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MONOTONE OPERATOR FUNCTIONS, GAPS AND
POWER MOMENT PROBLEM

HIROYUKI OSAKA, SERGEI SILVESTROV and JUN TOMIYAMA∗

(Dedicated to the memory of Gert K. Pedersen)

Abstract

The article is devoted to investigation of the classes of functions belonging to the gaps between
classes Pn+1(I ) and Pn(I) of matrix monotone functions for full matrix algebras of successive
dimensions. In this paper we address the problem of characterizing polynomials belonging to the
gaps Pn(I) \ Pn+1(I ) for bounded intervals I . We show that solution of this problem is closely
linked to solution of truncated moment problems, Hankel matrices and Hankel extensions. Namely,
we show that using the solutions to truncated moment problems we can construct continuum many
polynomials in the gaps. We also provide via several examples some first insights into the further
problem of description of polynomials in the gaps that are not coming from the truncated moment
problem. Also, in this article, we deepen further in another way into the structure of the classes of
matrix monotone functions and of the gaps between them by considering the problem of position in
the gaps of certain interesting subclasses of matrix monotone functions that appeared in connection
to interpolation of spaces and in a proof of the Löwner theorem on integral representation of
operator monotone functions.

1. Introduction

A real-valued continuous function f : I → R is said to be matrix monotone
of order n over an interval I , if

(1) x ≤ y ⇒ f (x) ≤ f (y)

for any two self-adjoint n×n matrices x and y with eigenvalues in I . We denote
the class of all such functions by Pn(I). A real-valued continuous function
f : I → R on a (non trivial) interval I �= R is called operator monotone
if the implication (1) holds for any pair of bounded operators x, y ∈ B(H)

on an infinite-dimensional separable Hilbert space H with their spectra in I .
We denote the class of all operator monotone functions over an interval I by
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P∞(I ), or simply by P∞ when the choice of the interval is clear from context.
For each positive integer n, the proper inclusion Pn+1(I ) � Pn(I) holds. This
fact has been stated in [3], but the complete proof of this appeared first in [5].
The gaps Pn(I)\Pn+1(I ) between classes of monotone matrix functions were
also recently addressed in [10] and [8]. For infinite-dimensional Hilbert space,
the set of operator monotone functions on I can be shown to coincide with the
intersection

P∞(I ) =
∞⋂

n=1
Pn(I),

or in other words a function is operator monotone if and only if it is matrix
monotone of order n for all positive integers n [6, Chap. 5, Proposition 5.1.5
(1)].

The proof of non-emptiness of gaps Pn(I)\Pn+1(I ) in [5] is constructive, by
exhibiting for each positive integer n an explicit function in the gap. Moreover,
for any bounded interval and positive integer n, the exhibited in [5] function
in the gap Pn(I) \Pn+1(I ) was a polynomial, thus suggesting that there might
be more polynomials in the gaps for any bounded interval, hence leading
directly to an interesting problem of characterizing such polynomials. For the
unbounded interval (0, +∞) it can be shown that there are no polynomials in
the gaps. However, the unbounded interval can be bijectively mapped onto a
bounded interval using an operator monotone fractional Möbius transformation
with operator monotone inverse, and then any polynomial in the gap over
that bounded interval, after proper composition with those fractional Möbius
transformations, yields a rational function from the gap over the unbounded
interval.

In this paper we address the problem of characterizing polynomials be-
longing to the gaps Pn+1(I ) � Pn(I) for bounded intervals I . We show that
solution of this problem is closely linked to solution of truncated moment
problems, Hankel matrices and Hankel extensions. Namely, we show that us-
ing the solutions to truncated moment problems we can construct continuum
many polynomials in the gaps. We also provide via several examples some first
insights into the further problem of description of polynomials in the gaps that
are not coming from the truncated moment problem.

Also, in this article, we deepen further in another way into the structure of
the classes Pn and of the gaps by considering a certain interesting subclass
of functions inside Pn. This class of functions, denoted by Mn((0, +∞)), has
been defined in [14], as consisting of real-valued functions h on (0, ∞) such
that for aj ∈ R, λj > 0 and j = 1, . . . , 2n the following implication holds:

(2)
( 2n∑

j=1
aj

tλj −1
t+λj

≥ 0 for t > 0,
2n∑

j=1
aj = 0

)
⇒

( 2n∑
j=1

ajh(λj ) ≥ 0
)
.
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It was shown in [14] that

Pn+1((0, +∞)) ⊆ Mn((0, +∞)) ⊆ Pn((0, +∞))

for any positive integer n, and so P∞ = ⋂∞
n=1 Pn((0, +∞)) = ⋂∞

n=1 Mn((0,

+∞)). In [14], an explicit example, showing that P2 \M2 �= ∅, has been poin-
ted out, thus particularly implying that P2((0, +∞))\P3((0, +∞)) �= ∅. Prov-
ing that Pn((0, +∞))\Mn((0, +∞)) �= ∅ and Mn((0, +∞))\Pn+1((0, +∞))

�= ∅ for an arbitrary n is still an open problem. The unbounded interval
(0, +∞) is a union of inclusion increasing set of bounded intervals (0, +∞) =
∪a>0(0, a). In this article we consider the classes of functions Mn(I ) on the
bounded intervals. The definition is the same up to just replacing (0, +∞) by
the bounded interval I . The content of the class Mn(I ) differs from
Mn((0, +∞)). However, we provide in this article a proof that the inclusions

Pn+1(I ) ⊆ Mn(I ) ⊆ Pn(I)

hold even for any bounded interval of the form (0, a) or (0, a] and all positive
integers n. Therefore, we can conclude that

⋂∞
n=1 Mn(I ) = P∞(I ). The prob-

lem of proving or disproving the existence of the non-empty gap Pn(I)\Mn(I )

is also an open problem both for the bounded interval I and for (0, +∞). How-
ever, while the example of function in the gap P2((0, +∞)) \ M2((0, +∞))

constructed in [14] is non-polynomial due to lack of polynomials and also
seems to be difficult to extend to an arbitrary n, in the case of the bounded
interval, we show in this article how to construct explicitly infinitely many
polynomials in the gap Pn(I)\Pn+1(I ) for any n. Thus a natural problem is to
describe position of these polynomials with respect to the gaps Pn(I) \ Mn(I )

and Mn(I ) \ Pn+1(I ). We succeeded to investigate this problem for the poly-
nomial in the gap constructed in [5] for n = 2, 3, 4, 5.

2. Polynomial Monotone Matrix Functions

Proposition 2.1. The only polynomials belonging to the class Pl([0, +∞))

for an integer l > 1 are polynomials of the form at + b where a ≥ 0.

Proof. Let pn(t) = ∑n
j=0 aj t

n−j be a polynomial in Pl([0, +∞)) with
a0 �= 0. Then for any C, D ∈ Ml such that 0 ≤ C ≤ D and any λ > 0 we
have 0 ≤ λC ≤ λD and hence

anI ≤
n∑

j=0

aj (λC)n−j ≤
n∑

j=0

aj (λD)n−j

an

λn
I ≤

n∑
j=0

ajλ
−jCn−j ≤

n∑
j=0

ajλ
−jDn−j
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which, after passing to the limit λ → +∞, yields 0 ≤ a0C
n ≤ a0D

n implying
0 < a0 and 0 ≤ Cn ≤ Dn. This holds for arbitrary choice of 0 ≤ C ≤ D only
if n = 1, since f (t) = tn /∈ Pl([0, +∞)) ⊂ P2([0, +∞)) when n > 1 and
l ≥ 2. Thus, pn(t) = an−1t + an. When an−1 �= 0, from the same argument as
before we have an−1 > 0, which is exactly what had to be proved.

The situation is totally different on the finite intervals. There polynomials
of high degree than one can be matrix monotone of order n. There is no contra-
diction here since the transformations between a finite and an infinite interval
do not map polynomials into polynomials. Usually a Möbius transformation
can be used for this purpose, and in this case the polynomial on a finite interval
will be transformed into a rational function on an infinite interval.

Let gn(t) = t + 1
3 t3 + · · · + 1

2n−1 t2n−1, where n is some positive integer.
In [5] it was proved that there exists αn > 0 such that gn ∈ Pn([0, αn)) \
Pn+1([0, αn)), and consequently fn = gn ◦ hn ∈ Pn \ Pn+1, where hn(t) is the
Möbius transformation hn(t) = αnt

1+t
, operator monotone on [0, ∞), with the

inverse h◦(−1)
n (t) = t

αn−t
operator monotone on [0, αn).

Note that two compact intervals can be however mapped to each other with
some polynomial of degree one αt + β with α > 0, an operator monotone
function on any interval. Namely, the bounded interval with end points u1 <

v1 is mapped to the bounded interval with end points u2 < v2 by the map
h(t) = v2−u2

v1−u1
t + u2v1−v2u1

v1−u1
, with the composition inverse

h◦(−1)(t) = v1 − u1

v2 − u2
t − u2v1 − v2u1

v2 − u2

which are both operator monotone since v2−u2
v1−u1

> 0 and v1−u1
v2−u2

> 0. The type
of the interval with respect to the inclusion or exclusion of the end points
is preserved by this map. Moreover, this map transforms polynomials matrix
monotone of order n on one interval into polynomials of the same degree
and matrix monotone of order n on the other interval. In particular, [0, a) is
transformed to [u, v) by the map h(t) = v−u

a
t +u with the composition inverse

h◦(−1)(t) = a
v−u

t − au
v−u

. The interval [0, a) is mapped to the interval [0, b) by
the map h(t) = b

a
t with the composition inverse h◦(−1)(t) = a

b
t . The interval

[−1, 1] is mapped to the interval [u, v] by the map h(t) = v−u
2 t + v+u

2 with the
composition inverse h◦(−1)(t) = 2

v−u
t − v+u

v−u
. The interval [−1, 1] is mapped

to the interval [0, a] by the map h(t) = a
2 t + a

2 with the composition inverse
h◦(−1)(t) = 2

a
t − 1. Keeping these considerations on maps of the intervals in

mind, we will work on the intervals containing 0 or other intervals convenient
for the proofs, making clear from our statements or by specially pointing out
when the choice of the interval is not essential.
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We will make use of the following conditions concerned with n-monoto-
nicity of functions on an interval [3], restricting formulation to the func-
tions which are infinitely differentiable, which is suited to our considera-
tions. For every such function and every positive integer n define the matrix

Mn(f ; t) =
(

f (i+j−1)(t)

(i+j−1)!

)n

i,j=1
. If f ∈ Pn((a, b)) for n ≥ 2, then Mn(f ; t) ≥ 0

and f (2n−3)(t) is convex on (a, b), by [3, Theorem VI, Ch. VII]. Conversely,
if Mn(f ; t) ≥ 0 and the derivative f (2n−3)(t) is positive and convex, then
f ∈ Pn((a, b)), by [3, Theorem V, Ch. VIII]).

Theorem 2.2. Let I ⊂ R be a bounded interval on the real line. There are
no polynomials of degree 1 < deg(f ) < 2n − 1 in the class Pn(I), and there
exists a polynomial f of any order deg(f ) ≥ 2n−1 in Pn(I). Any polynomial
in Pn(I) of degree deg(f ) = 2n − 1 or deg(f ) = 2n belongs to the gap
f ∈ Pn(I) \ Pn+1(I ).

Proof. Let f (t) = c + ∑k−1
j=0 bj t

j+1, where bk−1 �= 0 and 1 < k =
deg(f ) < 2n − 1. We consider two cases, of odd and even k. Let k = 2l with
l ≥ 1. Then

Ml+1(f ; 0) =

⎛
⎜⎜⎜⎜⎝

b0 b1 . . . bl−1 bl

b1 . . . . . . bl bl+1
...

...
...

...
...

bl−1 bl . . . b2l−2 b2l−1

bl bl+1 . . . b2l−1 0

⎞
⎟⎟⎟⎟⎠ .

Since k < 2n − 1, the matrix Ml+1(f ; 0) is contained as the principle upper
left corner submatrix of Mn(f ; 0). Because

det

(
bk−2 bk−1

bk−1 0

)
= −(bk−1)

2 < 0,

the matrix Mn(f ; 0) is not positive definite and therefore f �∈ Pn(I). In the
odd case, that is for k = 2l − 1, l ≥ 2 and b2l−2 �= 0, one has

Ml+1(f ; 0) =

⎛
⎜⎜⎜⎜⎜⎜⎝

b0 b1 . . . bl−2 bl−1 bl

b1 b2 . . . bl−1 bl bl+1
...

...
...

...
...

...

bl−2 bl−1 . . . b2l−4 b2l−3 b2l−2

bl−1 bl . . . b2l−3 b2l−2 0
bl bl+1 . . . b2l−2 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Suppose that f ∈ Pn(I) and hence Mn(f ; 0) ≥ 0. Then bk−1 = b2l−2 > 0,
since Mn(f ; 0) ≥ 0 and since bk−1 = b2l−2 �= 0 as the highest coefficient of
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the polynomial f . Thus

det

⎛
⎝ b2l−4 b2l−3 b2l−2

b2l−3 b2l−2 0
b2l−2 0 0

⎞
⎠ = −(b2l−2)

3 < 0.

Hence the matrix Mn(f ; 0) is not positive semi-definite which contradicts to
the assumption f ∈ Pn(I). Therefore f �∈ Pn(I).

In [5] it was proved that for any positive integer n there exists αn > 0
such that gn(t) = t + 1

3 t3 + · · · + 1
2n−1 t2n−1 ∈ Pn([0, αn)) \ Pn+1([0, αn)).

Consequently, if I = [u, v), then g̃n = gn ◦h◦(−1) ∈ Pn([u, v)) \Pn+1([u, v))

where g̃n is the polynomial of degree 2n−1 obtained by composition of gn with
the operator monotone affine transformation h◦(−1)(t) = αn

v−u
t − αnu

v−u
, mapping

interval [u, v) onto [0, αn). In order to show existence of the polynomials of the
even degree in the gap, take pn(t) = t+ 1

3 t3+· · ·+ 1
2n−1 t2n−1+at2n. By the first

statement of the theorem we have already proved that pn �∈ Pn+1([0, α)) for
anyα > 0 since deg(pn) = 2n < 2(n+1)−1 = 2n+1. Since det Mn(pn; 0) =
det Mn(gn; 0), there exists α′

n > 0 such that pn ∈ Pn([0, α′
n)) \ Pn+1([0, α′

n)).
Therefore, the polynomial pn ◦ h̃◦(−1) of degree 2n, obtained by composition
with h̃◦(−1)(t) = α′

n

v−u
t − α′

nu

v−u
, belongs to the gap Pn([u, v)) \ Pn+1([u, v))

over the interval [u, v). Since Pn(I) ⊃ Pn+k(I ) for any k ≥ 1, there exists a
polynomial f of any order deg(f ) ≥ 2n − 1 in Pn(I).

Finally, by the first statement of the theorem, any polynomial of degree
2n− 1 or 2n does not belong to Pn+1(I ) since 2n− 1 < 2n < 2(n+ 1)− 1 =
2n + 1, and hence if it is in addition a polynomial from Pn(I), then it belongs
to the gap Pn(I) \ Pn+1(I ).

3. Truncated Moment Problem and Monotone Matrix Functions

Theorem 3.1. Let f (t) = c + b0t + b1t
2 + · · · + b2n−2t

2n−1 + b2n−1t
2n + · · ·

be a polynomial of degree at least 2n − 1. Then

(a) Mn(f ; 0) > 0 if and only if there is a Borel measure μ on R with at least
n points in the support, and such that

bk =
∫

R
tk dμ < ∞ (0 ≤ k ≤ 2n − 2).

Moreover, in this case there exists αn > 0 such that f ∈ Pn([0, αn)).

(b) If Mn(f ; 0) ≥ 0 but det Mn(f ; 0) = 0, and r is the smallest positive
integer such that Mr+1(f ; 0) is not invertible, then there exists a Borel
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measure μ such that

bk =
∫

R
tkdμ < ∞ (0 ≤ k ≤ 2r − 2),

and there exists α > 0 such that f ∈ Pr([0, α)).

Proof. (a) At first we recall that the inequality Mn(f ; 0) > 0 means that
the Hankel matrix Mn−1(f ; 0) has a positive Hankel extension Mn(f ; 0), and
hence by [2, Theorem 3.9], this is equivalent to the existence of a Borel measure
μ on R, such that

bk =
∫

R
tkdμ < ∞ (0 ≤ k ≤ 2n − 2).

Suppose that the measure μ has at least n points in the support and satisfies
bk = ∫

R tkdμ < ∞ when 0 ≤ k ≤ 2n − 2. Take arbitrary n points t1, . . . , tn
in the support of μ. Then μ(Ii) > 0 for any family of n non-overlapping open
intervals such that ti ∈ Ii for i = 1, . . . , n. Choose inside each of these open
intervals a closed interval Ji such that ti ∈ Ji ⊂ Ii and hence also μ(Ji) > 0
for i = 1, . . . , n. For any vector �c = (c0, . . . , cn−1) ∈ Cn, the following holds
for the quadratic form

(Mn(f ; 0)�c | �c) =
n−1∑
i=0

n−1∑
j=0

bi+j cj c̄i =
n−1∑
i=0

n−1∑
j=0

∫
R
t i+j dμ cj c̄i

=
∫

R

∣∣∣∣
n−1∑
i=0

ci t
i

∣∣∣∣
2

dμ ≥
∣∣∣∣
n−1∑
i=0

ci t̂
i
k

∣∣∣∣
2

μ(Jk) ≥ 0,

where t̂k is the minimum point for the continuous function
∣∣∑n−1

i=0 ci t
i
∣∣2

on the
closed interval Jk . Therefore, the matrix Mn(f ; 0) is at least positive semi-
definite. Moreover, since μ(Jk) > 0, if (Mn(f ; 0)�c | �c) = 0 for some �c,
then

∑n−1
i=0 ci t̂

i
k = 0 for all k = 1, . . . , n. Since, only the zero polynomial has

more roots than its degree, the only possibility for the linear system to hold is
when �c = �0. Therefore, the matrix Mn(f ; 0) is positive definite (Mn(f ; 0) >

0). All elements of this matrix are polynomials and hence determinants of
all submatrices are also polynomials, and in particular the determinants of
all submatrices with the principal diagonals, consisting from elements of the
principal diagonal of Mn(f ; 0), are also polynomials and hence are continuous
functions on the real line. There are finitely many of them and all of them are
positive at t = 0 due to positive definiteness of Mn(f ; 0). Each of these
polynomials is then positive on some interval of the form [0, α), and taking
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the interval with smallest positive α yields an interval of this form where the
matrix Mn(f ; t) is positive. Without providing a way to construct [0, α) one
may alternatively argue that since eigenvalues of a matrix depend continuously
on each entry of a matrix, there exists a positive α > 0 such that Mn(f ; t)

is positive semi-definite on [0, α). Hence f ∈ Pn([0, α)) by [3, Theorem V,
Ch. VIII].

To prove the converse implication assume that Mn(f ; 0) > 0 and let μ be
a measure satisfying bk = ∫

R tkdμ < ∞ when 0 ≤ k ≤ 2n − 2. Assume
contrary to the statement in the theorem, that support of μ contains less than n

points. Let {t1, . . . , tk}, where k < n, be the support of μ. Then there exists a
non-zero polynomial pn(t) = c0 + c1t + · · · + cn−1t

n−1 such that pn(ti) = 0
when 1 ≤ i ≤ k. But then for the vector �c �= 0 of coefficients of this non-zero
polynomial

(Mn(f ; 0)�c | �c) =
∫

R

∣∣∣∣
n−1∑
i=0

ci t
i

∣∣∣∣
2

dμ =
k∑

j=1

μ(tj )|pn(tj )|2 = 0.

This contradicts to the assumption Mn(f ; 0) > 0. Thus μ must have at least
n points in its support.

(b) The existence of the measure such that bk = ∫
R tkdμ < ∞ when

0 ≤ k ≤ 2(r − 1) = 2r − 2 follows from [2, Theorem 3.9], and existence of
α > 0 such that f ∈ Pr([0, α)) is implied from (a) since Mr(f ; 0) > 0 by
definition of r .

A Hankel rank rankh( �γ ) of �γ = (γ0, . . . , γ2k) associated to a Hankel matrix
(γi+j )

k
i,j=0 of size (k +1)× (k +1) is defined as the smallest integer i obeying

1 ≤ i ≤ k and such that �vi is a linear combination of �v0, . . . , �vi−1, where �vj =
(γj+l)

k
l=0 are column vectors of the matrix, that is, (γi+j )

k
i,j=0 = (�v0, . . . , �vk).

This is a handy notion which we will use in several examples. According
to [2, Proposition 2.2] for a positive semidefinite Hankel matrix the Hankel
rank of the defining sequence �γ coincides with the smallest positive integer
l such that the principle upper left-hand corner submatrix (γi+j )

l
i,j=0 of size

(l +1)× (l +1) is not invertible, i.e. has zero determinant, or equivalently this
can be rephrased as the largest integer l such that all the submatrices (γi+j )

m−1
i,j=0

of size m × m with 1 ≤ m ≤ l are invertible. Thus, in this terminology the
integer r used in the part (b) of Theorem 3.1 is exactly the Hankel rank of the
sequence

{
γk = f (k+1)(0)

(k+1)!

}2(n−1)

k=0 corresponding to the matrix Mn(f ; 0).
We present now an example p of a polynomial of degree 3 which has

determinant of the matrix M2(p; t) at t = 0 being zero, but p ∈ P2([0, α)) for
some α > 0. Let f (t) = t − t2 + t3. Then

f ′(t) = 1 − 2t + 3t2, f ′′(t) = −2 + 6t, f ′′′(t) = 6.
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Hence

M2(f ; t) =
(

1 − 2t + 3t2 −1 + 3t

−1 + 3t 1

)

Then we have

det(M2(f ; t)) = 4t − 6t2 = −6
(
t − 1

3

)2 + 2
3 .

If take α = 2
3 , f ∈ P2([0, α)).

Next we will show that a polynomial p of degree 5 does not belong to
P3([0, α)) for any α > 0 when rank M3(p; 0) = 2 and rankh( �γ ) =
rankh(b0, b1, b2, b3, b4) = 1, where p(t) = b0t + b1t

2 + b2t
3 + b3t

4 + b4t
5.

Let

M3(p; 0) =
(

b0 b1 b2

b1 b2 b3

b2 b3 b4

)
.

Since rankh( �γ ) = rankh(b0, b1, b2, b3, b4) = 1, we have

b1 = λb0

b2 = λb1 = λ2b0

b3 = λb2 = λ3b0

for some λ ∈ R. Since rank M3(p; 0) = 2, b0 > 0, and we may assume that
b0 = 1. Hence we consider

p(t) = t + λt + λ2t3 + λ3t4 + ct5.

for any c ≥ 0.

Proposition 3.2. Let p(t) = b0t + b1t
2 + b2t

3 + b3t
4 + b4t

5. Suppose that
rank M3(p; 0) = 2 and rankh( �γ ) = rankh(b0, b1, b2, b3, b4) = 1. Then there
exists no α > 0 that satisfy p ∈ P3([0, α)).

Proof. From the above argument we assume that

p(t) = t + λt + λ2t3 + λ3t4 + ct5.

For the matrix

M3(p; t) =
(

1+2λt+3λ2t2+4λ3t3+5ct4 λ+3λ2t+6λ3t2+10ct3 λ2+4λ3t+10ct2

λ+3λ2t+6λ3t2+10ct3 λ2+4λ3t+10ct2 λ3+5ct

λ2+4λ3t+10ct2 λ3+5ct c

)
,
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det M3(p; t) = 30λ4t2c − 15c2t2 − 15λ8t2 − 30λ5ct3 + 50λc2t3

− 20λ9t3 − 210λ3c2t5 − 105λ6ct4 − 175c3t6

= t2(30λ4c − 15c2 − 15λ8) − 30λ5ct3 + 50λc2t3

− 20λ9t3 − 210λ3c2t5 − 105λ6ct4 − 175c3t6

with 30λ4c − 15c2 − 15λ8 = 15(2λ4c − c2 − λ8) ≤ 15(2λ4c − 2λ4c) = 0,
where the equality holds when c = λ4.

For c �= λ4, the coefficient of t2 is negative, and there exists α > 0, such
that det M3(p; t) < 0 for any t ∈ [0, α). If c = λ4, then

det M3(p; t) = −210λ3c2t5 − 105λ6ct4 − 175c3t6

= −105λ10t4 − 210λ11t5 − 175λ12t6.

Since −105λ10 < 0, there exists α > 0 such that det M3(p; t) < 0 for any
t ∈ [0, α). Hence there exists no α > 0 such that p ∈ P3([0, α)).

As another example consider p(t) = 1
2 t + t2 + 1

2 t3 + t4 + 1
2 t5. Then

det M3(p; 0) = 0 and M3(p; 0) has rank 2. Note that rankh

(
1
2 , 1, 1

2 , 1, 1
2

) = 2.
Therefore, the situation is different in the previous proposition. Since

M3(p; t)

=
⎛
⎜⎝

1
2 + 2t + 3

2 t2 + 2t3 + 5
2 t4 1 + 3

2 t + 6t2 + 5t3 1
2 + 4t + 5t2

1 + 3
2 t + 6t2 + 5t3 1

2 + 4t + 5t2 1 + 5
2 t

1
2 + 4t + 5t2 1 + 5

2 t 1
2

⎞
⎟⎠ ,

we have

det M3(p; t) = 9
2 t + 63

8 t2 − 27
2 t3 − 93

2 t4 − 45t5 − 175
8 t6.

Hence there exists α > 0 such that p ∈ P3([0, α)).
The previous results and examples imply the following theorem which is

concerned with catching conditions for a more precise determination of posi-
tion of a given function with respect to the decreasing sequences of inclusions
for the classes of matrix monotone functions.

Theorem 3.3. Let 0 ∈ [0, α) and let f be a polynomial such that f ∈
Pn([0, α)).

(1) If f ∈ Pn+1([0, α)), then there exists a Borel measure μ such that
bk = ∫

R tk dμ for 0 ≤ k ≤ 2n − 1.

(2) If f ∈ Pn+1([0, α)) and Mn+1(f ; 0) > 0, then there exists a Borel
measure μ such that bk = ∫

tk dμ for 0 ≤ k ≤ 2n;
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(3) Let f ∈ Pn([0, α)) and let r be the smallest number such that the
submatrix Mr+1(f ; 0) is not invertible. If r < rank(Mn(f ; 0)), then
f �∈ Pn+1([0, α)).

Proof. (1) If f ∈ Pn+1([0, α)), then Mn+1(f ; 0) ≥ 0. Hence Mn(f ; 0)

has a positive semidefinite Hankel extension, and thus according to [2, The-
orem 3.1] there exists a Borel measure μ such that bk = ∫

R tkdμ for 0 ≤ k ≤
2n − 1.

(2) If f ∈ Pn+1([0, α)) and moreover Mn+1(f ; 0) > 0, then the existence of
a Borel measure μ such that bk = ∫

R tkdμ for 0 ≤ k ≤ 2n−1 is already secured
by 1) and then the fact that the next coefficient b2n may also be determined
by the moment b2n = ∫

R t2ndμ, as claimed in the theorem, follows from the
statement (a) of Theorem 3.1, since in this case 2(n + 1) − 2 = 2n.

(3) If f ∈ Pn+1([0, α)), then Mn(f ; 0) has positive Hankel extension, and
by [2, Theorem 3.9] the ordinary matrix rank of Mn(f ; 0) has to be equal to the
Hankel rank r . Hence, if this equality does not hold, then f �∈ Pn+1([0, α)).

4. Rank and the Hadamard product

In this section we treat the rank comparison problem between an n × n matrix
A and A • D, where • means the Hadamard product of the matrix A with
another matrix D, and then we show that these matrix results are useful for
understanding of the transformations of matrix monotonicity properties of
functions when changing from one interval to another.

Let A be an n × n matrix⎛
⎝ a11 · · · a1n

...
...

an1 · · · ann

⎞
⎠ .

By A(k) for (1 ≤ k ≤ n) we denote the k × k left upper corner matrix, that is,

A(k) =
⎛
⎝ a11 · · · a1k

...
...

ak1 · · · akk

⎞
⎠ .

For n × n matrices A = (aij ) and D = (dij ) we write

A • D = (aij dij ).

Lemma 4.1 ([13, Theorem 5.1.7]). Let A and B be two n × n matrices.
Then

rank(A • B) ≤ (rank(A))(rank(B)).



172 hiroyuki osaka, sergei silvestrov and jun tomiyama

For an n × n matrix A with real eigenvalues, we denote by λmin(A) the
minimal eigenvalue of A, and by λmax(A) the maximal eigenvalue of A.

Lemma 4.2 ([13, Theorem 5.3.4]). Let A and B be two n × n positive
semidefinite matrices. Then any eigenvalue λ(A • B) of A • B satisfies

λmin(A)λmin(B) ≤ (
min

1≤i≤n
(aii)

)
λmin(B) ≤ λ(A • B)

≤ (
max
1≤i≤n

(aii)
)
λmax(B) ≤ λmax(A)λmax(B)

Using the above two Lemmas we will show the following result.

Proposition 4.3. Let A and D be positive semidefinite n × n matrices.
Suppose that D = (αi+j−1)ni,j=1 and α > 0. Then for 1 ≤ k ≤ n, the matrix
A(k) is invertible if and only if (A • D)(k) is invertible.

Proof. Note that rank(D(k)) = 1 for all 1 ≤ k ≤ n. Suppose that A(k)

is invertible. Then since (A • D)(k) = A(k) • D(k) = D(k) • A(k), from
Lemma 4.2,

λ((A • D)(k)) ≥ (
min

1≤i≤n
{dii}

)
λmin(A(k)) > 0.

Since any eigenvalue of (A • D)(k) is positive, (A • D)(k) is invertible.
Conversely, suppose that (A • D)(k) is invertible. From Lemma 4.1

k = rank((A • D)(k)) ≤ rank(A(k)) rank(D(k)) ≤ rank(A(k)).

Hence rank(A(k)) = k, and A(k) is invertible.

Corollary 4.4. Let A be a positive semidefinite n × n matrix and define
the n × n matrix D = (αi+j−1)ni,j=1 with α �= 0. Then for 1 ≤ k ≤ n, A(k) is
invertible if and only if (A • D)(k) is invertible.

Proof. If α > 0, then D is a positive semidefinite matrix from the element-
ary calculation. So, the conclusion follows from the previous proposition.

For α < 0, the matrix −D is positive semidefinite. Since −(A • D) =
A • (−D) and rank(A • D) = rank(−(A • D)), we get the conclusion.

The presented results on the rank for Hadamard product of matrices are
quite useful when attempting to describe how the classes Pn(I) are related to
each other for different intervals.

Let f (t) = b0t +b1t
2 +· · ·+b2n−2t

2n−1. The interval [0, a) is transformed
bijectively to [u, v) by the operator monotone affine mapping h(t) = v−u

a
t +u

with the operator monotone composition inverse h◦(−1)(t) = a
v−u

t − au
v−u

.
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Then applying the chain rule and the affine form of h and h◦(−1) we have
that Mn(f ◦ h◦(−1); 0) = Mn(f ; a) • (((

a
v−u

)i+j−1)n

i,j=1

)
. Hence the ranks

of Mn(f ◦ h◦(−1); 0) and of Mn(f ; a) coincide according to Corollary 4.4.
Thus if u(t) = c0(t − a) + · · · + c2n−1(t − a)2n−1 on the interval [u, v), and
correspondingly u ◦ h◦(−1)(t) = b0t + · · · + b2n−2t

2n−1 on the interval [0, α),
then there exists a measure μ such that bk = ∫

tk dμ for 0 ≤ k ≤ 2n−2 if and
only if there exists a measure μ̃ such that ck = ∫

tk dμ̃ for 0 ≤ k ≤ 2n − 2.
Therefore, in this sense there is a correspondence between the structure of
those polynomials in Pn([u, v)) and Pn([0, α)).

5. The characterization of operator monotone function over [0, a)

Let I = [0, a) for a > 0.

Definition 5.1. Let Mn(I ) be the class of functions such that f ∈ Mn(I )

if for all ak ∈ R, λk ∈ (0, a) for 1 ≤ k ≤ 2n⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2n∑
k=1

ak
λk

t+λk
≥ 0 for t > 0

2n∑
k=1

ak = 0

implies that
2n∑

k=1

akf (λk) ≥ 0.

The above class Mn(I ) is a finite interval version of the class Mn in [14].

Remark 5.2. Since for t > 0 and
∑2n

k=1 ak = 0,

2n∑
k=1

ak

λkt − 1

t + λk

=
(

t + 1

t

) 2n∑
k=1

ak

λk

t + λk

,

f ∈ Mn(I ) if and only if⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2n∑
k=1

ak
λkt−1
t+λk

≥ 0 for t > 0

2n∑
k=1

ak = 0
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implies that
2n∑

k=1

akf (λk) ≥ 0.

We use the following characterization of functions in Pn(I) given in [14].

Lemma 5.3. For α and x in Cn set ‖x‖α = (∑n
k=1 αk|xk|2

) 1
2 .

Then f ∈ Pn(I) if and only if for all n × n unitary U with ‖U‖α,β ≤ 1
(α, β ∈ Cn ∩ I n):

n∑
k=1

f (αk)|xk|2 ≥
n∑

k=1

f (βk)|(Ux)k|2, ∀x ∈ Cn,

where
‖U‖α,β = sup

x∈Cn\{0}
‖Ux‖β

‖x‖α

.

Proof. Let A and B be two hermitian n × n matrices with eigenvalues
contained in I . Then

A ≥ B ⇔
n∑

k=1

αk|xk|2 ≥
n∑

k=1

βk|(Ux)k|2, ∀x ∈ Cn

where x = (x1, x2, . . . , xn)
T , α1, α2, . . . , αn are eigenvalues for A, β1, β2,

. . . , βn eigenvelues for B, and U is an appropriate n×n unitary. Every unitary
arises for some choice of A and B. Hence we have f ∈ Pn(I) ⇔ ∀n × n

unitary U with ‖U‖α,β ≤ 1 (α, β ∈ Cn ∩ I n)

n∑
k=1

f (αk)|xk|2 ≥
n∑

k=1

f (βk)|(Ux)k|2, ∀x ∈ Cn.

As for Mn in [14] we have the following fundamental inclusion.

Proposition 5.4. For all n ∈ N

Pn+1(I ) ⊆ Mn(I ) ⊆ Pn(I).

Proof. The inclusion Mn(I ) ⊂ Pn(I) can be shown with the same argu-
ment as in [14].
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To show the inclusion Pn+1(I ) ⊂ Mn(I ) we take the same steps as in [14].
Take an arbitrary f ∈ Pn+1(I ), and choose 0 < λ1 < λ2 < · · · < λ2n < a.
Consider

p(t)

π(t)
=

2n∑
k=1

ak

λk

t + λk

,

where p is any polynomial of degree less than or equal to 2n − 1 (write the
class of such polynomials by Pol(2n − 1)) such that p(t) ≥ 0 for t > 0 and
p(0) = 0, and

π(t) =
2n∏
i=1

(t + λi).

Then we may show that

(3)

2n∑
k=1

akf (λk) ≥ 0.

Note that
ak = p(−λk)

λkπ ′(−λk)

for 1 ≤ k ≤ 2n, and the polynomials with the above property can be written
as

p(t) = tq1(t)
2 + q2(t)

2,

where q1, q2 ∈ Pol(n − 1) and q2(0) = 0. (For example see [12, Lemma
7.6.1].) Hence, because of linearity we only have to consider the two cases
p(t) = tq(t)2 and p(t) = q(t)2 with q(0) = 0.

When p(t) = tq(t)2, we can show the inequality (3) by the same argument
as in (i) of the proof in [14, Lemma 1]. We write 0 < λ1 < λ2 < · · · < λ2n < a

as 0 < β1 < α1 < β2 < · · · < βn < αn < a. When p(t) = q(t)2,
q ∈ Pol(n − 1), q(0) = 0, write

q2(t)

π(t)
=

n∑
k=1

y2
k

βk

t + βk

−
n∑

k=1

x2
k

αk

t + αk

,

where
y2

k = q2(−βk)

βkπ ′(−βk)
, x2

k = −q2(−αk)

αkπ ′(−αk)
.

We extend 0 < β1 < α1 < β2 < · · · < βn < αn < a with δ and ω such that

0 < δ < β1 < α1 < β2 < · · · < βn < αn < ω < a
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and consider
t

t + δ
· q2(t)

π(t)
· t + a

t + ω
.

Note that
t

t + δ
· q2(t)

π(t)
· t + a

t + ω
→ q2(t)

π(t)

as δ → 0 and ω → a. By the partial fraction expansion
(4)

t

t + δ
·q

2(t)

π(t)
· t + a

t + ω
= −x̃2

0
δ

t + δ
−

n∑
k=1

x̃2
k

αk

t + αk

+
n∑

k=1

ỹ2
k

βk

t + βk

+ỹ2
n+1

ω

t + ω
,

where x̃k and ỹk are defined similar as xk and yk , and

x̃k → xk, ỹk → yk, 1 ≤ k ≤ n

as δ → 0 and ω → a. Moreover

x̃2
0 = q2(−δ)

π(−δ)
· a − δ

ω − δ
= O (δ2), δ → 0,

since q(0) = 0, and

ỹ2
n+1 = q2(−ω)

π(−ω)
· −ω + a

ω − δ
= O (−ω + a), ω → a.

Let f ∈ Pn+1(I ). By letting t = 0 in (4) we have

(5) −x̃2
0 −

n∑
k=1

x̃2
k +

n∑
k=1

ỹ2
k + ỹ2

n+1 = 0.

Since t
t+δ

q2(t)

π(t)
t+a
t+ω

t ≥ 0,

lim
t→∞

t

t + δ
· q2(t)

π(t)
· t + α

t + ω
· t ≥ 0.

Hence

−x̃2
0δ −

n∑
k=1

x̃2
k αi +

n∑
k=1

ỹ2
k βk + ỹ2

n+1ω ≥ 0.

Since f ∈ Pn+1(I ) and (5),

−x̃2
0f (δ) −

n∑
k=1

x̃2
k f (αk) +

n∑
k=1

ỹ2
k f (βk) + ỹ2

n+1f (ω) ≥ 0.
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(See Lemma 5.3 and (1′) in [14].)
By the same argument as in (ii) in the proof in [14, Lemma 1], we have

lim
δ→0

x̃2
0f (δ) = lim

ω→a
ỹ2

n+1f (ω) = 0.

Both equalities come from the same proof as in [14, Lemma 1]. Indeed, we
consider the following inequality, which is used in [14, Lemma 1]:

− (c − β1)
2

(α1 − β1)(β2 − β1)(α2 − β1)
f (β1) − (c − β2)

2

(β1 − β2)(α1 − β2)(α2 − β2)
f (β2)

+ (c − α1)
2

(α1 − β1)(β2 − α1)(α2 − α1)
f (α1) + (c − α2)

2

(α2 − β1)(α1 − α2)(β2 − α2)
f (α2) ≥ 0.

This comes from the fact that f ∈ P2(I ) and Lemma 5.3. (See (1′) in [14].)
To get the first equality, set c = β1 = δ

2 , α1 = δ, β2 = a
4 , and α2 = a

2 . Then
we have

δf (δ) ≥ 8

a

{(
a

2
− δ

)(
a

4
− δ

2

)
f

(
a

4

)
−

(
a

2
− δ

2

)(
a

4
− δ

)
f

(
a

2

)}
.

Hence
lim inf

δ→0
δ2f (δ) ≥ 0.

Since f is monotone, δ2f (δ) ≤ δ2f
(

a
2

)
for δ < a

2 . Then

lim sup
δ→0

δ2f (δ) ≤ lim sup
δ→0

δ2f
(a

2

)
= 0,

and hence limδ→0 δ2f (δ) = 0. Therefore we have

lim
δ→0

x̃2
0f (δ) = lim

δ→0

x̃2
0

δ2
δ2f (δ) = 0 (x̃2

0 = O (δ2)).

To get the second equality set c = α1 = a
4 , β1 = a

8 , β2 = ω
2 , and α2 = ω with

0 < β1 < α1 < β2 < α2 < a. Then we have

f (ω) ≤ −
a
8

(
ω − a

8

)
ω
2

ω − a
4

f
(a

8

)
−

(
ω
2 − a

4

) (
ω − a

8

)
ω
2(

ω − a
4

) (
ω
2 − a

8

)
ω
2

f
(ω

2

)
(= h(ω))

for ω ∈ (
a
2 , a

)
. Multiplying the above inequality by (−ω + a) > 0 for ω ∈

(0, a) we obtain that

(−ω + a)f (ω) ≤ (−ω + a)h(ω), ω ∈ (0, a).

Hence
lim
ω→a

sup(a − ω)f (ω) ≤ 0.
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On the contrary, since (a − ω)f (ω) ≥ (a − ω)f
(

a
2

)
for ω ∈ (

a
2 , a

)
,

lim
ω→a

inf(a − ω)f (ω) ≥ 0,

and hence limω→a(a − w)f (ω) = 0. Therefore, we have

lim
ω→a

ỹ2
n+1 = lim

ω→a

ỹ2
n+1

(a − ω)
(a − ω)f (ω) = 0 (ỹ2

n+1 = O (a − ω)).

Hence, we get

−
n∑

k=1

x2
k f (αk) +

n∑
k=1

y2
k f (βk) ≥ 0,

and f ∈ Mn(I ).

From the above inclusion property, we have the following characterization
of operator monotone functions.

Theorem 5.5. f is operator monotone on I if and only if

f ∈ ∩∞
n=1Mn(I ).

6. Examples

Let gn be polynomials considered in [5]. In this section, we show that

gn ∈ Pn([0, αn]) \ Mn([0, αn])

for some αn > 0 and n = 2, 3, 4, 5, and use Maple to get a numerical value
for αn.

We believe that gn ∈ Pn([0, αn]) \ Mn([0, αn]) for some αn > 0 and any
n ≥ 2.

6.1. g2 case

Let g2(x) = x + 1
3x3, and let M2(g2; x) be the matrix function corresponding

to g2,

M2(g2; x) =
(

1 + x2 x

x 1
3

)

We claim that g2 ∈ P2([0, α2]) for some α2 > 1
2 . To this end we have only to

show thatM2(g2; x) is positive definite for allx ∈ [
0, 1

2

]
. Since the determinant

det(M2(g2; x)) is 1
3 − 2

3x2, it is easily seen that det(M2(g2; x)) > 0 for all
x ∈ [0, 1/2]. Hence α2 > 1/2 and g2 ∈ P([0, α2]) by [3, Theorem VIII.V].
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Next we show that g2 /∈ M([0, α2]). We take the polynomial p(x) = x2

and
λk = k

8
, 1 ≤ k ≤ 4.

Since ak = p(−λk)

λkπ ′(−λk)
for 1 ≤ k ≤ 4 where π(x) = ∏4

k=1(x + λk), we have

4∑
k=1

akg2(λk) = − 5

12
< 0.

This implies that g2 /∈ M2([0, α2]) by Definition 5.1.

6.2. g3 case

Let g3(x) = x+1/3x3+1/5x5, and let M3(g3; x) be the corresponding matrix
function for g3, that is,

M3(g3; x) =
⎛
⎝ 1 + x2 + x4 x + 2x3 1

3 + 2x2

x + 2x3 1
3 + 2x2 x

1
3 + 2x2 x 1

5

⎞
⎠ .

We claim that g3 ∈ P3([0, α3]) for some α3 > 1
5 . To get this we have only to

show that M3(g3; x) is positive definite for all x ∈ [
0, 1

5

]
. The determinants

of principal matrices of M3(g3; x) are as follows:

det(M3(g3; x)22) = 1
3 + 4

3x2 − 5
3x4 − 2x6

det(M3(g3; x)) = 4
135 − 11

15x2 − 7
5x6,

where M3(g3; x)22 means the 2 × 2 upper part of M3(g3; x). Then we can
conclude that

det(M3(g3; x)22) > 0, det(M3(g3; x)) > 0

for all x ∈ [
0, 1

5

]
. The numerical value of the right end point of the interval has

been obtained using computations in Maple (see arXiv.org:
math.OA/0606421). We can conclude that M3(g3; x) is positive definite for
any x ∈ [

0, 1
5

]
. (See [3, Theorem I.3.3] for example.) Hence g3 ∈ P3([0, α3])

for some α3 > 1
5 .

Next we show that g3 /∈ M3([0, α3]). Let p(x) = x4 and λk = k
30 , 1 ≤ k ≤

6. Since ak = p(−λk)

λkπ ′(−λk)
for 1 ≤ k ≤ 6 and π(x) = ∏6

k=1(x + λk), we have

6∑
k=1

akg2(λk) = −1897

7500
< 0.

This implies that g3 /∈ M3([0, α3]) by Definition 5.1.
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6.3. g4 case

Let g4(x) = x + 1
3x3 + 1

5x5 + 1
7x7 and let M4(g4; x) be the corresponding

matrix function for g4, that is,

M4(g4; x)

=

⎛
⎜⎜⎜⎝

1 + x2 + x4 + x6 x + 2x3 + 3x5 1
3 + 2x2 + 5x4 x + 5x3

x + 2x3 + 3x5 1
3 + 2x2 + 5x4 x + 5x3 1

5 + 3x2

1
3 + 2x2 + 5x4 x + 5x3 1

5 + 3x2 x

x + 5x3 1
5 + 3x2 x 1

7

⎞
⎟⎟⎟⎠ .

We claim that g4 ∈ P4([0, α4]) for some α4 > 1
25 . To this end we have only to

show that M4(g4; x) are positive definite for all x ∈ [
0, 1

25

]
. The determinants

of all principal matrices of M4(g4; x) are as follows:

det(M4(g4; x)11) = 1 + x2 + x4 + x6,

det(M4(g4; x)22) = 1
3 + 4

3x2 + 10
3 x4 − 8

3x6 − 5x8 − 4x10,

det(M4(g4; x)33) = 4
135 + 4

15x2 − 10
3 x4 − 118

15 x6 + 2x8 − 54
5 x10 − 12x12,

det(M4(g4; x)) = − 848
7875x2 + 72

7 x12 − 188
175x8

+ 72
35x10 + 16

23625 + 1472
7875x4 − 4712

875 x6.

Hence we can conclude that M4(g4; x) are positive definite for all x ∈ [
0, 1

25

]
using Maple, because each of the determinants is strictly positive for any
x ∈ [

0, 1
25

]
. The numerical value of the right end point of the interval has been

obtained using computations in Maple (see arXiv.org: math.OA/0606421).
Next we claim that g4 �∈ M4([0, α4]). We take p(x) = x6 and λk = k

200 for
1 ≤ k ≤ 8. Then by the same argument as in the case of n = 2 and n = 3 we
have 8∑

k=1

akg4(λk) = −33766394903

56 × 1010
< 0,

and hence g4 �∈ M4([0, α4]).
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6.4. g5 case

Let g5(x) = x + 1/3x3 + 1/5x5 + 1/7x7 + 1/9x9 and let M5(g5; x) be the
corresponding matrix function for g5, that is,

M5(g5; x)

=

⎛
⎜⎜⎜⎜⎜⎝

1 + x2 + x4 + x6 + x8 x + 2x3 + 3x5 + 4x7 1
3 + 2x2 + 5x4 + 28

3 x6

x + 2x3 + 3x5 + 4x7 1
3 + 2x2 + 5x4 + 28

3 x6 x + 5x3 + 14x5

1
3 + 2x2 + 5x4 + 28

3 x6 x + 5x3 + 14x5 1
5 + 3x2 + 14x4

x + 5x3 + 14x5 1
5 + 3x2 + 14x4 x + 28

3 x3

1
5 + 3x2 + 14x4 x + 28

3 x3 1
7 + 4x2

x + 5x3 + 14x5 1
5 + 3x2 + 14x4

1
5 + 3x2 + 14x4 x + 28

3 x3

x + 28
3 x3 1

7 + 4x2

1
7 + 4x2 x

x 1
9

⎞
⎟⎟⎟⎟⎟⎠ .

We claim that g5 ∈ P3([0, α5]) for some α5 > 1
125 . To this end we have

only to show that all principal matrices of M5(g5; x) are positive definite for
all x ∈ [

0, 1
125

]
. The determinants of principal matrices of M5(g5; x) are as

follows:

det(M5(g5; x)11) = 1 + x2 + x4 + x6 + x8,

det(M5(g5; x)22) = 1
3 + 4

3x2 + 10
3 x4 + 20

3 x6 − 10
3 x8

− 26
3 x10 − 29

3 x12 − 20
3 x14,

det(M5(g5; x)33) = 4
15x2 + 4

3x4 − 82
9 x6 − 97

3 x8 − 656
15 x10

+ 613
45 x12 − 42x14 − 242

3 x16 − 1540
27 x18 + 4

135 ,

det(M5(g5; x)44) = 256
23625x2 − 18824

23625x4 − 7136
2625x6 + 5588

875 x8 + 16
23625 + 6776

27 x20

− 137576
1575 x10 − 254962

1575 x12 + 44
3 x14 − 2728

945 x16 + 6776
27 x18,

det(M5(g5; x)) = − 34256
10418625x2 + 69212

243 x20 + 20251814
138915 x12 + 1024

260465625

+ 1424236
694575 x8 − 284372

138915x10 + 216592
10418625x4 + 173030

1701 x18

− 644930
11907 x16 − 1213916

694575 x6 + 1617407
27783 x14.

Hence we can conclude that M5(g5; x) are positive definite for all x ∈ [0, 1
125 ].

The numerical value of the right end point of the interval has been obtained
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using computations in Maple (see arXiv.org: math.OA/0606421).
Next we claim that g5 �∈ M5([0, α5]). As in the case of g5, we shall find

a polynomial p, and positive number λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10 in[
0, 1

125

]
such that

∑10
k=1 akg5(λk) < 0, where ak = p(−λk)

λkπ ′(−λk)
and π(x) =∏10

j=1(x + λj ).

We take p(x) = x6 and λk = k
1250 for 1 ≤ k ≤ 10. Then by the argument

as in the case of n = 2, 3, 4 we have

10∑
k=1

akg5(λk) = − 33848952554021

3845214843750000
< 0,

and hence g5 �∈ M5([0, α5]).

7. Comments

Motivated by results on operator monotone and matrix monotone functions
and their relation to C∗-algebras [4], [5], [9], [10], [11], [16], [14], and the
monotonicity gap inclusion results and the C∗-algebraic version of interpola-
tion spaces obtained in [1], we feel that the related problem of a C∗-algebraic
interpretation and perhaps a C∗-algebraic generalization of the spaces Mn is
of interest.
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