → A be positive unital with A a C∗-algebra.
The multiplicative core of φ is the set

Cφ =
∞⋂

n=0

φn(A�).

Lemma 2.6. Cφ satisfies the following:

(i) Cφ is a Jordan subalgebra of A.

(ii) φ(Cφ) = Cφ .

Suppose the restriction of φ to Cφ is faithful. Then we have

(iii) The restriction of φ to Cφ is a Jordan automorphism.

(iv) Cφ is the largest Jordan subalgebra of A on which the restriction of φ

is a Jordan automorphism.

Proof. As in Lemma 2.4 Cφ is clearly a Jordan subalgebra of A such
that φ(Cφ) ⊆ Cφ and is weakly closed in the von Neumann algebra case.
Furthermore, since φ(A�) ⊆ A�, we have φn(A�) ⊆ φn−1(A�), so that the
sequence (φn(A�)) is decreasing. Thus

Cφ =
∞⋂

n=0

φn+1(A�) = φ(Cφ),

so (i) and (ii) are proved.
We next show (iii). By (ii) the restriction of φ to Cφ is a Jordan homo-

morphism of Cφ onto itself. In particular since φ is faithful on Cφ , it is a
Jordan automorphism of Cφ , proving (iii).

To show (iv) let B be a Jordan subalgebra of A such that φ|B is a Jordan
automorphism of B. Then clearly B ⊆ A�, and φn(B) = B, so that

B =
∞⋂

n=0

φn(B) ⊆
∞⋂

n=0

φn(A�) = Cφ.

The proof is complete.

We can now prove our main result.
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Theorem 2.7. Let M be φ-finite, and F a set of normal φ-invariant states
which is faithful on the von Neumann algebra generated by φ(M). Let a ∈ M .
Then we have

(i) Every weak limit point of (φn(a)) lies in Cφ .

(ii) If ρ(a ◦ b) = 0 for all b ∈ Cφ, ρ ∈ F , then φn(a) → 0 weakly.

Proof. (i) Let a0 be a weak limit point of (φn(a)). By Lemma 2.4 a0 ∈ M�.
Choose a subnet (φnα (a)) which converges weakly to a0. Let k ∈ N, and let
(φmβ (a)) be a subnet of (φnα−k(a)) which converges weakly to a1 ∈ M� (again
using Lemma 2.4, since (φmβ (a)) will be a subnet of (φn(a))). Each mβ is of
the form nαj

− k. The net (φ
nαj (a)) converges to a0, since it is a subnet of the

converging net (φnα (a)). Thus we have

φk(a1) = lim φk(φmβ (a))

= lim φ
k+(nαj

−k)
(a)

= lim φ
nαj (a)

= a0.

Thus a0 ∈ φk(M�) for all k ∈ N, hence a0 ∈ Cφ .
To show (ii) suppose ρ(a ◦ b) = 0 for all ρ ∈ F , b ∈ Cφ . Since φk(Cφ) =

Cφ there exists c ∈ Cφ such that b = φk(c). Thus

ρ(φk(a) ◦ b) = ρ(φk(a) ◦ φk(c))

= ρ(φk(a ◦ c))

= ρ(a ◦ c) = 0.

By part (i) every weak limit point a0 of (φn(a)) lies in Cφ , so it follows by the
above that ρ(a0 ◦ b) = 0 for all b ∈ Cφ . In particular ρ(a0 ◦ a0) = 0, so by
faithfulness of F , a0 = 0, hence φn(a) → 0 weakly. The proof is complete.

One might believe that the converse of part (ii) in the above theorem is true.
This is false. Indeed, let M0 be a von Neumann algebra with a faithful normal
tracial state τ0. Let Mi = M0, τi = τ0, i ∈ Z, and let M = ⊗∞

−∞(Mi, τi). Let
φ be the shift to the right. ThenCφ = M . However, ifa = . . . 1⊗a0⊗1 . . . ∈ M

with a0 ∈ M0, then limn→∞ φn(a) = τ0(a0)1, so if τ0(a0) = 0, then the weak
limit is 0. But τ(a ◦ b) �= 0 for some b ∈ M = Cφ .

If we assume convergence in the strong-* topology then the converse holds,
as we have

Proposition 2.8. Let M be φ-finite. Let a ∈ M and suppose the sequence
(φn(a)) converges in the strong-* topology. Then ρ(a ◦ b) = 0 for all b ∈
Cφ, ρ ∈ F if and only if φn(a) → 0 *-strongly.
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Proof. If ρ(a ◦ b) = 0 for all b ∈ Cφ, ρ ∈ F then φn(a) → 0 weakly by
the theorem. Since the sequence converges *-strongly the limit must be 0.

Conversely, if φn(a) → 0 *-strongly, then for all b ∈ Cφ, ρ ∈ F

ρ(a ◦ b) = ρ(φn(a ◦ b)) = ρ(φn(a) ◦ φn(b)) → 0,

since multiplication is *-strongly continuous on bounded sets. The proof is
complete.

We have not in general found a nice description of the complement of Cφ

in M , i.e. a subspace D such that M is a direct sum of Cφ and D. In the finite
case with a faithful normal φ-invariant trace this can be done.

Proposition 2.9. Suppose M has a faithful normal φ-invariant tracial
state. Then there exists a faithful normal positive projection P : M → Cφ

which commutes with φ. Let D = {a − P(a) : a ∈ M}. Then M = Cφ + D is
a direct sum, and if a ∈ D then φn(a) → 0 weakly.

Proof. Since M is finite the same construction as that of trace invariant
conditional expectations onto von Neumann subalgebras yields the existence
of a faithful trace invariant positive normal projection P : M → Cφ , see [7]. Let
τ be the trace alluded to in the proposition. Since τ is faithful and φ-invariant, φ
has an adjoint map φ∗: M → M defined by τ(aφ∗(b)) = τ(φ(a)b) for a, b ∈
M . Clearly φ∗ is τ -invariant, positive, unital, and normal, and its extension φ̄∗
to an operator on L2(M, τ) is the usual adjoint of the extension φ̄ of φ. Since
the restriction of φ̄ to the closure C−

φ of Cφ in L2(M, τ) is an isometry of C−
φ

onto itself, so is φ̄∗. It follows that φP = PφP = (Pφ∗P)∗ = (φ∗P)∗ = Pφ.
It is clear that M = Cφ +D is a direct sum. Suppose a ∈ D, i.e. P(a) = 0.

Then τ(a ◦ b) = 0 for all b ∈ Cφ . If we let F = {τ |Cφ
◦ P } then, since

P commutes with φ, F is a faithful family of normal φ-invariant states. By
Theorem 2.7 φn(a) → 0 weakly, proving the proposition.

3. Maps of C∗-algebras

Arveson [1] proved the following result.

Theorem 3.1 (Arveson). Let A be a C∗-algebra, φ: A → A a completely
positive contraction such that the orbit (φn(a)) is norm relative compact for
all a ∈ A. Then there exists a completely positive projection P : A → A onto
the norm closed linear span Eφ of the eigenoperators a ∈ A with φ(a) = λa,
with |λ| = 1, and α = φ|Eφ

is a complete isometry of Eφ onto itself. We have

lim
n→∞ ‖φn(a) − (α ◦ P)n(a)‖ = 0,
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and A is the direct sum of Eφ and the set {a ∈ A : limn ‖φn(a)‖ = 0}.
We shall now show how our previous results yield a result which is in a

sense complementary to Arveson’s theorem.

Theorem 3.2. Let A be a unital C∗-algebra and φ: A → A a positive
unital map such that the orbit (φn(a)) is norm relative compact for all a ∈ A.
Let Cφ be the multiplicative core for φ in A, and let Eφ denote the set of
eigenoperators a ∈ A such that φ(a) = λa, with |λ| = 1. Assume there exists
a set F of φ-invariant states which is faithful on the C∗-algebra generated by
φ(A). Then we have

(i) Eφ = Cφ is a Jordan subalgebra of A.

(ii) The restriction φ|Eφ
is a Jordan automorphism of Eφ .

(iii) Let a ∈ A. Then ρ(a ◦ b) = 0 for all ρ ∈ F , b ∈ Cφ if and only if
limn→∞ ‖φn(a)‖ = 0.

Proof. We first show (ii). If φ(a) = λa then φ(a∗) = λ̄a∗, so Eφ is
self-adjoint. Furthermore by inequality (1)

φ(a ◦ a∗) ≥ φ(a) ◦ φ(a∗) = λa ◦ λ̄a∗ = a ◦ a∗.

Composing by ρ ∈ F and using that F is faithful on C∗(φ(A)) it follows
that φ(a ◦ a∗) = φ(a) ◦ φ(a∗), so a ∈ Aφ , the definite set of φ. Since
a ∈ Eφ is an eigenoperator, so is a2, hence Eφ is a Jordan subalgebra of Aφ .
Note that if φ(a) = λa then φ(φ(a)) = φ(λa) = λφ(a), so φ(a) ∈ Eφ .
Thus φ: Eφ → Eφ . If a = ∑

μiai ∈ Eφ where φ(ai) = λiai , then a =∑
μiλ̄iφ(ai) ∈ φ(Eφ), so by density of such a′s, φ(Eφ) = Eφ . Thus by

faithfulness of F the restriction φ|Eφ
is a Jordan automorphism, proving (ii).

It follows from Lemma 2.6 that Eφ ⊆ Cφ . To show the converse inclusion
we use that the orbit (φn(a))n∈N is norm relative compact for all a ∈ A. By
Lemma 2.6 the restriction of φ to Cφ is a Jordan automorphism, hence in par-
ticular an isometry. We assert that if a ∈ Cφ then the orbit (φn(a))n∈Z is relative
norm compact. For this it is enough to show that the set (φ−n(a))n∈N is relative
norm compact, or equivalently that each sequence (φ−nk (a)) has a convergent
subsequence. By assumption (φnk (a)) has a convergent subsequence (φml (a)).
Since this sequence is Cauchy, and

‖φ−n(a) − φ−m(a)‖ = ‖φn+m(φ−n(a) − φ−m(a))‖ = ‖φn(a) − φm(a)‖,
it follows that (φ−ml (a)) is Cauchy, and therefore converges. Thus the set
(φ−n(a))n∈N is relative norm compact, as is (φn(a))n∈Z. By a well known
result on almost periodic groups, see e.g. Lemma 2.8 in [1], φ|Cφ

has pure
point spectrum. Thus Cφ ⊆ Eφ , proving (i).
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It remains to show (iii). As in the proof of Lemma 2.3 we find that every
norm limit point a0 of (φn(a)) belongs to Aφ , and by the proof of Lemma 2.4
a0 ∈ A� = {x ∈ Aφ : φk(x) ∈ Aφ, k ∈ N}. A straightforward modification
of the proof of Theorem 2.7(i), replacing weak by norm, shows that a0 ∈ Cφ .
Let a ∈ A satisfy ρ(a ◦ b) = 0 for all b ∈ Cφ, ρ ∈ F . Then by the proof
of Theorem 2.7(ii), every norm limit point of (φn(a)) is 0. Thus there is a
subsequence (φnk (a)) of (φn(a)) such that for all ε > 0 there is k0 such that
‖φnk‖ ≤ ε when k ≥ k0. But then n > nk for k ≥ k0 implies

‖φn(a)‖ = ‖φn−nk (φnk (a)‖ ≤ ‖φnk‖ < ε.

Thus ‖φn(a)‖ → 0.
Conversely, if ‖φn(a)‖ → 0 then for b ∈ Cφ, ρ ∈ F

ρ(a ◦ b) = ρ(φn(a ◦ b)) = ρ(φn(a) ◦ φn(b)) → 0,

for n → ∞. Thus ρ(a ◦ b) = 0, completing the proof of the theorem.

It was shown in [5] that if A is a C∗-algebra, and P : A → A is a faithful
positive unital projection then the image P(A) is a Jordan subalgebra of A.
The following corollary proves more.

Corollary 3.3. Let A be a C∗-algebra and P : A → A a faithful positive
unital projection. Then EP = CP = P(A). Hence P(A) is in particular a
Jordan subalgebra of A.

Proof. Since P 2 = P the orbit of each a ∈ A is finite, so compact. Since
P is faithful the set of states F = {ω|P(A) ◦P } with ω a state on A, is a faithful
family of P -invariant states. Thus by Theorem 3.2 we have EP = CP . Since
P is a projection the only nonzero eigenvalue of P is 1, and the corresponding
eigenoperators are the elements in P(A). Thus EP = P(A), proving the
corollary.
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