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FACTORS II, THE IIIλ-CASE, λ �= 0
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(Dedicated to the memory of Gert K. Pedersen)

Abstract

To study outer actions α of a group G on a factor M of type IIIλ, 0 < λ < 1, we study first the
cohomology group of a group with the unitary group of an abelian von Neumann algebra as a
coefficient group and establish a technique to reduce the coefficient group to the torus T by the
Shapiro mechanism based on the groupoid approach. We then show a functorial construction of
outer actions of a countable discrete amenable group on an AFD factor of type IIIλ, sharpening
the result in [17, §4]. The periodicity of the flow of weights on a factor M of type IIIλ allows us to
introduce an equivariant commutative square directly related to the discrete core. But this makes
it necessary to introduce an enlarged group Aut(M)m relative to the modulus homomorphism
m = mod: Aut(M) �→ R/T ′Z. We then discuss the reduced modified HJR-exact sequence, which
allows us to describe the invariant of outer action α in a simpler form than the one for a general
AFD factor: for example, the cohomology group Hout

m,�(G,N,T) of modular obstructions is a
compact abelian group. Making use of these reductions, we prove the classification result of outer
actions of G on an AFD factor M of type IIIλ.

Contents
§0. Introduction
§1. Groupoid Cohomology
§2. Model Construction II
§3. Reduction of Invariants for the Case of Type IIIλ, 0 < λ < 1
§4. Outer actions of a Countable Discrete Amenable Group on an

AFD Factor of Type IIIλ, 0 < λ < 1
§5. Outer actions of a Countable Discrete Amenable Group on an

AFD Factor of Type III1

0. Introduction

Thanks to these celebrated results: [2], [3], [4], [6] (see [27], [28], [29] for
detail), the investigations of cocycle conjugacy classification of actions of a
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group G on AFD factor have been finished with a series of works: [5], [7],
[12], [13], [14], [15], [19], [20], [24], [25] and [26] when G is discrete amen-
able or compact abelian. Its related topics of outer conjugacy classification of
outer acition began with [7], [12] and [20] and we give its outer conjugacy
classification in [16], [17] without any restriction.

In this article, we continue our investigation of outer conjugacy classifica-
tion of outer actions, say α, of a countable discrete group G on a factor M of
type IIIλ, 0 < λ ≤ 1. Since the characteristic square of the factor M in [14],
[15] takes a simpler form, the outer conjugacy invariants for an outer action
α of G takes a simpler form than the general case which was completed in
the last work, [17]. But this does not mean that our task was completed in the
last work. We have to reduce the general theory to the seemingly easy case
of IIIλ, which requires more work. Once the work is completed, we see that
the final form in this particular case is simpler. A major hurdle for this is the
fact that the association of a discrete core M̃d , a factor of type II∞, to a factor
M of type IIIλ is not a functor. Accordingly, the group Aut(M) does not act
canonically on M̃d . The obstruction to this is the presence of the modulus
mod(α) of α ∈ Aut(M) ([8]). Instead, an enlarged group Aut(M)m, which is
a central extension of Aut(M) by the integer group Z, acts on M̃d . The Shapiro
machinery helps to relate the characteristic square to the reduced character-
istic square consisting of all Borel groups with compact abelian groups, in
fact, the circle group, on the crucial corner. To capture the Shapiro machine,
we need to work with groupoid cohomology to get a clear and natural picture,
which is done in the first section. An interesting feature of the case of type
IIIλ, 0 < λ < 1, is that the canonical two cocycle associated with the exact
sequence ([2]):

0 −−−→ Z ×T ′−−−→ R −−−→ R/T ′Z −−−→ 0, T ′ = − log λ,

which comes from the Gauss symbol [x], x ∈ R, the integer n such that
n ≤ x < n + 1, enters naturally to the theory. We will use the notation {ṡ}T ′
for the cross-section:

ṡ = s + T ′Z ∈ R/T Z′ �→ {ṡ}T ′ = s − T ′
[ s
T ′
]
∈ [0, T ′), s ∈ R.

The case of type III1 is even easier as its general theory is already reduced.
Toward the completion of this article, the authors have received support

from the Erwin Schrödinger Institute and the Department of Mathematics,
University of Rome, La Sapienza, where they visited to work together. The
authors would like to express here their gratitude to these institutions and
Professors K. Schmidt and S. Doplicher for their invitation and the hospitality
extended to them, which made this collaboration possible and enjoyable.
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To keep the size of this article down, we postpone the discussion of examples
to the subsequent paper, [18], in which the third cohomology groups of easy
cases are computed and the invariants of outer actions of such groups are
identified from their raw data.

1. Groupoid Cohomology
Shapiro’s Mechanism and Dimension Shifting

Cohomology theory in groups began with [9]. The reserach of cohomology in
field of operator algebra appeared in [12], [20], [22] and [23] which are related
with our project. Here we extend its theory, especially dimension shifting, to
a groupoid for the later use.

Let G be a groupoid withX = G (0) the space of units. We note that whenever
we consider a Borel groupoid, locally compact groupoid or measured groupoid,
we mean by a map always a Borel map or a measurable map. For a measured
groupoid, we ignore the difference on a null set. By a G-module A , we mean
a field of groups x ∈ X �→ A(x) ∈ Grp such that

i) Each g ∈ G gives rise to an isomorphism αg ∈ Iso(A(s(g)), A(r(g));

ii) The family of isomorphisms {αg : g ∈ G} satisfies the chain rule:

αgh = αg ◦ αh, (g, h) ∈ G (2);
iii) If x = g ∈ G (0), then αg = id ∈ Aut(A(x)).

When each A(x), x ∈ X, is commutative, then A is called commutative or
abelian. We assume that A is commutative. An n-cochain, n = 0, 1, 2, . . .,
means a function

ξ : (g1, . . . , gn) ∈ G (n) �→ ξ(g1, . . . , gn) ∈ A(r(g1)).

The set Cnα(G,A ) of n-cochains forms a group relative to the pointwise
product. The coboundary map ∂n : Cnα(G,A ) �→ Cn+1

α (G,A ) is defined
by

(∂nξ)(g0, g1, . . . , gn) = αg0(ξ(g1, . . . , gn))

×
n−1∏
k=0

ξ(g0, g1, . . . , gk−2, gk−1gk, gk+1, gk+2, . . . , gn)
(−1)k−1

× ξ(g0, g1, . . . , gn−1)
(−1)n−1 ∈ A(r(g0)).

As usual, we have

∂n ◦ ∂n−1 : Zn−1
α (G,A ) �→ {1} ⊂ Zn+1

α (G,A ).
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We often suppress the suffix n of ∂n. Each element of the kernel Ker(∂n),
denoted by Znα(G,A ), is called an n-cocycle and each element of the image
Im(∂n−1), denoted by Bnα(G,A ), is called an n-coboundary. The quotient
group Znα(G,A )/Bnα(G,A ) is called the n-th cohomology group of G and
written Hn

α(G,A ) (See [1], [30] and [31] for the related topics).
For n = 0, we set

H0
α(G,A ) = Z0

α(G,A )

= {
ξ : x ∈ X �→ ξ(x) ∈ A(x) such that ξ(r(g)) = αg(ξ(s(g)), g ∈ G

}
.

For n = 1, Z1
α(G,A ) consists of all maps ξ : g ∈ G �→ ξ(g) ∈ A(r(g)) such

that
ξ(gh) = ξ(g)αg(ξ(h)), (g, h) ∈ G (2),

and B1
α(G,A ) consists of all those ξ ∈ Z1

α(G,A ) such that

ξ(g) = αg(η(s(g))η(r(g))−1, g ∈ G,

for some η : x ∈ X �→ η(x) ∈ A(x). Each ξ ∈ Z1
α(G,A ) gives rise to the

perturbation ξα of the action α on A given in the following fashion:

ξαg(u) = ξ(g)αg(u)ξ(g)−1 ∈ A(r(g)), u ∈ A(s(g)), g ∈ G .

If ξ ∈ B1
α(G,A ), then the perturbed action ξα is conjugate to the original

action α under the group Int(A ) of “inner” automorphisms of A .
For n = 2, each element ξ ∈ Z2

α(G,A ) is an A -valued function on G (2)

such that

ξ(g, h)ξ(gh, k) = αg(ξ(h, k))ξ(g, hk) ∈ A(r(g)), (g, h, k) ∈ G (3).

The cocycle ξ is a coboundary if and only if there exists a map η : g ∈ G �→
η(g) ∈ A(r(g)) such that

ξ(g, h) = αg(η(h))η(gh)−1η(g), (g, h) ∈ G (2).

Each cocycle ξ ∈ Z2
α(G,A ) gives rise to the twisted semi-direct product

groupoid:

H = A �α,ξ G = {
(u, g) ∈ A × G : u ∈ A(r(g)), g ∈ G

}
such that

H (2) = {
(u, g; v, h) ∈ H ×H : (g, h) ∈ G (2)

};
r(u, g) = r(g), s(u, g) = s(g);

(u, g)(v, h) = (uαg(v)ξ(g, h), gh), (u, g; v, h) ∈ H (2).
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The original G-module A is then viewed as a normal subgroupoid of H and the
original groupoid G is then identified with the quotient groupoid: G = H /A .
The action α of G on A is then nothing but the conjugation:

αg(u) = (1y, g)(u, x)(1y, g)−1 ∈ A(y), g = (y, g, x) ∈ G,

where r(g) = y, s(g) = x and 1y is the identity of A(y). If ξ = ∂(η), then the
map:

�η : g ∈ G �→ (η(g)−1, g) ∈ H

is an injective homomorphism of the groupoid G into H which decomposes
H into a semi-direct product:

H ∼= A �α G .

For n = 0, 1, 2, the G-module A does not have to be commutative to define
Hn
α(G,A ) as long as one is ready to give up the group structure on the cohomo-

logy space Hn
α(G,A ), n = 0, 1, 2. For n = 2, the cocycle identity, however,

should be replaced by:

αg(ξ(h, k))ξ(g, hk){ξ(g, h)ξ(gh, k)}−1 = 1, (g, h, k) ∈ G (3),

and the equivalence ξ ≡ ξ ′ of two cocycles ξ and ξ ′ is defined by the existence
of η: g ∈ G �→ η(g) ∈ A(r(g)) such that

ξ ′(g, h) = η(g)αg(η(h))ξ(g, h)η(gh)−1, (g, h) ∈ G (2).

If the groupoid G is a topological groupoid and A admits a topological
structure such that all the operations are continuous, then we request that
cocycles are all Borel. To demand the continuity on cocycles is too restrictive
as seen in the group case. If G is a measured groupoid, then all the identities
mean to hold almost everywhere relative to the relevant measure class.

Proposition 1.1. Let A be a G-module. For each y ∈ X = G (0), let B(x)
be the set of all A(x)-valued functions on Gx = s−1(x) and set

B =
•⋃

x∈X
B(x) = {

b : G �→ A such that b(g) ∈ A(x), g = (y, g, x) ∈ G
}
.

For each g = (y, g, x) ∈ G , define the map βg:B(x) �→ B(y) in the following
fashion:

(βgb)(h) = αg(b(hg)) ∈ A(y), b ∈ B(x), (h, g) ∈ G (2).
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Then for each n = 2, 3, . . .,

Hn
β(G,B) = {1}.

More explicitly, if ξ ∈ Znβ(G,B), then η ∈ Cn−1
β (G,B) defined by

η(g; g1, g2, . . . , gn−1)

= α−1
g (ξ(r(g); g, g1, . . . , gn−1)) ∈ A(s(g)), (g, g1, . . . , gn−1) ∈ G (n).

gives
ξ = ∂η.

Proof. The cocycle identity:

1 = βg0(ξ(g1, . . . , gn))

n∏
i=1

ξ(g0, g1, g2, . . . , gi−2, gi−1gi, gi+1, . . . , gn)
(−1)i

× ξ(g0, . . . , gn−1)
(−1)n , (g0, g1, . . . , gn) ∈ G (n+1)

gives

ξ(g1, . . . , gn) = β−1
g0

( n∏
i=1

ξ(g0, g1, g2, . . . , gi−2, gi−1gi, gi+1, . . . gn)
(−1)i−1

× ξ(g0, . . . , gn−1)
(−1)n−1

)

which means that for each (g, g1, . . . , gn) ∈ G (n+1) with g = g0,

ξ(g; g1, . . . , gn)

= α−1
g0

( n∏
i=1

ξ(gg−1
0 ; g0, g1, g2, . . . , gi−2, gi−1gi, gi+1, . . . , gn)

(−1)i−1

× ξ(gg−1
0 ; g0, . . . , gn−1)

(−1)n
)

= α−1
g

( n∏
i=1

ξ(r(g); g, g1, g2, . . . , gi−2, gi−1gi, gi+1, . . . , gn)
(−1)i−1

× ξ(r(g); g, g1, . . . , gn−1)
(−1)n

)
.
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Setting

η(g; g1, . . . , gn−1)

= α−1
g

(
ξ(r(g); g, g1, . . . , gn−1)

) ∈ A(s(g)); η ∈ Cn−1
β (G,B),

we compute for (g, g1, . . . , gn) ∈ G (n+1) with y = r(g)

(∂η)(g; g1, . . . , gn)

= αg1

(
η(gg1; g2, . . . , gn)

)
×

n−1∏
i=1

η(g; g1, . . . , gi−1, gigi+1, gi+2, . . . , gn)
(−1)i

× η(g; g1, g2, . . . , gn−1)
(−1)n

= αg1

(
α−1
gg1
(ξ(y; gg1, g2, . . . , gn))

)
×

n−1∏
i=1

α−1
g

(
ξ(y; g, g1, . . . , gi−1, gigi+1, gi+2, . . . , gn)

)(−1)i

× α−1
g

(
ξ(y; g, g1, g2, . . . , gn−1)

)(−1)n

= ξ(g; g1, . . . , gn).

This completes the proof.

Each A(x) is a submodule of B(x) for each x ∈ X, hence we get an exact
sequence:

{1}x −−−→ A(x)
ix−−−→ B(x)

jx−−−−→←−−−−
�jx

C(x) −−−→ {1}x (x ∈ X),

and another G-module C :

C =
•⋃

x∈X
C(x), γg(bA(x))

def= βg(b)A(y), b ∈ B(x), g = (y, g, x) ∈ G .

Symbolically we can write the exact sequence of G-modules:

X −−−→ A i−−−→ B
j−−−→ C −−−→ X.

Take ξ ∈ Znα(G,A ). With

(i∗ξ)(g; g1, . . . , gn)

= ξ(g1, . . . , gn) ∈ A(r(g1)), (g, g1, . . . , gn) ∈ G (n+1),
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we obtain a cocycle i∗ξ ∈ Znβ(G,B) = Bnβ(G,B) by Proposition 1.1. Thus

there exists a cochain η ∈ Cn−1
β (G,B) such that

i∗ξ = ∂η.
Then set

ζ(x; g1, . . . , gn−1) = jx(η(x; g1, . . . , gn−1))

= η(x; g1, . . . , gn−1)A(x) ∈ C(x).
Since ∂j = j∂ , we get ζ ∈ Zn−1

γ (G,C ) and naturally

Hn
α(G,A ) ∼= Hn−1

γ (G,C )

under the map: [ξ ] ∈ Hn
α(G,A ) �→ [ζ ] ∈ Hn−1

γ (G,C ). Summarizing the
above discussion, we obtain:

Proposition 1.2 (Dimension Shifting). If {A , α} is a G-module, then there
exists a natural G-module {C , γ } and a natural isomorphism:

Hn
α(G,A ) ∼= Hn−1

γ (G,C ).

Pullback, Reduction and Induction

Let H be a groupoid with Y = H (0). Suppose that f is a surjective map from
a space X onto Y (if applicable, we assume that the map f is Borel).

Then we have a fibration of X:

X =
•⋃
y∈Y

X(y), X(y) = f −1(y), y ∈ Y.

Then we set

G =
⋃

(y,z)∈Y×Y
{X(z)×H y

z ×X(y)},

where H z
y = r−1(z) ∩ s−1(y), (z, y) ∈ Y 2. We

then define the range and the source maps and
the product in G as follows:

X(y1)

X(y2)

X(y3)

y1
Y:

X

y2 y3

r(z, h, x) = z, s(z, h, x) = x;
(z, g, y)(y, h, x) = (z, gh, x), (g, h) ∈ H (2),

z ∈ X(r(g)), y ∈ X(s(g)) = X(r(h)), x ∈ X(s(h)).
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Definition 1.3. The groupoid G is called the pullback of H by the map
f and denoted by f ∗(H ).

The map:

f∗ : (z, h, x) ∈ G �→ f∗(z, h, x) = (f (z), h, f (x)) ∈ H

is a groupoid homomorphism of G onto H .
If fi , i = 1, 2, are maps from Xi onto Y , then we have the fiber product

X = X1 ∗X2 relative to f1 and f2:

X = {(x1, x2) ∈ X1 ×X2 : f1(x1) = f2(x2)},
and the map f : x = (x1, x2) ∈ X �→ f (x) = f1(x1) = f2(x2) ∈ Y which
makes the following diagram commutative:

X
pr1−−−−−−→ X1

↓pr2 ↓f1

X2
f2−−−−−−→ Y

f = f1 ◦ pr1 = f2 ◦ pr2 .

The pullbacks G = f ∗(H ), G1 = f ∗1 (H ), G2 = f ∗2 (H ) and H form the
commutative diagram:

G
pr1∗−−−−−−→ G1

↓pr2∗ ↓f1∗

G2
f2∗−−−−−−−→ H

f = f1 ◦ pr1 = f2 ◦ pr2 .

Let Y ⊂ X be a subset such that the saturation [Y ] = X, i.e.,

[Y ] = s ◦ r−1(Y ) = X,
equivalently for every x ∈ X there exists g = (y, g, x) ∈ G such that y ∈ Y .
If applicable, we assume that the set Y is a Borel subset of X.

Definition 1.4. In the above setting, let GY be the set of all those g ∈ G

such that r(g) ∈ Y and s(g) ∈ Y , i.e.,

GY = r−1(Y ) ∩ s−1(Y ).

Proposition 1.5. If Y is a subset of X such that X = [Y ], then there
exists a surjective map f : X �→ Y such that G is naturally isomorphic to the
pullback groupoid f ∗(GY ).
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Proof. Consider the map

s: g ∈ r−1(Y ) �→ x = s(g) ∈ X
and its cross-section (if applicable, we take a Borel cross-section γ )

γ : x ∈ X �→ γ (x) ∈ r−1(Y ),

such that γ (y) = y if y ∈ Y . Set

f (x) = r(γ (x)) ∈ Y, x ∈ X.
We claim G ∼= f ∗(GY ). For each (z, g, x) ∈ f ∗(GY ), set

π(z, g, x) = γ (z)−1gγ (x) ∈ G

which makes sense because

s(γ (z)−1) = r(γ (z)) = f (z) = r(g) ∈ Y ;
r(γ (x)) = f (x) = s(g).

For each ((z, g, y), (y, h, x)) ∈ f ∗(GY )(2), we get

π((z, g, y)(y, h, x)) = π(z, gh, x) = γ (z)−1ghγ (x)

= γ (z)−1gγ (y)γ (y)−1hγ (x)

= π(z, g, y)π(y, h, x).
Hence the map π is multiplicative. The inverse π−1 is given by:

π−1(z, g, x) = (z, γ (z)gγ (x)−1, x), (z, g, x) ∈ G .

This proves the assertion.

Similarly, if B is an H -module, (not necessarily commutative), then the
surjective map f : X �→ Y also gives rise to the pullback f ∗(H )-module
A = f ∗(B) in the following way:

A(x)
α(z,g,x)−−−−−−→ A(z)

B(f (x))
βg−−−−−−→ B(f (z))

(z, g, x) ∈ G = f ∗(H ),

where β is the action of H on B.
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Definition 1.6. i) If H = GY , Y ⊂ X, and the map f is given by
Proposition 1.5, then the above G-module f ∗(B) is called the induced G-
module and written A = IndXY B or A = IndY↑X B.

ii) If A is a G-module, then

AY =
•⋃
y∈Y

A(y)

is naturally GY -module, which will be called the reduced module over GY or
the reduced GY -module.

Proposition 1.7. If X = [Y ], then every G-module A , not necessarily
commutative, is obtained from the reduced GY -module AY as the induced
module.

The proof is exactly the same as Proposition 1.5, and we leave details to the
interested reader.

Proposition 1.8. If Y ⊂ X and X = [Y ], then the embedding map

iY : GY ↪→ G

gives rise to the pullback map, i.e., the restriction map, with the following
properties:

i∗Y : ξ ∈ Znα(G,A ) �→ ξY = ξ |Y ∈ Znα(GY ,AY );
f ∗∗ ◦ i

∗
Y (ξ) ≡ ξ mod Bnα(G,A ), ξ ∈ Znα(G,A );

i∗Y ◦ f
∗
∗ (ξ) ≡ ξ mod Bnα(GY ,AY ), ξ ∈ Znα(GY ,AY );

i∗Y : Hn
α(G,A ) ∼= Hn

α(GY ,AY ),

where f is the map of Proposition 1.5 and the map f∗ : G �−→ GY is given by
f∗(g) = γ (z)gγ (x)−1, g = (z, g, x) ∈ G .

Proof. In view of the last two propositions, we may and do assume that
the groupoid G and the G-module A are both obtained as G = f ∗(GY ) and
A = f ∗(AY ). In this setting, we get A(x) = A(f (x)) and αγ (x) = idA(x), the
identity map on A(x), for every x ∈ X.

For n = 0, each ξ ∈ Z0
α(G,A ) is a map ξ : x ∈ X �→ ξ(x) ∈ A(x) such

that
ξ(r(g)) = αg(ξ(s(g))), g ∈ G .

The restriction ξY satisfies the same identities for GY and ξ(x) = ξY (f (x)), x ∈
X. Hence ξY ∈ Z0

α(GY ,AY ).
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If η ∈ Z0
α(GY ,AY ), then ξ = f ∗∗ η satisfies, for each g = (z, f∗(g), x) ∈ G ,

g = γ (z)−1f∗(g)γ (x),

and

ξ(z) = η(r(f∗(g))) = αf∗(g)(η(f (x))) = αf∗(g)(ξ(x)) = αg(ξ(x)).
Hence we get ξ = f ∗∗ η ∈ Z0

α(G,A ).
Since ξ(x) = ξ(f (x)), x ∈ X, for every ξ ∈ Z0

α(G,A ), we conclude that
H0
α(G,A ) ∼= H0

α(GY ,AY ) under the isomorphism i∗Y .
The case n = 1: Each ξ ∈ Z1

α(G,A ) satisfies

ξ(gh) = ξ(g)αg(ξ(h)), (g, h) ∈ G (2).

The restriction ξY satisfies the same identity, so that it is a cocycle in
Z1
α(GY ,AY ). Now choose ξY ∈ Z1

α(GY ,AY ) and set

ξ(z, g, x) = (f ∗∗ ξY )(z, g, x) = ξY (γ (z)gγ (x)−1).

For each pair g = (z, g, y), h = (y, h, x) ∈ G , we have

ξ(gh) = ξY (f∗(gh)) = ξY (f∗(g)f∗(h))
= ξY (f∗(g))βf∗(g)(ξY (f∗(h)) = ξ(g)αg(ξ(h)).

Hence f ∗∗ (ξY ) ∈ Z1
α(G,A ).

Suppose ξY = i∗Y (ξ). We then compare ξ and f ∗∗ ξY . For g = (z, g, x), we
write f∗(g) = (f (z), f∗(g), f (x)) = γ (z)gγ (x)−1 ∈ GY and compute:

(f ∗∗ ξ)(g) = ξ
(
γ (z)gγ (x)−1

) = ξ(γ (z))ξ(gγ (x)−1) (as αγ (z) = id)

= ξ(γ (z))ξ(g)αg
(
ξ(γ (x)−1)

)
= ξ(γ (z))ξ(g)αg

(
α−1
γ (x)

(
ξ(γ (x))−1

))
= ξ(γ (z))ξ(g)αg

(
ξ(γ (x))−1

)
.

Hence the above calculation becomes:

(f ∗∗ ξ)(g) = ξ(γ (z))ξ(g)αg(ξ(γ (x))−1).

Therefore we get ξ ≡ f ∗∗ ξ mod B1
α(G,A ).

For n = 2, 3, . . ., we use the dimension shifting, Proposition 1.2. From the
construction of {C , γ } from {A , α}, it follows that the reduced GY -modules
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CY and AY are related in the exactly same way as the original modules A and
C are. Hence we have by mathematical induction:

Hn
α(G,A ) ∼= Hn−1

γ (G,C ) ∼= Hn−1
γ (GY ,CY ) ∼= Hn

α(GY ,AY ).

Tracing the isomorphims, we conclude that the isomorphism is indeed given
by f ∗∗ and i∗Y .

Remark 1.9. In the case that Y is a singleton set {y0}, the reduced groupoid
GY is a group, say H . The associated principal groupoid G̃ , the equivalence
relation groupoid given by the orbit structure of G , is transitive. This is precisely
the conventional induction procedure and also the Shapiro mechanism. This
case is also relevant to us in the case of a system based on a factor of type IIIλ
as will be seen in the later sections.

Definition 1.10. A normal subgroupoid N of G is a field

{N(x) ⊂ r−1(x) ∩ s−1(x) : x ∈ X}
of groups such that

N(y) = gN(x)g−1, (y, g, x) ∈ G .

For a commutative G-module A with trivial action of N , we can define the
group Zα(G,N ,A ) of characteristic cocycles (λ, μ) as in [24] and the group
�α(G,N ,A ) of characteristic invariants. Each (λ, μ) ∈ Zα(G,N ,A ) gives
rise to an exact sequence of G-modules equipped with cross-section �:

E :X −−−→ A i−−−→ E = A �α,μ N
j−−−−→←−−−−
�

N −−−→ X

where

� : (m, x) ∈ N(x) �→ �(m, x) = (1x,m) ∈ E (x) = A(x)�α,μx N(x);
�(m, x)�(n, x) = μ(m, n; x)�(mn, x) = μx(m, n)�(mn, x);

αz,g,x(�(g
−1mg, x)) = λ(m; z, g, x)�(m, z), (z, g, x) ∈ G, (m, x) ∈ N(x).

Conversely, if we have an exact sequence of G-modules:

E :X −−−→ A i−−−→ E
j−−−→ N −−−→ X

then a cross-section � (if applicable, we take a Borel cross-section) of the map
j gives rise to A -valued functions λ on N ∗r G = {(m, g) ∈ N ×G : s(m) =
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r(g)} and μ on N (2) such that

�(m, x)�(n, x) = μ(m, n; x)�(mn, x), (m, x), (n, x) ∈ N(x);
αz,g,x(�(g

−1mg, x)) = λ(m; z, g, x)�(m, z), ((m, x), (z, g, x)) ∈ Nx × Gz
x ,

and the pair (λ, μ) falls in the group Zα(G,N ,A ). We denote the collec-
tion of the conjugate classes of exact sequences by Xext(G,N ,A ) and each
exact sequence a crossed extension of A by N . The group multiplication in
Zα(G,N ,A ) reflects to the following operations in Xext(G,N ,A ):

i) For any two crossed extensions E1, E2 ∈ Xext(G,N ,A ):

E1:X −−−→ A
i1−−−−→ E1

j1−−−→ N −−−→ X;
E2:X −−−→ A

i2−−−−→ E2
j2−−−→ N −−−→ X

the product crossed extension E is defined to be the quotient module of
the fiber product:

E = E1 ∗ E2

= {(e1, e2) ∈ E1 × E2 : j1(e1) = j2(e2)}/{(i1(a), i2(a−1)) : a ∈ A }.
ii) The inverse E −1 is then given by:

E ′:X −−−→ A
{a∈A �→i(a−1)}−−−−−−−−−→ E −−−→ N −−−→ X

Proposition 1.11. If Y ⊂ X is a subset of X such that X = [Y ] =
s(r−1(Y )), then with the map f of Proposition 1.5 the maps f ∗∗ and i∗Y give
isomorphisms between�α(G,N ,A ) and�α(GY ,NY ,AY ) which are the in-
verse of one another.

Proof. First, we may and do assume that A = IndXY B and G = f ∗(H )

with B = AY and H = GY . Also the normal subgroupoid N is a G-module
and therefore it is conjugate to the induced G-module IntXY (M) with M = NY

as a G-module. However, it is not entirely trivial to relate the structure of the
inclusions: M ⊂ GY and N ⊂ G . We have to study the way that the entire
groupoid G is related to the reduced one GY . As G = f ∗(GY ), we have

Gz
x = {z} ×H

f (z)

f (x) × {x};
Gx
x = {x} ×H

f (x)

f (x) × {x} = γ (x)−1H
f (x)

f (x) γ (x);
N(x) = γ (x)−1N(f (x))γ (x) = {x} ×M(f (x))× {x}.



outer actions of a discrete amenable group . . . 89

Hence we have N = f ∗(M).
Now every E ∈ Xextα(G,N ,A ) conjugate to a crossed extension of the

form f ∗(F ) with F ∈ Xextα(H ,M,B) and F is given as F = EY . It is
straightforward now to see that f ∗(F1) ∼= f ∗(F2) if and only if F1

∼= F2.
Hence the f ∗∗ and i∗Y are isomorphisms between �α(G,N ,A ) and �α(GY ,

NY ,AY ) which are inverse of one another.

Non-Polish Groupoid

In many cases, we encounter the following situation:

i) An ergodic flow {A,R, θ} is given on an abelian separable von Neumann
algebra A. Let {X,m} be the measure theoretic spectrum of A, i.e.,
{X,m} is a standard measure space such that A = L∞(X,m);

ii) A Polish groupH acts on the flow {A,R, θ}viaα, i.e.,α is a homomorph-
ism ofH into the group Autθ (A) = {σ ∈ Aut(A) : σ ◦θs = θs ◦σ, s ∈ R},
which gives rise to a joint action of H̃ = H × R on A. We denote it
by α also and by θ if we restrict α to the action of R. We also use the
notations:

(αg,sf )(x) = f (T −1
g,s x), f ∈ A = L∞(X,m), (g, s) ∈ H̃ .

iii) A normal subgroupL ofH contained in the kernelL ⊂ Ker(α) is given,
so that the action of H factors through the quotient group Q = H/L;

iv) The normal subgroup L is not closed, so that the quotient group Q
does not have a reasonable topological or Borel structure despite its
significance in the theory.

The action α of H̃ on A gives rise to the action of Q̃ = Q × R which will
be denoted by α again. Now the groupoid GQ̃ = X � Q̃ is the groupoid
which is relevant to us despite the lack of a reasonable Borel structure on it.
In what follows, we consider the discrete topology on Q side and the usual
topological and Borel structures on R-side. Namely we are going to consider
those functions f on GQ̃ such that the map: (x, s) �→ f (x, q, s) is jointly
Borel as a function on X × R for each fixed q ∈ Q. Namely, we consider the
product Borel structure of those onX and R and the discrete Borel structure on
Q. A typical example will be the automorphism group Aut(M) of a separable
factor M as H and Cntr(M) as L and the flow {C,R, θ} of weights on M as
{A,R, θ}.
2. Model Construction II

Let {C,R, θ} be an ergodic flow to be fixed throughout this section. Let H be
a countable discrete group and α an action of H on the flow {C,R, θ}, i.e.,
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a homomorphism of H into the group Autθ (C) of all automorphisms of C
commuting with the flow θ . Let {X,m} be the measure spectrum of C, i.e., a
standard σ -finite measure space on which R acts as a one-parameter group of
non-singular transformations {Ts : s ∈ R}, so that

θsf (x) = f (T −1
s x), f ∈ C = L∞(X,m), x ∈ X, s ∈ R.

We denote the action α of H on the space X in the following fashion:

αgf (x) = f (xg), g ∈ H, f ∈ C.

When we consider the joint action of H̃ = H × R on X, denoted simply by α
also, we write

(αg̃f )(x) = f (xg̃) = f (T −1
s xg), g̃ = (g, s) ∈ H̃ = H × R.

Let L be a normal subgroup of H contained in the Kernel Ker(α) of α, i.e., L
does not act on C at all.

This section will be devoted to a construction of an action α of H on
a separable strongly stable factor M for any characteristic invariant χ ∈
�α(H̃ , L,U(C)) such that

i) The flow of weights on M is conjugate to the flow {C,R, θ}, which will
be identified;

ii) The modulus mod(α) is precisely the preassigned action α on C of H ;

iii) L = α−1(Cntr(M));

iv) χ = χ(α).
Here the strong stability of M means that M ∼= M ⊗ R0 with R0 an ap-
proximately finite dimensional factor of type II1. This is equivalent to the non
commutativity of the quotient group Int(M)/ Int(M) of the group Int(M) of
approximately inner automorphisms by the group Int(M) of inner automorph-
isms.

The joint action H̃ on X gives rise to a standard measured groupoid H =
X × H̃ such that

r(y, g̃) = y s(y, g̃) = yg̃, y ∈ X, g̃ = (g, s) ∈ H̃ = H × R;
(y, g̃)(yg̃, h̃) = (y, g̃h̃), h̃ = (h, t) ∈ H̃ .

In order to shorten notations we write

g̃ ∈ G and h̃ ∈ G for (y, g̃) ∈ G and (x, h̃) ∈ G
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respectively omitting the range y = r(g̃), x = r(h̃) ∈ X. At the same time, to
specify the range and the source explicitly, we often write

(y, g̃, x) ∈ G for y = r(y, g̃, x) and x = s(y, g̃, x), i.e., x = yg̃.
For each x ∈ X, let K(x) be the isotropy group of x, i.e.,

K(x) = {g̃ ∈ H̃ : x = xg̃}.
The map: x ∈ X �→ K(x) ∈ Sub(H̃ ) is a Borel map from the standard Borel
space X into the standard Borel space Sub(H̃ ) of all closed subgroups of H̃
such thatK(x) = K(Tsx), s ∈ R, x ∈ X, since the flow θ and the joint action
α of H̃ commute. The ergodicity of θ then implies that K(x) = K ∈ Sub(H̃ )
for some fixed closed subgroup K of H̃ . Then of course, K is the Kernel
Ker(α) of the joint action α of H̃ , hence it is a normal closed subgroup of H̃
which contains the normal subgroup L. Let N = X × L denote the normal
subgroupoid of G .

Proposition 2.1. Let A be the unitary group U(C) of C. Then there is a
natural isomorphism: (λ, μ) ∈ Zα(H̃ , L,A) �→ (λ̃, μ̃) ∈ Z(H ,N ,T) from
the group Zα(H̃ , L,A) of characteristic cocycles onto the group Z(G,N ,T)
of characteristic cocycles which maps precisely the group Bα(H̃ , L,A) of
coboundaries onto the subgroup B(G,N ,T) of coboundaries, so that it in-
duces a natural isomorphism:

χ ∈ �α(H̃ , L,A) �→ χ̃ ∈ �(G,N ,T).

Proof. To each (λ, μ) ∈ Zα(H̃ , L,A), we want to associate a cocycle
(λ̃, μ̃) ∈ Z(G,N ,T). First, we realize (λ(m, g̃), μ(m, n)) for m, n ∈ L and
g̃ = (g, s) ∈ H̃ as T-valued Borel functions over X so that the cocycle
identities hold almost everywhere and write them:

λ(x;m; g̃) and μ(x;m, n), x ∈ X, m, n ∈ L, and g̃ = (g, s) ∈ H̃ .
Then set

μ̃((x,m); (x, n)) = μ(x;m, n), ((x,m); (x, n)) ∈ N (2);
λ̃((x,m); (x, g̃)) = λ(x;m; g̃), ((x,m); (x, g̃)) ∈ G (2).

Let us check the cocycle identity:

i) The 2-cocycle identity for μ guarantees the 2-cocycle identity for μ̃
almost everywhere;
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ii) If m = (z,m, z) ∈ N and (g̃ = (z, g̃, y), h̃ = (y, h̃, x)) ∈ G (2), then
y = zg̃, x = yh̃ and

λ̃(m; g̃h̃) = λ̃((z,m, z); (z, g̃h̃, x)) = λ(z;m; g̃h̃)
= λ(z;m; g̃)λ(zg̃; g̃−1mg̃; h̃)
= λ̃((z,m, z); (z, g̃, zg̃))λ̃((zg̃, g̃−1mg̃, zg̃); (zg̃, h̃, x))
= λ̃((z,m, z); (z, g̃, y))λ̃((y, g̃−1mg̃, y); (y, h̃, x))
= λ̃(m; g̃)λ(g̃−1mg̃; h̃).

iii) For m = (x,m, x), n = (x, n, x) ∈ N , we have

λ̃(m, n) = λ(x;m, n) = μ(x; n, n−1mn)μ∗(x;m, n)
= μ̃(n, n−1mn)μ̃(m, n).

iv) For each m = (y,m, y) ∈ N , g̃ = (y, g̃, x) ∈ G , we have

λ̃(m; g̃)λ̃(n; g̃)λ̃(mn; g̃) = λ(y;m; g̃)λ(y; n, g̃)λ(y;mn; g̃)
= μ(yg̃; g−1mg; g−1ng)μ(y;m, n)
= μ̃(g̃−1mg; g̃−1ng̃)μ̃(m, n).

Therefore the pair (λ̃, μ̃) is a characteristic cocycle for {G,N } with values in
T. The map: (λ, μ) ∈ Zα(H̃ , L,A) �→ (λ̃, μ̃) ∈ Z(G,N ,T) is an injective
homomorphism.

Conversely, it is clear that if (λ̃, μ̃) ∈ Z(G,N ,T) is given, then the pair
(λ, μ) defined by:

λ(x;m; g̃) = λ̃((x,m, x); (x, g̃, xg̃))
μ(x;m, n) = μ̃((x,m, x); (x, n, x)) for x ∈ X, g̃ ∈ H̃ ,m, n ∈ L,

is an element of Zα(H̃ , L,A).
Finally, each cochain c : m ∈ L �→ c(m) ∈ A gives rise to a T-valued

cochain:
c̃(x,m, x) = c(x;m) ∈ T

The correspondences c �→ c̃ and (λ, μ) �→ (λ̃, μ̃) intertwines the respect-
ive coboundary operations. Accordingly, Bα(H̃ , L,A) corresponds exactly to
B(G,N ,T). This completes the proof.

Lemma 2.2. There exists a model construction:

(λ, μ) ∈ Zα(H̃ , L,A) �→ {M0(λ, μ), H̃ , β
λ,μ}



outer actions of a discrete amenable group . . . 93

such that

i) M0(λ, μ) is a separable von Neumann algebra of type II1;

ii) The restriction of the action βλ,μ of H̃ to the center of M0(λ, μ) is
conjugate to the covariant system {C, H̃ , α};

iii) L = (βλ,μ)−1(Int(M(λ, μ)));
iv) There exists a map u0 : m ∈ L �→ u0(m) ∈ U(M) such that

u0(m)u0(n) = μ(m, n)u0(mn), m, n ∈ L;
βg̃(u0(g

−1mg)) = λ(m; g̃)u0(m), g̃ = (g, s) ∈ H̃ = H × R.

If the original groupH is amenable, then the construction yields that the factor
M0(λ, μ) is necessarily AFD.

Proof. First, we have the corresponding characteristic cocycle (λ̃, μ̃) ∈
Zα(G,N ,T). Let R0 be an AFD factor of type II1 and β a free action of the
group H̃ = H × R on R0. For each x ∈ X, consider the μx-twisted crossed
product

Rλ,μ(x) = R0 �β,μx L, x ∈ X,
where μx(m, n) = μ̃(x;m, n),m, n ∈ L. Let {u(x;m) : m ∈ L}, x ∈ X, be
the μx-projective unitary representation of L in Rλ,μ(x) associated with the
twisted crossed product. Then we have

Rλ,μ(x) = R0 ∨ {u(x;m) : m ∈ L}′′, x ∈ X.
For each g̃ = (y, g̃, x) ∈ G , set

β
λ,μ

(y,g̃,x)
(a) = βg̃(a) for a ∈ R0;

β
λ,μ

(y,g̃,x)
(u(x;m)) = λ̃(y; gmg−1; y, g̃, x)u(y; gmg−1), m ∈ L.

It is routine to check that βλ,μ is indeed an action of the groupoid G on the
Borel field {Rλ,μ(x) : x ∈ X} of factors of type II1 and the von Neumann
algebra:

M0(λ, μ) =
∫ ⊕
X

Rλ,μ(x) dm(x)

accommodates the required action βλ,μ of H̃ .
If H is amenable, then L is also amenable, which makes each Rλ,μ(x)

approximately finite dimensional, and therefore M0 is AFD.

Theorem 2.3. Let {C,R, θ} be an ergodic flow and α an action of a count-
able discrete group H on the flow, i.e., α is a homomorphism of H into the
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group Autθ (C) of automorphisms of C commuting with the flow θ . Let L be
a normal subgroup of H contained in the kernel Ker(α) of α, i.e., L does not
act on C at all. Consider the product group H̃ = H × R whose joint action
on C will be denoted by α. Then we have a functorial model construction:

(λ, μ) ∈ Zα(H̃ , L,U(C)) �→ {M̃(λ, μ), α̃λ,μ}
such that

i) The restriction of the covariant system {M̃(λ, μ), H̃ , α̃λ,μ} to the center
is conjugate to {C, H̃ , α};

ii) The von Neumann algebra M̃(λ, μ) is of type II∞ and admits a faithful
semi finite normal trace τ which is transformed in the following fashion:

τ ◦ αg,s = e−sτ, (g, s) ∈ H̃ ;
iii) L = (α̃λ,μ)−1(Int(M̃(λ, μ))) and M̃(λ, μ) admits a map uλ,μ : m ∈

L �→ uλ,μ(m) ∈ U(M̃) such that

uλ,μ(m)uλ,μ(n) = μ(m, n)uλ,μ(mn), m, n ∈ L;
α̃λ,μg,s (u

λ,μ(m)) = λ(gmg−1; g, s)uλ,μ(gmg−1), (g, s) ∈ H̃ ;
iv) To each f ∈ Map(L,U(C)), there corresponds an isomorphism σf :

M̃(λ, μ) �→ M̃(λ∂1f,μ∂2f ) such that

σf (u
λ,μ(m)) = f (m)uλ,μ(m), m ∈ L;

σf ◦ α̃
λ,μ
g,s

◦ σ−1
f = α̃λ∂1f,μ∂2f

g,s , (g, s) ∈ H̃ ;
σf1

◦ σf2 = σf1f2 , f1, f2 ∈ Map(L,U(C));
τ ◦ σf = τ, f ∈ Map(L,U(C)).

Consequently, the restriction αλ,μ of α̃λ,μ to the fixed point subalgebra:

M(λ, μ) = M̃(λ, μ)θ

is an action of the group H on a factor of type III whose flow of weights is
precisely {C,R, θ} such that its modular characteristic invariant is given by:

χm(α
λ,μ) = [λ,μ] ∈ �α(H̃ , L,U(C)).

If the groupH is amenable, then the factor M of the model {M(λ, μ),H, αλ,μ}
is approximately finite dimensional.

Proof. We continue the discussion in the proof of Lemma 2.2. Let R0,1

be an AFD factor of type II∞ equipped with a one parameter automorphism
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group {θs : s ∈ R} scaling trace, i.e., τ ◦ θs = e−sτ, s ∈ R, with τ a faithful
semi-finite normal trace on R0,1. We set

M̃(λ, μ) =M0(λ, μ)⊗R0,1 and M̃(λ, μ; x) = Rλ,μ(x)⊗R0,1;
M̃(λ, μ) =

∫ ⊕
X

M̃(λ, μ; x) dm(x).

Let δm be the modulus of the quasi-invariant measure m on X relative to the
groupoid G , i.e.,

δm(y, g̃, x) = d(m ◦ g̃−1)

dm

(
x
)
, (y, g̃, x) ∈ G,

and set
ρm(g̃) = s + log(δm(g̃)), g̃ ∈ G .

We then define an action {αλ,μ
(y,g̃,x)

} of G on the field {M̃(λ, μ; x) : x ∈ X}
in the following fashion: with g̃ = (y, g̃, x), g̃ = (g, s) ∈ H̃ = H × R,

M̃(λ, μ; x)=Rλ,μ(x)⊗R0,1
β
λ,μ

(y,g̃,x)
⊗θρm (y,g̃,x)−−−−−−−−−−→
α
λ,μ

(y,g̃,x)

M̃(λ, μ; y)=Rλ,μ(y)⊗R0,1.

Then we have for each a ∈ M̃(λ, μ) and g̃ = (g, s) ∈ H̃

τ ◦ α
λ,μ

g̃
(a) =

∫
X

τy
((
α
λ,μ

g̃
(a)

)
(y)

)
dm(y)

=
∫
X

τy
(
α
λ,μ

(y,g̃,x)
(a(x))

)
dm(y)

=
∫
X

dτy ◦ α(y,g̃,x)
dτx

τx(a(x))δm(y, g̃, x) dm(x)

=
∫
X

e−ρm(y,g̃,x)τx(a(x))δm(y, g̃, x) dm(x)

=
∫
X

e−s−log(δm(y,g̃,x))τx(a(x))δm(y, g̃, x) dm(x)

=
∫
X

e−sτx(a(x)) dm(x) = e−sτ (a).

Therefore the trace transformation rule of the integrated action α̃λ,μ of H̃ on
M̃(λ, μ):

τ ◦ α̃g,s = e−sτ, (g, s) ∈ H̃ ,
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follows. The rest of the assertions in the theorem follow easily now. This
completes the proof.

Corollary 2.4. Suppose that G is a countable discrete group with a pre-
assigned normal subgroupN and that {C,R, θ} is an ergodic flow. Let α be an
action ofG on the flow {C,R, θ} such thatN ⊂ Ker(α), i.e., a homomorphism
ofG into the group Autθ (C) of automorphisms commuting with θ which maps
N to the identity. So the actionα factors through the quotient groupQ = G/N .
Fix a cross-section �:Q �→ G of the quotient mapπ : g ∈ G �→ gN ∈ Q. Then
for any modular obstruction cocycle [c, ν] ∈ Hout

α,�(G̃, N,U(C)), there exists
an outer action α of G on an infinite factor M with N = α−1(Cntr(M)) such
that the associated modular obstruction Obm(α) is precisely the cohomology
class Obm(α) = [ξ, ν] ∈ Hout

α,�(G̃, N,U(C)).
If G is amenable, then the construction of {M,G, α} yields that M is

approximately finite dimensional.

Proof. Denote the unitary group U(C) by A for short and H̃ = H × R.
Let [c] = ∂([ξ, ζ ]) ∈ H3(G,T) be the image of the cohomology class [ξ, ν]
under the map ∂ : Hout

α,�(G̃, N,A) �→ H3(G,T) of [17, Lemma 2.11]. Consider
the resolution system:

1 −−−→ M −−−→ H(c)
πG−−−→ G −−−→ 1

of the cocycle c ∈ Z3(G,T). As π∗G([c]) = 1 in H3(H,T), we have Inf([ξ, ν])
= π∗G ◦ ∂([ξ, ν]) = 1 ∈ H3(H,T) in the modified HJR-exact sequence, so
that we can find χ = [λ,μ] ∈ �α(H̃ , L,A) such that [ξ, ν] = δ(χ) by [17,
Theorem 2.7]. Now Theorem 2.3 yields the existence of a covariant system
{M, H, αλ,μ} such that L = (αλ,μ)−1(Cntr(M)) and χ(α) = χ . With �H a
cross-section of πG, we set

αg = αλ,μ�H (g)
on M, g ∈ G,

to obtain the outer action α of G on M such that Obm(α) = [ξ, ν]. This
completes the proof.

3. Reduction of Invariants for the Case of Type IIIλ, 0 < λ < 1

First, fixing 0 < λ < 1, we set

(3.1) T = −2π/(log λ) > 0 and T ′ = − log λ > 0.

Let C = L∞(R/T ′Z) and A = U(C). The action θ of the real line R on
T = R/T ′Z is by translation.
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Lemma 3.1. In the above context, the first cohomology group H1
θ (R, A) has

the following structure:

i) H1
θ (R, A) ∼= R/T Z;

ii) The following exact sequence splits:

1 −−−→ B1
θ (R, A) −−−−→ Z1

θ (R, A) −−−−→←−−−−
�Z

R/T Z −−−→ 0

Proof. i) This follows from Proposition 1.8 by setting Y = {0} ∈ X =
R/T ′Z. Because

GY = {0} × T ′Z, A(0) = T and H1
θ (T
′Z,T) = T̂ ′Z ∼= R/T Z.

ii) The notation [x], x ∈ R, stands for the Gauss symbol, i.e., the unique
integer n such that n ≤ x < n+ 1. Set

(3.2) c(s, t, x) = exp

(
iT ′s

([
x

T ′

]
−
[
x + t
T ′

]))
, s, t, x ∈ R,

and observe that the function c(s, t, ·) is periodic in the last variable x with
period T ′, so that it can be viewed as a function overX = R/T ′Z. Furthermore,
we have

c(r + s, t, x) = c(r, t, x)c(s, t, x);
c(r, s + t, x) = c(r, s, x)c(r, t, x + s);
c(T , t, x) = 1.

Thus {c(s, ·, ·)} is a one parameter subgroup of Z1
θ (R, A)with period T . Hence

the map: ṡT ∈ R/T Z �→ c(ṡT , ·, ·) ∈ Z1
θ (R, A) is a cross-section �Z of the

map πZ : Z1
θ (R, A) �→ H1

θ (R, A) = R/T Z.

Corollary 3.2. If M is a separable factor of type IIIλ, 0 < λ < 1, then
the association of extended modular automorphism to each ṡ ∈ R/T Z with
T = −2π/(log λ) and ϕ ∈ �0(M):

(ṡ, ϕ) ∈ R/T Z×�0(M) �→ σ
ϕ

�Z(ṡT )
∈ Cntr(M)

is equivariant in the sense that if α is an isomorphism of M onto another factor
N , then

(3.3) α ◦ σ
ϕ

�Z(ṡT )
◦ α−1 = σα(ϕ)α(�Z(ṡT ))

, ṡT ∈ R/T Z.

In fact, for each ϕ ∈ �0(M), there exists a non-singular positive H ∈ Cϕ
such that with ρ = ϕ(H · ),

σρs = σϕ�Z(ṡT )
, s ∈ R,
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where ṡT = s + T Z ∈ R/T Z.

Proof. The last lemma shows that {�Z(ṡT )} is a one parameter subgroup
of Z1

θ (R, A) with period T . Hence for each ϕ ∈ �0(M), {uϕ(ṡT ) : s ∈ R} =
{bϕ(�Z(ṡT )) : s ∈ R} is a one parameter subgroup of Ũ(M)∩Dϕ with period
T (for notations, see [28, p. 458]) and {σϕ�Z(ṡT )

: s ∈ R} is a one parameter
automorphism group of M with periodT which leaves Mϕ pointwise invariant.

Fixϕ ∈ �0(M) and take a non-singular positive k ∈ Cϕ such that Ad(k−iT )
= σϕT , so thatψ = ϕ(k · ) is a faithful semi-finite normal weight with σψT = id.
Then it follows that ψ iT belongs to the center C, (in fact it generates C). With
h ∈ C such that hiT = ψ iT , we have

∂θ (h
−iskisϕis) = ∂θ (h−isψis) = �Z(ṡT ), s ∈ R.

Hence we get

∂θ (uϕ(ṡT )) = �Z(ṡT ) = ∂θ (h−iskisϕis), s ∈ R.

This means that v(s) = uϕ(ṡT )hisk−isϕ−is ∈ U(M), s ∈ R. Now as k ∈ Cϕ ,
v(s) and Dϕ commute, consequently so do ϕ and v(s). Hence {v(s)} is a
periodic one parameter unitary group in the centralizer Mϕ with period T such
that

σ
ϕ

�Z(ṡT )
= Ad(v(s)) ◦ σψs , s ∈ R.

Since both σϕ�Z(ṡT )
and σψs leave Mϕ pointwise invariant, {v(s)} is contained in

the center Cϕ . Thus there exists a non-singular � ∈ Cϕ such that v(s) = �is .
Therefore the operatorH = k� ∈ Cϕ gives a faithful semi-finite normal weight
ρ such that σρs = σϕ�Z(ṡT )

, s ∈ R, as required.
The equivariance of σϕ�Z(ṡT )

follows from that of the Falcone-Takesaki cross-
section bϕ :

σ
ϕ

�Z(ṡ)
= Ãd(bϕ(�Z(ṡ))), ṡ ∈ R/T Z;

α(bϕ(�Z(ṡ)) = bϕ◦α−1(α(�Z(ṡ))).

This completes the proof.

Theorem 3.3. If M is a separable factor of type IIIλ, then the intrinsic
invariant �(M) lives in the group:

�(Aut(M)m,Cnt(M),T) ∼= �mod×θ (Aut(M)× R,Cntr(M),U(C)),

where

Aut(M)m = {(α, s) ∈ Aut(M)× R : mod(α) = ṡT ′ ∈ R/T ′Z},
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and {C,R, θ} is the flow of weights on M, i.e., C = L∞(R/T ′Z) and θ is the
translation with T ′ = − log λ.

Proof. This is simply restating Proposition 1.11 with Y = {0} ∈ X =
R/T ′Z. We leave the detail to the reader.

Before going any further, we need to discuss the structure of the third
cohomology group H3(Qm,T). So let Qm be a discrete group equipped with
a distinguished torsion free central element z0. We denote by Z the cyclic
subgroup generated by z0, which is isomorphic to the integer group Z under
the map: n ∈ Z �→ zn0 ∈ Z. We denote the quotient group Qm/Z by Q. The
elements of Qm are denoted by p̃, q̃, r̃ and so on and their quotient images
will be denoted by plain p, q, r and so on. The quotient map: Qm �→ Q will
be denoted by πm, so p = πm(p̃), q = πm(q̃), r = πm(r̃). A cross-section �m

of the exact sequence:

1 −−−→ Z −−−→ Qm
πm−−−−→←−−−−
�m

Q −−−→ 1

gives rise to an element n ∈ Z2(Q,Z) such that

�m(p)�m(q) = zn(p,q)0 �m(pq), p, q ∈ Q.
Definition 3.4. A cocycle c ∈ Z3(Qm,T) is said to be standard if there

exists a dc ∈ C2(Q,T) such that

c(p̃zm0 , q̃z
n
0, r̃z

�
0) = dc(q, r)mc(p̃, q̃, r̃)

for each m, n, � ∈ Z and p̃, q̃, r̃ ∈ Qm. We denote the group of all standard
3-cocycles by Z3

s (Qm,T). The cochain dc is called the d-part of the standard
cocycle c ∈ Z3

s (Qm,T).
Needless to say, the above definition makes sense only when we fix the

distinguished element z0 in the center of Qm. This element will stand for the
automorphism θT ′ on the discrete core M̃d of a factor M of type IIIλ which
scales the trace by λ.

Theorem 3.5. i) Each c ∈ Z3(Qm,T) is cohomologous to a standard
cocycle cs ∈ Z3

s (Qm,T).
ii) The d-part dc of a standard cocycle c ∈ Z3

s (Qm,T) is necessarily a
cocycle, i.e., dc ∈ Z2(Q,T) and c-part c(p̃, q̃, r̃) satisfies;

c(z0, q̃, r̃) = dc(q, r).
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iii) A standard cocycle c ∈ Z3(Qm,T) is a coboundary if and only if there is
a function f ∈ C2(Qm,T) with c = ∂Qmf satisfying⎧⎪⎪⎨

⎪⎪⎩
f (p̃zm0 , q̃z

n
0) = f (z0, q)

mf (p̃, q̃);
f (zn0, q)f (z

m
0 , q) = f (zm+n0 , q);

f (p̃, 1) = f (1, q̃) = 1.

for all p̃, q̃ ∈ Qm.
More precisely, there exists an element f ∈ C2(Qm,T) such that the func-

tion f (p̃, ·) of the second variable factors through the quotient map πm and

c(p̃, q̃, r̃) = (∂Qmf )(p̃, q̃, r̃);
dc(q, r) = f (z0, r)f (z0, q)f (z0, qr)

−1;
f (p̃zm0 , q̃z

n
0) = f (z0, q)

mf (p̃, q̃);
f (zn0, q)f (z

m
0 , q) = f (zm+n0 , q)

for any pair q, r ∈ Q and q̃, r̃ ∈ Qm with q = πm(q̃), r = πm(r̃).

Choose and fix a cocycle c ∈ Z3(Qm,T). Consider the von Neumann al-
gebra A = �∞(Qm) of bounded functions over Qm and let B be the unitary
group B = U(A) = TQm , which generates an exact sequence of compact
abelian groups:

1 −−−→ T i−−−→ B
j−−−−→←−−−−
�j

C −−−→ 1

The exact sequence splits so that the group C is identified with the subgroup
of B consisting of all T-valued functions on Qm whose value at the identity
1 ∈ Qm is 1. The map j is given by:

(jf )(p̃) = f (p̃)

f (1)
, f ∈ B.

The translation action of Qm does not leave the subgroup C invariant, but the
little twisted action given by

(αp̃f )(q̃) = f (q̃p̃)

f (p̃)
, f ∈ C,

is consistent with the right translation action α of Qm on B as seen below:

(j ◦ αp̃(f ))(q̃) = (αp̃f )(q̃)

(αp̃f )(1)
= f (q̃p̃)

f (p̃)
= (αp̃ ◦ j (f )(q̃), f ∈ C.
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The action αz0 will be denoted by θ . The fixed point subgroup Cθ will be
denoted byL, which is the subgroup consisting of those functions f ∈ C such
that

∂θf = (θf )f −1 = Constant ∈ T,

equivalently
f (p̃z0) = f (p̃)f (z0), p̃ ∈ Qm.

Therefore, onE = j−1(L), the coboundary operator ∂θ becomes the evaluation
of the value of a function f ∈ E at z0, i.e.,

∂θf = f (z0), f ∈ E.
The cocycle i∗c ∈ Z3

α(Qm, B) is cobounded by the element u = uc ∈
C2
α(Qm, B) defined by:

u(x; p̃, q̃) = c(x, p̃, q̃), x, p̃, q̃ ∈ Qm,

as seen below:

1 = c(p̃, q̃, r̃)c(xp̃, q̃, r̃)c(x, p̃q̃, r̃)c(x, p̃, q̃r̃)c(x, p̃, q̃);
c(p̃, q̃, r̃) = c(xp̃, q̃, r̃)c(x, p̃q̃, r̃)c(x, p̃, q̃r̃)c(x, p̃, q̃)

= (αp̃u)(x; q̃, r̃)u(x; p̃q̃, r̃)−1u(x; p̃, q̃r̃)u(x; p̃, q̃)−1

= (αp̃(u(q̃, r̃))u(p̃q̃, r̃)−1u(p̃, q̃r̃)u(p̃, q̃)−1)(x)

= (∂Qmu)(x; p̃, q̃, r̃).
In fact, we have

Hn
α(Qm, B) = {1}, n = 1, 2, . . . .

As c(1, q̃, r̃) = 1, the element u(q̃, r̃) ∈ B, q̃, r̃ ∈ Qm, belongs to C. But
to distinguish u(q̃, r̃) ∈ C from u(q̃, r̃) ∈ B, we will denote u(q̃, r̃) ∈ C by
j∗u(q̃, r̃). Since (∂Qmj∗u(p̃, q̃, r̃))) = j (c(p̃, q̃, r̃)) = 1, j∗(u) is an element
of Z2

α(Qm, C), which gives rise to an exact sequence:

1 −−−→ C −−−→ C �α,j∗u Qm
π̇−−−−→←−−−−
�

Qm −−−→ 1

(a, p̃)(b, q̃) = (aαp̃(b)(j∗u)(p̃, q̃), p̃q̃), a, b ∈ C, p̃, q̃ ∈ Qm;
π̇(a, p̃) = p̃, �(p̃) = (1, p̃),

so that

j∗(u(p̃, q̃)) = �C(p̃, q̃) = �(p̃)�(q̃)�(p̃q̃)−1, p̃, q̃ ∈ Qm.
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The action αp̃ ∈ Aut(C) of p̃ on C is given as the restriction of the inner
automorphism Ad(�(p̃)) ∈ Int(C �α,j∗u Qm). The coherence of the action αp̃
on B and Ad(�(p̃)) on C intertwined by π̇ gives rise to an element (λ, μ) ∈
Zα(C �α,j∗u Qm, C,T) such that

αp̃(�j (�(p̃)
−1a�(p̃))) = λ(a, p̃)�j (a), (a, p̃) ∈ C �α,j∗u Qm;
μ(a, b) = 1, a, b ∈ C.

The fixed point subalgebra Aθ is identified with B = �∞(Q) and therefore
the fixed point subgroup Bθ is identified with U(B) = TQ, the compact
abelian group of all T-valued functions overQ. SetK = Bθ/i(T) ⊂ L = Cθ .
We then have the following:

Lemma 3.6. There exists a cross-section �̇:Qm �→ C�α,j∗(u) Qm such that
the element z = �(z0) commutes with �̇(Qm). Hence the associated cocycle
�̇L = ∂Qm �̇ takes values in L and therefore �̇L ∈ Z2

α(Qm, L).

Proof. Since H3(Z,T) = {1}, we may assume that c|Z3 = 1. Hence the
restriction u|Z2 is a cocycle. Hence there exists v ∈ C1(Z, B) such that u|Z2 =
∂Zv. Extending v toQm and replacing u by (∂Qmv)

−1u, we may and do assume
that the restriction u|Z2 of u to Z2 is trivial, i.e., u(zm0 , z

n
0) = 1. Hence we have

�(zm0 ) = �(z0)
m. Set z = �(z0). Now we look at the action θ = Ad(z) on

�(p̃):
θm(�(p̃)) = j (u(zm0 , p̃))�(p̃zm0 )z−m

= j (u(zm0 , p̃)u(p̃zm0 , z−m0 ))�(p̃).

Set
v(p̃,m) = u(zm0 , p̃)u(p̃zm0 , z−m0 ), p̃ ∈ Qm,m ∈ Z;

b(p̃,m, n) = θm(v(p̃, n))v(p̃,m)v(p̃,m+ n)−1.

We claim:
b(p̃, ·, ·) ∈ Z2(Z,T).

The cocycle property is obvious. So we check if b(p̃,m, n) ∈ T:

j (v(p̃,m+ n))�(p̃) = θm+n(�(p̃)) = θm(j (v(p̃, n))�(p̃))
= j (θm(v(p̃, n))v(p̃,m))�(p̃);

j (θm(v(p̃, n))v(p̃,m)v(p̃,m+ n)−1) = 1.

thus b(p̃,m, n) ∈ T. The triviality H2(Z,T) = {1} entails the existence of
a(p̃, ·) ∈ C1(Z,T) such that b(p̃, ·, ·) = ∂Za(p̃, ·), i.e.,

θm(v(p̃, n))v(p̃,m)v(p̃,m+ n)−1 = a(p̃,m)a(p̃, n)a(p̃,m+ n)−1.
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Setting
w(p̃,m) = a(p̃,m)−1v(p̃,m) ∈ B,

we get
w(p̃,m+ n) = θm(w(p̃, n))w(p̃,m)

and
zm�(p̃)z−m = j (w(p̃,m))�(p̃).

Once again the triviality H1
θ (Z, B) = {1} gives the existence of a(p̃) ∈ B so

that w(p̃,m) = θm(a(p̃)−1)a(p̃). Hence we get

zm�(p̃)z−m = j (w(p̃,m))�(p̃) = j (θm(a(p̃)−1)a(p̃))�(p̃);
zmj (a(p̃))�(p̃)z−m = j (a(p̃))�(p̃).

Therefore, z and �̇(p̃) = j (a(p̃))�(p̃), p̃ ∈ Qm, commute.

Proof of Theorem 3.5. i) With the last lemma, we replace the cochain
u ∈ C2(Qm, B) by the cochain u̇ ∈ C2(Qm, B) given by:

u̇(p̃, q̃) = a(p̃)αp̃(a(q̃))u(p̃, q̃)a(p̃q̃)−1 = (u∂Qma)(p̃, q̃), p̃, q̃ ∈ Qm,

which still cobounds the cocycle i∗(c) ∈ Z3(Qm, B). Now as

�̇L(q̃, r̃) = j (u̇(q̃, r̃)) ∈ L,
u̇(q̃, r̃) ∈ E = j−1(L) ⊂ B and

u̇(xz0; q̃, r̃) = u̇(x; q̃, r̃)u̇(z0; q̃, r̃);
∂θ (u̇(q̃, r̃)) = u̇(z0; q̃, r̃) ∈ R/T Z;
θm(u̇(q̃, r̃)) = u̇(z0; q̃, r̃)mu̇(q̃, r̃).

⎫⎪⎬
⎪⎭ x, q̃, r̃ ∈ Qm.

The calculation:

�̇L(q̃z
m
0 , r̃z

n
0) = �̇(q̃zm0 )�̇(r̃z

n
0)�̇(q̃r̃z

m+n
0 )−1

= �̇(q̃)zm�̇(r̃)zn(�̇(q̃r̃)zm+n)−1

= �̇(q̃)�̇(r̃)�̇(q̃r̃)−1

= �̇L(q̃, r̃),

shows that

i) the cocycle �̇L is the pullback π∗m(�
Q
L ) of a cocycle �

Q
L ∈ Z2

α(Q,L);

ii) there exists f ∈ C2(Qm,T) such that

u̇(p̃, q̃) = f (p̃, q̃)�j (�QL (p, q)), p̃, q̃ ∈ Qm, p = πm(p̃), q = πm(q̃).
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Therefore with v(p, q) = �j (�
Q
L (p, q)) we have

c(p̃, q̃, r̃) = (∂Qm u̇)(p̃, q̃, r̃) = (∂Qmf )(p̃, q̃, r̃)(∂Qmπ
∗
m(v))(p̃, q̃, r̃)

= (∂Qmf )(p̃, q̃, r̃)αp̃(v(q, r))v(p, qr){v(p, q)v(pq, r)}−1

= (∂Qmf )(p̃, q̃, r̃)αp̃(v(q, r))v(p, qr){v(p, q)v(pq, r)}−1

= (∂Qmf )(p̃, q̃, r̃)cs(p̃, q̃, r̃)

where

cs(p̃,q̃,r̃)=αp̃(v(q, r))v(p, qr){v(p, q)v(pq, r)}−1= (∂Qmπ
∗
m(v))(p̃, q̃, r̃).

Now the original cocycle c is cohomologous to cs. We then obtain the following:

cs(p̃z
m
0 , q̃z

n
0, r̃z

�
0) = αp̃ ◦ θm(v(q, r))v(p, qr){v(p, q)v(pq, r)}−1

= αp̃(θm(v(q, r))v(q, r)−1)cs(p̃, q̃, r̃)

= v(z0; q, r)mcs(p̃, q̃, r̃).

Hence dc(q, r) = v(z0; q, r) gives the d-part of cs.
ii) Suppose that c ∈ Z3(Qm,T) is standard. Then we have

dc(q, r) = c(z0, q̃, r̃), c(z0, q̃, r̃) = c(z0p̃, q̃, r̃)c(p̃, q̃, r̃).

Therefore we compute for p̃, q̃, r̃ ∈ Qm:

dc(q, r)dc(pq, r)dc(p, qr)dc(p, q)

= c(z0, q̃, r̃)c(z0, p̃q, r̃)c(z0, p̃, q̃r)c(z0, p̃, q̃)

= c(z0, q̃, r̃)c(z0, p̃q̃z
−n(p,q)
0 , r̃)c(z0, p̃, q̃r̃z

−n(q,r)
0 )c(z0, p̃, q̃)

= c(z0, q̃, r̃)c(z0, p̃q̃, r̃)c(z0, p̃, q̃r̃)c(z0, p̃, q̃)

= c(p̃, q̃, r̃)c(z0p̃, q̃, r̃)c(z0, p̃q̃, r̃)c(z0, p̃, q̃r̃)c(z0, p̃, q̃)

= ∂Qm
(c̄)(z0, p̃, q̃, r̃) = 1.

Hence we conclude that dc ∈ Z2(Q,T).
iii) Suppose that c = ∂Qmf, f ∈ C2(Qm,T), is standard with d-part d. We

then compute:

(3.4) d(q, r)mc(p̃, q̃, r̃) = (∂f )(p̃zm0 , q̃zn0, r̃z�0)
= f (q̃zn0, r̃z�0)f (p̃q̃zm+n0 , r̃z�0)f (p̃z

m
0 , q̃r̃z

n+�
0 )f (p̃zm0 , q̃z

n
0).
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Setting p̃ = 1, we get

d(q, r)m = (∂f )(zm0 , q̃zn0, r̃z�0), m, n, � ∈ Z,

= f (q̃zn0, r̃z�0)f (q̃zm+n0 , r̃z�0)f (z
m
0 , q̃r̃z

n+�
0 )f (zm0 , q̃z

n
0)

Setting q̃ = r̃ = 1, we obtain the cocycle property of f |Z2 :

1 = f (zn0, z�0)f (zm+n0 , z�0)f (z
m
0 , z

n+�
0 )f (zm0 , z

n
0),

Since H2(Z,T) = {1}, there exists g ∈ C1(Z,T) such that

f (zm0 , z
n
0) = g(zm0 )g(zn0)g(zm+n0 ).

Extend g to the entire Qm and replace f by (∂Qmg)f to get

f (zm0 , z
n
0) = 1, m, n ∈ Z.

Setting q̃ = 1, r̃ = 1 and m = 0 in (3.4), we get

1 = f (zn0, z�0)f (p̃zn0, z�0)f (p̃, zn+�0 )f (p̃, z�0);
f (p̃, zn+�0 ) = ((θn ⊗ id)f )(p̃, z�0)f (p̃, z

�
0).

Hence the cochain: k ∈ Z �→ f (·, zk0) ∈ B is a cocycle, thus the triviality
H1
θ (Z, B) = {1} gives the existence of g ∈ C1

α(Qm,T) such that

f (p̃, z�0) = g(p̃z�0)g(p̃)−1.

As a constant multiplication on g does not affect on the above identity, we may
and do assume that g(1) = 1. Observing

1 = f (zn0, z�0) = g(zn+�0 )g(zn0)
−1;

g(zn+�0 ) = g(zn0) = g(1) = 1, n, � ∈ Z,
we get

f (p̃, z�0) = g(z�0)−1g(p̃z�0)g(p̃)
−1 = ∂Qmg(p̃, z

�
0)
−1.

Now with f ′ = f ∂Qmg, we obtain

f ′(p̃, zn0) = 1; c = ∂Qmf
′.

By replacing f by f ′, we may assume f (p̃, zn0) = 1 and c = ∂Qmf .
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Since f (p̃, zn0) = 1, for triplet (p̃, zn0, q̃) in (3.4), we get

f (zn0, q̃)f (p̃z
n
0, q̃)f (p̃, z

n
0 q̃)f (p̃, z

n
0) = c(p̃, zn0, q̃) = 1;

f (p̃zn0, q̃) = f (zn0, q̃)f (p̃, zn0 q̃)
and for triplet (p̃, q̃, zn0) in (3.4), we obtain

f (q̃, zn0)f (p̃q̃, z
n
0)f (p̃, q̃z

n
0)f (p̃, q̃) = c(p̃, q̃, zn0) = 1;

f (p̃, q̃zn0) = f (p̃, q̃)
which implies that f (p̃, q̃) is invariant with respect to zn0 in the second variable.
For triplet (zm0 , z

n
0, q̃) in (3.4), we also get

f (zn0, q̃)f (z
m
0 z

n
0, q̃)f (z

m
0 , z

n
0 q̃)f (z

m
0 , z

n
0) = c(zm0 , zn0, q̃) = 1;

f (zn0, q̃)f (z
m
0 , q̃) = f (zm+n0 , q̃).

We conclude that if c is a coboundary on Qm, then there is a function f ∈
C2(Qm,T) with c = ∂Qmf such that for all p̃, q̃ ∈ Qm,⎧⎪⎨

⎪⎩
f (p̃zn0, q̃z

m
0 ) = f (zn0, q̃)f (p̃, q̃);

f (zn0, q̃)f (z
m
0 , q̃) = f (zm+n0 , q̃);

f (p̃, 1) = f (1, q̃) = 1.

This completes the proof of the theorem.

We apply Theorem3.5 to the situation:

i) the groupQ is the quotient groupG/N of a discrete groupG by a central
normal subgroup N ;

ii) m:G �→ R/T ′Z is a homomorphism which factors through Q, i.e.,
Ker(m) ⊃ N so that m = m ◦πm employing the same notation m for the
homomorphism from Q to R/T ′Z induced from m ∈ Hom(G,R/T ′Z);

iii) the group Qm is given by:

Qm = {p̃ = (p, s) ∈ Q× R : m(p) = ṡT ′ = s + T ′Z ∈ R/T ′Z},
hence the quotient map πm is precisely the projection map

πm = pr1 : p̃ = (p, s) ∈ Qm �→ p ∈ Q
to the first component;
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iv) the distinguished central element z0 is given by:

z0 = (1, T ′) ∈ Qm.

In this setting, we make the following:

Definition 3.7. The standard coboundaries B3
s (Qm,T) in Z3

s (Qm,T) are
given by:

(3.5) B3
s (Qm,T) = ∂Qm (π

∗
m(C

2(Q,T))) ⊂ B3(Qm,T).

The standard third cohomology group H3
s (Qm,T) is defined to be the quotient

group:

(3.6) H3
s (Qm,T) = Z3

s (Qm,T)/B3
s (Qm,T),

which is a compact abelian group.
The reason for this smaller coboundary group comes from the fact that

when we perturb an outer action αg, g ∈ G, on a factor M, we do not allow
a perturbation by Cntr(M) but by Int(M). So even if we consider an outer
action of the bigger group Gm on the discrete core M̃d , we can not use all of
U(M̃) but only U(M).

The d-part dc of each c ∈ Z3
s (Qm,T) is an element of Z2(Q,T) and also

each ν ∈ Hom(N,R/T Z) gives rise to an element of Z2(Q,T): (q, r) ∈ Q2 �→
ν(�L(q, r)) ∈ R/T Z under the identification of ṡT ∈ R/T Z and eiT

′s ∈ T, s ∈
R. Hence we define Z3

s (Qm,T) ∗� HomG(N,R/T Z) to be the subgroup of
Z3

s (Qm,T) × HomG(N,R/T Z) consisting of all those elements (c, ν) such
that

(3.7) dc(q, r) = ν(�L(q, r)), q, r ∈ Q.
Here the fiber product depends on the cocycle �L ∈ Z2(Q,L) explicitly and
therefore on the cross-section �:Q �→ G of π .

Theorem 3.8. Fix 0 < λ < 1 and set

T = − 2π

log λ
, T ′ = 2π

T
= − log λ and X = R/T ′Z.

Let G be a group equipped with a central subgroup N . For a homomorphism
m:G �→ X such that Ker(m) ⊃ N , consider the joint action of G̃ = G × R
on X given by:

Tg,s(x) = x − ṡT ′ +m(g) ∈ X, (g, s) ∈ G̃,



108 yoshikazu katayama and masamichi takesaki

and the action α of G̃ on C = L∞(X) given by:

αg,sf (x) = f (T −1
g,s x), x ∈ X = R/T ′Z, f ∈ C.

The action of R alone denoted by θ is the transitive flow with period T ′ and
gives H1

θ (R, A) ∼= R/T Z where A = U(L∞(X)). Define Q = G/N and
Qm = {(p, s) ∈ Q × R : m(p) = ṡT ∈ R/T ′Z}. Define the subgroup
Bout

m,�(G,N,T) to be the subgroup of Z3
s (Qm,T)∗�HomG(N,R/T Z) consisting

of all those elements (c, ν) of the form:

(3.8) c = ∂Qm (π
∗
mf ) and ν ≡ 1,

for some f ∈ C2(Q,T) and form the quotient group:

(3.9) Hout
m,�(G,N,T) = (Z3

s (Qm,T) ∗� HomG(N,R/T Z))/Bout
m,�(G,N,T).

Then there is a natural isomorphism:

Hout
α,�(G̃, N,A)

∼= Hout
m,�(G,N,T).

The joint action of Q̃ = Q × R on X = R/T ′Z is transitive. But the
coboundary group B3

α,s(Q̃, A) = ∂Q̃(C
2(Q,A)) is smaller than the regular

coboundary group ∂Q̃(C
2(Q̃, A)) for the third cohomology group H3

α(Q̃, A).
So it is not clear whether the straightforward Shapiro machine works or not. We
have seen that for the relative cohomology group�α(H̃ , L,M,A) the Shapiro
machinery works in Proposition 1.11. So we begin by looking at a resolution
system πG : H �→ G with L = π−1

G (N) and M = Ker(πG), so that c ∈
Zout
α,�(G,N,A) is of the form c = δ(λ, μ) for some (λ, μ) ∈ Zα(H̃ , L,M,A).

Let E = E(λ,μ) ∈ Xext(H̃ , L,M,A) be the corresponding crossed exten-
sion equipped with a cross-section �j : L �→ E such that

μ(m, n) = �j (m)�j (n)�j (mn)
−1, m, n ∈ L;

λ(m, h, s) = αh,s(�j (h−1mh))�j (m)
−1, (h, s) ∈ Q̃.

Letρ be the groupoid homomorphism of H̃ = X�H̃ to the stabilizer subgroup
Hm = {(h, s) ∈ H̃ : m(h) = ṡT ′ }, where the map m : H �→ R/T ′Z is defined
to be the pullback m = m ◦ πG of the corresponding map m of G by πG. The
map ρ is explicitly written in the form:
(3.10)
ρ(ẏ, h, s) = (h, s − {ẏ −m(h)+ ṡ}T ′ + {ẏ}T ′) ∈ Hm, (ẏ, h, s) ∈ H .
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In fact, we have

ρ(ẏ, hk, s + t) = (hk, s + t − {ẏ −m(hk)+ ṡ + ṫ}
T ′ + {ẏ}T ′)

= (h, s − {ẏ −m(h)+ ṡ}T ′ + {ẏ}T ′)
× (k, t − {ẏ −m(hk)+ ṡ + ṫ}

T ′ + {ẏ −m(h)+ ṡ}T ′)
= ρ(ẏ, h, s)ρ(ẏh̃, k, t) with h̃ = (h, s).

Lemma 3.9. If ρ is a homomorphism of H̃ to a group K , then for any
c ∈ Zn(K,T), the pullback ρ∗(c) defined by:
(3.11)
ρ∗(c)(ẋ; h̃1, . . . , h̃n) = c(ρ(ẋ, h̃1), ρ(ẋh̃1, h̃2), . . . , ρ(ẋh̃1 · · · h̃n−1, h̃n))

is an element of Znα(H̃ ,T) and if f ∈ Cn−1(K,T), then

(3.12) ∂H̃ ρ
∗(f ) = ρ∗(∂Kf )

where ρ∗(f ) ∈ Cn(H̃ ,T) is given by

(3.13) (ρ∗f )(ẋ; h̃1, . . . , h̃n−1)

= f (ρ(ẋ, h̃1), ρ(ẋh̃1, h̃2), . . . , ρ(ẋh̃1 · · · h̃n−2, h̃n−1)).

Hence ρ∗ gives a homomorphism of Hn(K,T) to Hn
α(H̃ ,T).

This follows from a direct calculation. We leave it to the reader.

Proof of Theorem 3.8. First, since ρ(ẏ, h̃) = h̃ for every h̃ ∈ Hm, we
have i∗ ◦ρ∗ = id |Z3(Hm,T) where i is the embedding map i{0} in Proposition 1.8.
Next, choose (c, ν) ∈ Zout

α (Q̃, A) and assume that the system πG : H �→ G

gives a resolution of ∂(c, ν) ∈ Z3(G,T) by (λ, μ) ∈ Zα(H̃ , L,M,A) so that
([c], ν) = δ([λ,μ]) by the modified HJR-map:

δ:�α(H̃ , L,M,A) �→ Hout
α (G,N,A).

This means that if �j is the cross-section of the crossed extension:

E = E(λ,μ) ∈ Xextα(H̃ , L,M,A)

associated with (λ, μ), the cocycle (c, ν) is given by:

c(p̃, q̃, r̃) = αp̃(�j (�L(q, r)))�j (�L(p, qr)){�j (�L(p, q)�j (�L(pq, r))}−1;
ν(n) = [λ(�H (n); (1, ·))] ∈ H1

θ (R, A) = R/T Z,
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for p̃ = (p, s), q̃ = (q, r), r̃ = (r, u) ∈ Q̃ and n ∈ N where �H is a cross-
section of the quotient mapπG. By Proposition 1.11, with (λ0, μ0) = i(λ, μ) ∈
Z(Qm, L,M,T) we have

(λ, μ) ≡ ρ∗(λ0, μ0) mod B(Q̃, L,M,A).

Therefore we may replace (λ, μ) by ρ∗(λ0, μ0), i.e., we may assume that

μ(ẏ;m, n) = μ0(m, n) ∈ T, m, n ∈ L;
λ(ẏ;m, h̃) = λ0(m, ρ(ẏ, h̃)), m ∈ L, h̃ ∈ H̃ , ẏ ∈ X = R/T ′Z.

With E0 = E(λ0, μ0) ∈ Xext(Hm, L,M,T), we have E = ρ∗(E0), i.e.,

E = A× E0/{(a, ā) : a ∈ T}

admits a cross-section �j :m ∈ L �→ [�0(m)] ∈ E such that

�j (m)�j (n) = μ(m, n)�j (mn);
αh̃(�j (h

−1mh))(ẏ) = λ(ẏ;m, h̃)�j (m)(ẏ) = α0
ρ(ẏ,h̃)

(�0(h
−1mh)).

Now let us compute, based on the fact that the L-valued cocycle �L does not
depend on the R-variables:

(ρ∗c0)(p̃, q̃, r̃; ẏ)
= c0(ρ(ẏ, p̃), ρ(ẏp̃, q̃), ρ(ẏp̃q̃, r̃))

= α0
ρ(ẏ,p̃)(�0(�L(ρ(ẏp̃, q̃), ρ(ẏp̃q̃, r̃)))�0(�L(ρ(ẏ, p̃), ρ(ẏp̃, q̃r̃))

× {�0(�L(ρ(ẏ, p̃), ρ(ẏp̃, q̃)))�0(�L(ρ(ẏ, p̃q̃), ρ(ẏp̃q̃, r̃)))}−1

= (
αp̃(�j (�L(q, r)))�j (�L(p, qr)){�j (�L(p, q))�j (�L(pq, r))}−1

)
(ẏ)

= c(p̃, q̃, r̃; ẏ).

Suppose that c0 ∈ B3
s (Qm,T), i.e., for some f ∈ C2(Q,T) we have

c0(p̃, q̃, r̃) = f (q, r)f (pq, r)f (p, qr)f (p, q);
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Then we have for c = ρ∗c0:

(ρ∗c0)(p̃, q̃, r̃; ẏ) = f (πm(ρ(ẏp̃, q̃)), πm(ρ(ẏp̃q̃, r̃)))

× f (πm(ρ(ẏ, p̃))πm(ρ(ẏ, p̃)), πm(ρ(ẏp̃, q̃r̃)))

× f (πm(ρ(ẏ, p̃)), πm(ρ(ẏp̃, q̃)ρ(ẏp̃q̃, r̃)))

× f (πm(ρ(ẏ, p̃)), πm(ρ(ẏp̃, q̃)))

= f (q, r)f (pq, r)f (p, qr)f (p, q)
= ∂Q̃(pr∗1 f )(p̃, q̃, r̃; ẏ),

where pr1 is the projection map of Q̃ to the first componentQ, so that ρ∗c0 ∈
∂Q̃(C

2(Q,T)) ⊂ ∂Q̃(C2(Q,A)). If ρ∗c0 ∈ ∂Q̃(C2(Q,A)), i.e., if there exists
f ∈ C2(Q,A) such that ρ∗c0 = ∂Q̃f , then for each p̃, q̃, r̃ ∈ Qm we have

c(p̃, q̃, r̃; ẏ) = f (q, r; ẏ +m(p)− ṡ)f (p, qr; ẏ)f (p, q; ẏ)f (pq, r; ẏ)
= f (q, r; ẏ)f (p, qr; ẏ)f (p, q; ẏ)f (pq, r; ẏ).

Hence we get

c0(p̃, q̃, r̃) = c(p̃, q̃, r̃; 0) = (∂Qmπ
∗
m(f0))(p̃, q̃, r̃)

where f0(p, q) = f (p, q; 0). Thus we conclude c0 ∈ ∂Qm (π
∗
m(C

2(Q,T))).
Consequently, we get

H3
α,s(Q̃, A)

∼= H3
s (Qm,T).

We want to compare the d-part dc of c and the d-part d0
c = dc0 of c0.

In terms of c and c0, dc and d0
c are given by the following:

dc(s; q, r) = c((1, s), (q, 0), (r, 0))

= θs(�j (�L(q, r))�j (�L(1, qr)){�j (�L(1, q))�j (�L(q, r))}−1

= θs(�j (�L(q, r))�j (�L(q, r))−1

= λ(�L(q, r), s);
dc(s; q, r; ẏ) = λ(ẏ;�L(q, r), s) = λ0(�L(q, r), ρ(ẏ, 1, s))

= λ0(�L(q, r), s − {ẏ + ṡ}T ′ + {ẏ}T ′)
=
〈
ν(�N(q, r)),

[y + s
T ′

]
−
[ y
T ′
]〉

= exp
(

iT ′ {ν(�N(q, r))}T
([ y
T ′
]
−
[y + s
T ′

]))
;
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d0
c (q, r) = c((1, T ′), (q, 0), (r, 0))

= θT ′(�j (�L(q, r)))�j (�L(q, r))−1 = λ0(�L(q, r), z0)

= ν̇(�L(q, r)) = exp(−iT ′ {ν(�L(q, r))}T )
= dc(T ′; q, r; 0)

where the duality pairing of R/T Z and its dual Z will be denoted by

〈ṡ, m〉 = eiT ′m{ṡ}T for m ∈ Z

and ṡ ∈ R/T Z and we write ν̇(m),m ∈ N, for eiT ′{ν(m)}T for short.
Hence (c, ν) is in Z3

α,s(Q̃, A) ∗� HomG(N,R/T Z) if and only if (c0, ν) is
in Z3

s (Qm,T) ∗� HomG(N,R/T Z).
Now we suppose (c, ν) ∈ Bout

α,�(G,N,A) i.e., there exists f ∈ C2
α(Q,A)

such that for each p̃ = (p, s), q̃ = (q, t), r̃ = (r, u) ∈ Q̃, we have

c(p̃, q̃, r̃; ẏ) = f (q, r; ẏp̃)f (p, qr; ẏ)f (p, q; ẏ)f (pq, r; ẏ)−1;
dc(s, q, r; ẏ) = f (q, r; ẏ)f (q, r; ẏ − ṡ).

Then we have, for each p̃, q̃, r̃ ∈ Qm,

c0(p̃, q̃, r̃) = c(p̃, q̃, r̃; 0)
= f (q, r; 0)f (p, qr; 0)f (p, q; 0)f (pq, r; 0);

d0
c (q, r) = f (q, r; 0)f (q, r; 0) = 1.

Thus we get (c0, ν) ∈ Bout
m,�(G,N,T). Conversely, suppose (c0, ν) ∈

Bout
m,�(G,N,T), i.e., ν ≡ 1 and for some f ∈ C2(Q,T),

c0(p̃, q̃, r̃) = f (q, r)f (pq, r)f (p, qr)f (p, q), p̃, q̃, r̃ ∈ Qm.

Since we have seen already that c = ρ∗c0 is cobounded by pr∗1 f , we have
(c, ν) ∈ Bout

α,�(G,N,A). This completes the proof.

The Map ∂

We now want to identify the map

∂: Hout
α,�(G,N,A)

∼= Hout
m,�(G,N,T) −−−→ Z3(G,T)

of [17, Theorem 2.7] in terms of Hout
m,�(G,N,T). To this end, we need notations

to shorten mathematical expressions. We use �Z(p, q) for the Z-valued two
cocycle ηT ′(m(p),m(q)), p, q ∈ Q. We also use �Z(g, h) for �Z(π(g), π(h))
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omitting the map π . Also the element z0 = (1, T ′) appears both in Gm and
Qm. So we have

p̄q̄ = z�Z(p,q)
0 pq; ḡh̄ = z�Z(g,h)

0 gh,

where ḡ = (g, {m(g)}T ′) ∈ Gm, g ∈ G and p̄ = (p, {m(p)}T ′) ∈ Qm.

Lemma 3.10. Fix (c, ν) ∈ Z3
s (Qm,T) ∗� HomG(N,R/T Z). With

(3.14) nN(g) = �(π(g))g−1 ∈ N, g ∈ G,

and
ν̇(m) = eiT ′{ν(m)}T ∈ T, m ∈ L,

set

(3.15) cG(g, h, k) = ν̇(nN(k))−�Z(g,h)c(p̄, q̄, r̄), g, h, k ∈ G,

where p = π(g), q = π(h), r = π(k). Then cG ∈ Z3(G,T). The map:

([c], ν) ∈ Hout
m,�(G,N,T) −−−→ [cG] ∈ H3(G,T)

is precisely the map ∂ of [17, Theorem 2.7].

Proof. Since nN(g)g = �̇(π(g)), g ∈ G, where � : Q �→ G, we have for
each pair g, h ∈ G:

nN(π(g), π(h)) = �(π(g))�(π(h))�(π(gh))−1

= nN(g)gnN(h)h{nN(gh)gh}−1

= nN(g)gnN(h)g
−1nN(gh)

−1.

We compute for g, h, k, � ∈ G with p = π(g), q = π(h), r = π(k) and
s = π(�)

c(q̄, r̄, s̄)c(pq, r̄, s̄)c(p̄, qr, s̄)c(p̄, q̄, rs)c(p̄, q̄, r̄)

= c(q̄, r̄, s̄)c(z−�Z(p,q)
0 p̄q̄, r̄, s̄)c(p̄, z

−�Z(q,r)
0 q̄ r̄, s̄)

× c(p̄, q̄, z−�Z(r,s)
0 r̄ s̄)c(p̄, q̄, r̄)

= dc(π(k), π(�))�Z(g,h) = 〈ν(�N(π(k), π(�))),�Z(g, h)〉
= ν̇ (nN(k)knN(�)k

−1nN(k�)
−1
)�Z(g,h)
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and proceed to obtain the calculation:

cG(h, k, �)cG(gh, k, �)cG(g, hk, �)cG(g, h, k�)cG(g, h, k)

= ν̇(nN(�))−�Z(h,k)c(q̄, r̄, s̄)ν̇(nN(�))−�Z(gh,k)c(pq, r̄, s̄)

× ν̇(nN(�))−�Z(g,hk)c(p̄, qr, s̄)

× ν̇(nN(k�))−�Z(g,h)c(p̄, q̄, rs)

× ν̇(nN(k))−�Z(g,h)c(p̄, q̄, s̄)

= ν̇(nN(k)knN(�)k
−1nN(k�)

−1)�Z(g,h)

× ν̇(nN(�))−�Z(h,k)ν̇(nN(�))
�Z(gh,k)

× ν̇(nN(�))−�Z(g,hk)ν̇(nN(k�))
�Z(g,h)

× ν̇(nN(k))−�Z(g,h)

= ν̇(nN(�))−�Z(h,k)+�Z(gh,k)−�Z(g,hk)+�Z(g,h)

= 1.

Hence cG belongs to Z3(G,T).
Since

ζν(t, n)(ẋ) = c(ν(n), t, ẋ) = ν̇(n)(
[
x+t
T ′
]−[ x

T ′
]
)

=
〈
ν̇(n),

[
x + t
T ′

]
−
[
x

T ′

]〉
, t, x ∈ R, n ∈ N,

we compute the element a appeared in (2.23) in [17] as follows;

(θt (a(g, h))a(g, h)
∗)(ẋ)

= ζν(t;�N(π(g), π(h)))(ẋ)
× {ζν(t; nN(g))(ẋ)αg(ζν(t; nN(h)))(ẋ)ζν(t; nN(gh))∗(ẋ)}∗

=
〈
ν̇(�N(π(g), π(h))),

[
x + t
T ′

]
−
[
x

T ′

]〉

×
{〈
ν̇(nN(g)),

[
x + t
T ′

]
−
[
x

T ′

]〉

×
〈
ν̇(nN(h)),

[
x − {m(g)}T ′ + t

T ′

]
−
[
x − {m(g)}T ′

T ′

]〉

×
〈
ν̇(nN(gh)),

[
x

T ′

]
−
[
x + t
T ′

]〉}∗
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since �N(π(g), π(h)) = nN(g)gnN(h)g−1nN(gh)−1 and ν is G-invariant,

= ν̇(nN(h))
([

x−{m(g)}
T ′

T ′
]
−
[
x+t−{m(g)}

T ′
T ′

])
ν̇(nN(h))(

[
x+t
T ′
]−[ x

T ′
]
)

= ν̇(nN(h))
([

x+t
T ′
]−[ x−{m(g)}T ′ +t

T ′
])
ν̇(nN(h))

([
x−{m(g)}

T ′
T ′

]
−[ x

T ′
])
,

which shows that the cochain a ought to be of the following form:

a(g, h)(x) = ν̇(nN(h)) (
[
x

T ′
]−[ x−{m(g)}T ′

T ′
])
.

Now we examine the proof of [17, Theorem 2.7], in particular the proof of
Lemma 2.11. The split property of the exact sequence:

1 −−−→ B1
θ −−−→ Z1

θ
−−−−→←−−−−

�Z
H1
θ = R/T Z −−−→ 1

allows us to choose f = 1 in [17, (2.20)].
We compute the map ∂ as follows:

(∂c)(g, h, k) = c(π(g), π(h), π(k))(x)(∂Ga∗)(g, h, k)(x)
= c(π(g), π(h), π(k))(x)ν̇(nN(k))

([
x−{m(g)}

T ′ −{m(h)}T ′
T ′

]
−
[
x−{m(g)}

T ′
T ′

])

× ν̇(nN(hk))
( [

x−{m(g)}
T ′

T ′
]
−
[
x

T ′
])
ν̇(nN(h))

([
x

T ′
]
−
[
x−{m(g)}

T ′
T ′

] )

× ν̇(nN(k))
([

x

T ′
]−[ x−{m(gh)}T ′

T ′
])

= c(π(g), π(h), π(k))(x) exp(−iν(nN(k))�Z(g, h))

× ν̇(�N(h, k))
([

x

T ′
]−[ x−{m(g)}T ′

T ′
])

Therefore we obtain the image of c under the map ∂ by evaluating at 0:

c(p̄, q̄, r̄) = c(π(g), π(h), π(k))(0)ν̇(�N(h, k))−
[ −{m(g)}

T ′
T ′

]
;

(∂c)(g, h, k) = c(π(g), π(h), π(k))(0)ν̇(nN(k))−�Z(g,h)

× ν̇(�N(h, k))−
[ −{m(g)}

T ′
T ′

]

= c(p̄, q̄, r̄)ν̇(nN(k))−�Z(g,h).

Summarizing the above arguments, we describe the modified HJR-exact
sequence of [17, Theorem 2.7] in terms of cohomology groups with the coef-
ficient group T in the following:
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Theorem 3.11. There is a commutative diagram between the modified
Huebschmann-Jones-Ratcliffe exact sequences of H̃ and Qm:

H3(G,T) −−−→
inf H3(H,T)

↑
∂

H2(H,T) Res−−−→ �(H̃ , L,M,A) δ−−→ Hout
α,�(G× R, N,A) Inf−−−→ H3(H,T)

↓i∗
↑
ρ∗ ↓i∗

↑
ρ∗

H2(H,T)
ResQm−−−→ �(Hm, L,M,T)

δQm−−→ Hout
α,�(G,N,T)

InfQm−−−→ H3(H,T)

↓∂Qm

H3(G,T) −−−→
inf H3(H,T)

where the maps related to the group Qm are indexed by Qm.

Definition 3.12. The second four term exact sequence:

H2(H,T)
ResQm−−−−→ �(Hm, L,M,T)

δQm−−−→ Hout
α,�(G,N,T)

InfQm−−−−→ H3(H,T)

will be called the reduced modified Huebschmann-Jones-Ratcliffe exact se-
quence or simply the reduced modified HJR-exact sequence ([11], [12], [21]).

Remark 3.13. The advantage of the reduced modified HJR-exact sequence
over the non-reduced one is that all the groups involved are obviously compact,
while the non-compactness of the coefficient group A in the non reduced one
forces us to prove the compactness of the cohomology group by examining
the group of cocycles and coboundaries.

4. Outer actions of a Countable Discrete Amenable Group on an
AFD Factor of Type IIIλ, 0 < λ < 1

We first apply the result of the last section to the outer automorphism group
Out(M) by taking Out(M) as G and H1

θ (R,U(L
∞(R/T ′Z))) ∼= R/T Z as N :

Theorem 4.1. Suppose that M is a separable factor of type IIIλ, 0 < λ < 1.
The intrinsic modular invariant Obm(M) lives in the group:

Obm(M) = ([c], νM) ∈ Hout
m,�(Out(M),H1

θ ,T),

where H1
θ is the image {σ̇s : s ∈ R} of the modular automorphism group

{σϕs : s ∈ R}, ϕ ∈ �0(M), in the quotient group Out(M) = Aut(M)/ Int(M),
νM is the identity map of H1

θ onto itself, and m is the modulus map m: α̇ ∈
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Out(M) �→ mod(α̇) ∈ R/T ′Z. The group Hout
m,�(Out(M),H1

θ ,T) is a non-
separable compact abelian group.

In view of [17, Theorem 3.2], there is nothing left for the validity of the
assertion. But we want to identify the cocycle c ∈ H3

s (Outτ,θ (M̃)m,T) directly,
where

(4.1) Outτ,θ (M̃)m = {(p, s) ∈ Outτ,θ (M̃)× R : m(p) = ṡ}.
Before going further, let us fix notations for quotient maps:

π : Out(M) �→ Outτ,θ (M̃),

π̃ : Aut(M) �→ Outτ,θ (M̃) = Aut(M)/Cntr(M),

π0 : Aut(M) �→ Out(M) = Aut(M)/ Int(M),

π̃ = π ◦ π0.

Fix a generalized trace ψ ∈ �0(M) so that σψT = id. The one-parameter
unitary group {ψit : t ∈ R} generates a von Neumann algebra Aψ isomorphic
to L∞(R) and the non-commutative flow θ restricted to Aψ is identified with
the translation ρ:

(ρtf )(x) = f (x + t), f ∈ L∞(R), x, t ∈ R.

We identify Aψ and L∞(R) and ψ is then given by the function:

ψ(x) = e−x, x ∈ R.

The center C of M̃ is then represented by the fixed point subalgebra (Aψ)θT ′

of Aψ , i.e., the subalgebra of periodic functions with period T ′. We refer [28,
Exercise XII.6, p. 455] for detail.

Lemma 4.2. If ψ ∈ �0(M) is a generalized trace, i.e., a faithful semi-
finite normal weight with period T and ψ(1) = ∞, then M and uψ(ṡT ) =
bψ(�Z(ṡT )), s ∈ R, generates the discrete core M̃d .

i) The periodic one parameter unitary group {uψ(ṡT ) : s ∈ R} is repres-
ented by the following function after Aψ is identified with L∞(R):

(4.2) uψ(ṡ; x) = exp

(
iT ′ {ṡ}T

[
x

T ′

])
=
〈
ṡ,

[
x

T ′

]〉
, x ∈ R, ṡ ∈ R/T Z,

which is also represented as a function of ψ in the following form:

(4.2′) uψ(s) = exp

(
iT ′s

[− log ψ

T ′

])
=
∑
n∈Z

λ−insχ(λn+1,λn](ψ), s ∈ R
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where χ(λn+1,λn](ψ)means the spectral projection ofψ corresponding to
the half open interval (λn+1, λn].

ii) The cocycle �Z(ṡ) is cobounded by uψ(ṡ) in U(Aψ) relative to θ :

(4.3) �Z(ṡ, t; x) =
〈
ṡ,

[
x + t
T ′

]
−
[
x

T ′

]〉
, ṡ ∈ R/T Z, x ∈ R;

iii) Aut(M)m acts on the discrete core M̃d , i.e., if (α, s) ∈ Aut(M)m, then
θs ◦ α leaves M̃d globally invariant.

Proof. The claims (i) and (ii) follow directly from [10] with sign change
in the coboundary operation ∂θ . So we prove only (iii). First, observe that if
(α, s) ∈ Aut(M)m, then θs ◦ α acts on the center C trivially, i.e., it acts as the
identity since the actions mod(α) and θs cancel each other on C. Hence there
exists u ∈ U(M) such that θs ◦ α(ψ) = uψu∗. Thus we get

θs ◦ α(uψ(ṡT )) = θs ◦ α
(∑
n∈Z

λ−insχ(λn+1,λn](ψ)

)

=
∑
n∈Z

λ−insχ(λn+1,λn](θs ◦ α(ψ))

=
∑
n∈Z

λ−insχ(λn+1,λn](uψu
∗)

= u
(∑
n∈Z

λ−insχ(λn+1,λn](ψ)

)
u∗

= uuψ(ṡT )u∗.
Hence θs ◦ α(uψ(ṡT )) ∈M ∨ {uψ(ṡT ) : ṡT ∈ R/T Z}′′ = M̃d . This completes
the proof.

The generalized traceψ gives rise to the semi-direct product decomposition:

(4.4) Cntr(M) = Int(M)�σψ (R/T Z) .

We are going to use the notation σṡ, ṡ ∈ R/T Z, for the element of Cntr(M)

corresponding to an element ṡ = ṡT = s + T Z ∈ R/T Z.

Lemma 4.3. i) It is possible to choose a cross-section u:m ∈ Cntr(M) �→
u(m) ∈ Ũ0(M) ⊂ M̃d such that u(m) ∈ U(M) if m ∈ Int(M) and

(4.5) u(σṡm) = uψ(ṡ)u(m), ṡ ∈ R/T Z, m ∈ Cntr(M).

ii) There exists a cross-section g ∈ Out(M) �→ αg ∈ Aut(M) such that
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a) Each αg, g ∈ Out(M), transforms ψ to a scalar multiple of ψ , i.e.,
αg(ψ) and ψ are proportional. Consequently αg and σψ commute;

b)

(4.6) ασṡg = σψṡ ◦ αg, ṡ ∈ R/T Z.

c) The associated Int(M)-valued cocycle ηin has the property:

(4.7) ηin(σṡg, σṫh) = ηin(g, h), g, h ∈ Out(M), ṡ, ṫ ∈ R/T Z,

so that it is the pullback π∗(ηQ) of an Int(M)-valued two cochain ηQ ∈
C2
α(Outτ,θ (M̃), Int(M)).

Proof. i) First choose a Borel cross-section u:m ∈ Int(M) �→ u(m) ∈
U(M) of the adjoint map Ad: v ∈ U(M) �→ Ad(v) ∈ Int(M). Then extend
the cross-section by setting:

u(σṡm) = uψ(ṡ)u(m), ṡ ∈ R/T Z, m ∈ Int(M).

This gives a cross-section with the desired property.
ii) For any α ∈ Aut(M), α(ψ) is another generalized trace on M. Hence

there exists a scalar μ ∈ R and a unitary v ∈ U(M) such that Ad(v) ◦ α(ψ) =
μψ . In fact, μ is can be chosen to be e{mod(α)}T ′ . Hence it is possible to a
representative αg of g ∈ Out(M). With this in mind, we select first a cross-
section p ∈ Outτ,θ (M̃) �→ αp ∈ Aut(M) of the quotient map π̃ : Aut(M) �→
Outτ,θ (M̃) = Aut(M)/Cntr(M) such that

a) The weights αp(ψ) and ψ are proportional, i.e., αp(ψ) = e{mod(p)}T ′ψ ;

b) The quotient map π0: Aut(M) �→ Aut(M)/ Int(M) maps αp exactly
into the cross-section image �(p) ∈ Out(M) of p which has been fixed
already.

The cross-section α generates a Cntr(M)-valued two cocycle:

(4.8) ηα(p, q) = αp ◦ αq ◦ α−1
pq ∈ Cntr(M), p, q ∈ Outτ,θ (M̃).

Then we have

π0(ηα(p, q)) = π0(αp)π(αq)π0(α
−1
pq ) = �(p)�(q)�(pq)−1

= ��(p, q), p, q ∈ Outτ,θ (M̃).

Therefore, the semi-direct product decomposition: Cntr(M) = Int(M) �σψ

R/T Z gives a decomposition of ηα:

ηα(p, q) = ��(p, q)ηin(p, q), p, q ∈ Outτ,θ (M̃),
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where ��(p, q) ∈ H1
θ and ηin(p, q) ∈ Int(M) commutes with {σψs ; s ∈ R}.

Now decomposing each g ∈ Out(M) in the form:

g = �H1
θ
(g)�(π(g)),

and writing ṡ(g) ∈ R/T Z for �H1
θ
(g) ∈ H1

θ , we set

αg = σψṡ(g) ◦ απ(g) ∈ Aut′ψ(M) = {α ∈ Aut(M) : α ◦ σψs = σψs ◦ α, s ∈ R}.
Observing for each pair g, h ∈ Out(M) that

gh = �H1
θ
(g)�(π(g))�H1

θ
(h)�(π(h))

= �H1
θ
(g)�H1

θ
(h)�(π(g))�(π(h)), as H1

θ ⊂ Center of Out(M),

= �H1
θ
(g)�H1

θ
(h)��(π(g), π(h))�(π(gh))

= �H1
θ
(gh)�(π(gh));

�H1
θ
(g)�H1

θ
(h) = �H1

θ
(gh)��(π(g), π(h))

−1,

we compute:

αg ◦ αh = σψṡ(g) ◦ απ(g) ◦ σψṡ(h) ◦ απ(h) = σψṡ(g)+ṡ(h) ◦ απ(g) ◦ απ(h)
= σψṡ(g)+ṡ(h) ◦ ηα(π(g), π(h)) ◦ απ(gh)
= σψṡ(gh) ◦ ��(π(g), π(h))

−1 ◦ ηα(π(g), π(h)) ◦ απ(gh)

= ηin(π(g), π(h)) ◦ σ
ψ

ṡ(gh)
◦ απ(gh)

= ηin(π(g), π(h)) ◦ αgh

Therefore, the map α: g ∈ Out(M) �→ αg ∈ Aut′ψ(M) is indeed an outer
action of Out(M). Furthermore, ηin(π(g), π(h))belongs to the group Int(M)∩
Aut′ψ(M) which is given by the normalizer N(Mψ) of the centralizer Mψ of
ψ . From its construction, ηin satisfies the requirement of the lemma. This
completes the proof.

Before going into the last step, we need the following:

Lemma 4.4. i) If α ∈ Aut′ψ(M), then α leaves ψ relatively invariant, so
that we have k ∈ Hom(Aut′ψ(M),R) such that

(4.9) α(ψ) = ek(α)ψ, α ∈ Aut′ψ(M),

and α and θ−k(α) agree on Aψ , in particular on uψ(ṡ), ṡ ∈ R/T Z;
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ii) If (α, s) ∈ Aut′ψ(M)m, then

(4.10)
(
(α ◦ θs)(uψ(ṫ))uψ(ṫ)

∗)(x) = 〈
ṫ ,
s − k(α)

T ′

〉

in particular the left hand side is constant in x ∈ R, i.e., the unitary uψ(ṫ), ṫ ∈
R/T Z, is an eigen operator of α ◦ θs .

Proof. If α is in Aut′ψ(M), then its extension to M̃, still denoted by α,
leaves Aψ globally invariant and

(αf )(x) = f (x − k(α)), f ∈ Aψ, x ∈ R,

as seen below:

(αψ)(x) = ek(α)ψ(x) = ek(α)e−x = e−(x−k(α)) = ψ(x − k(α)).

The center C of M̃ is generated by ψ iT , so that it is identified with the subal-
gebra of periodic functions with period T ′, i.e., C = (Aψ)θT ′ . By Lemma 4.2,
the periodic one parameter unitary group:

{uψ(ṡT ): ṡT ∈ R/T Z} = {bψ(�Z(ṡT )): ṡT ∈ R/T Z}

is represented in Aψ by the following functions:

uψ(ṡT ; x) = exp
(

iT ′s
[ x
T ′
])
, x, s ∈ R,

which together with M generates the discrete core M̃d . Since α ∈ Aut′ψ(M)

and θ−k(α) both scales the generator ψ of Aψ in the same way, they agree on
Aψ . Hence we get

(α(uψ(ṡ)))(x) = uψ(ṡ; x − k(α))

= exp

(
iT ′ {ṡ}T

[
x − k(α)

T ′

])
, ṡ ∈ R/T Z.

If (α, s) ∈ Aut′ψ(M)m, then

(α ◦ θs)(uψ(ṫ))(x) = uψ(ṫ; x + s − k(α))

= exp

(
iT ′

{
ṫ
}
T

[
x + s − k(α)

T ′

])
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and

(α ◦ θs)(uψ(ṫ))uψ(ṫ)
∗(x) = uψ(ṫ; x + s − k(α))uψ(ṫ; x)
= exp

(
iT ′

{
ṫ
}
T

([
x + s − k(α)

T ′

]
−
[ x
T ′
]))

= exp

(
iT ′

{
ṫ
}
T

s − k(α)

T ′

)
=
〈
ṫ ,
s − k(α)

T ′

〉
,

where the last pairing makes sense because s − k(α) ∈ T ′Z for (α, s) ∈
Aut′ψ(M)m. This completes the proof.

Now the next lemma completes the proof of Theorem 4.1.

Lemma 4.5. If a cross-section u:m ∈ Cntr(M) �→ u(m) ∈ Ũ0(M) is the
one given by Lemma 4.3, then the natural choices of u(g, h), g, h ∈ Out(M)m,
and u(p̃, q̃), p̃ = (p, s), q̃ = (q, t) ∈ Outτ,θ (M̃)m, by

u(g, h) = u(ηin(g, h)) ∈ U(M) and u(p̃, q̃) = u(ηα(p, q)) ∈ Ũ0(M)

give the following:

i) αg ◦ αh = Ad(u(g, h)) ◦ αgh;
αp̃ ◦ αq̃ = Ad(u(p̃, q̃)) ◦ αp̃q̃ .

ii) The associated cocycles co
M ∈ Z2(Out(M),T) given by:

c◦M(g, h, k)
= αg(u(h, k))u(g, hk){u(g, h)u(gh, k)}∗, g, h, k ∈ Out(M),

gives the cohomology class [c◦M] ∈ H3(Out(M),T)which is the intrinsic
obstruction Ob(M).

iii) The cocycle cM associated with the choice of u:

cM(p̃, q̃, r̃)

= αp̃(u(q̃, r̃))u(p̃, q̃r̃){u(p̃, q̃)u(p̃q̃, r̃)}∗, p̃, q̃, r̃ ∈ Outτ,θ (M̃)m

is a standard cocycle relative to the distinguished central element z0 =
(1, T ′) ∈ Outτ,θ (M̃)m and the d-part is given by:

d(q, r) = exp(iT ′{��(q, r)}T ′), q, r ∈ Outτ,θ (M̃),

so that
cM(p̃z

m
0 , q̃z

n
0, r̃z

�
0) =

〈
��(q, r),m

〉
cM(p̃, q̃, r̃),

for each m, n, � ∈ Z and p̃, q̃, r̃ ∈ Outτ,θ (M̃)m.
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iv) The pair (cM, id) belongs to Z3
s (Outτ,θ (M)m,T) ∗� HomOut(M)(H1

θ ,H1
θ )

and its cohomology class [cM, id] in Hout
s,m(Out(M),H1

θ ,T) is in fact the
intrinsic modular obstruction Obm(M).

Proof. We see immediately for each pair g, h ∈ Out(M)

αg ◦ αh = ηin(g, h) ◦ αgh = Ad(u(ηin(g, h))) ◦ αgh

= Ad(u(g, h)) ◦ αgh,

and for each pair p̃ = (p, s), q̃ = (q, t) ∈ Outτ,θ (M̃)m

αp̃ ◦ αq̃ = θs ◦ αp ◦ θt ◦ αq = θs+t ◦ αp ◦ αq = θs+t ◦ ηα(p, q) ◦ αpq
= Ãd(u(ηα(p, q))) ◦ αp̃q̃ = Ãd(u(p, q)) ◦ αp̃q̃ .

Consequently, c◦M and cM are both three cocycles and the former gives the
intrinsic obstruction Ob(M) in the cohomology group H3(Out(M),T). To see
the standardness of cM, we just examine:

cM(p̃z
m
0 , q̃z

n
0, r̃z

�
0)

= αp̃ ◦ θmT ′(u(q̃zn0, r̃z�0))u(p̃zm0 , r̃zn+�0 )

× {u(p̃zm0 , q̃zn0)u(p̃q̃zm+n0 , r̃z�0)}∗
= αp̃ ◦ θmT ′(u(q, r))u(p, qr){u(p, q)u(pq, r)}∗
= αp̃ ◦ θmT ′

(
uψ(��(q, r))u(ηin(q, r))

)
u(p, qr){u(p, q)u(pq, r)}∗

= 〈��(q, r),m〉αp̃
(
uψ(��(q, r))u(ηin(q, r))

)
× u(p, qr){u(p, q)u(pq, r)}∗

= 〈��(q, r),m〉αp̃
(
u(q, r)

)
u(p, qr){u(p, q)u(pq, r)}∗

= 〈��(q, r),m〉cM(p̃, q̃, r̃).
Since the d-part is given by the two cocycle �� itself, the pair (cM, id) belongs
to the fiber product Z3(Outτ,θ (M)m,T) ∗� HomOut(M)(H1

θ ,H1
θ ).

Theorem 4.6. i) If G is a discrete group and α is an outer action of G on
a factor M of type IIIλ, 0 < λ < 1, then the modulus m = mα: g ∈ G �→
mod(g) ∈ R/T Z′ of α, the normal subgroup N = N(α) = α−1(Cntr(M)),
a homomorphism να:m ∈ N �→ α̇m ∈ H1

θ
∼= R/T Z and the “pullback”

[cα] = α∗([cM]) ∈ Hout
m,�(G,N,T) of the intrinsic modular obstruction, to be

termed the modular obstruction of α, are outer conjugacy invariants of α.



124 yoshikazu katayama and masamichi takesaki

ii) IfG is a countable discrete amenable group and the factor M of type IIIλ
is approximately finite dimensional, then the invariants {mα,N(α), [cα], να}
determines the outer conjugacy class of α. The group Hout

m,�(G,N,T) is a sep-
arable compact abelian group.

Remark 4.7. The pullback in the theorem needs a qualification. As the
cross-section � : Outτ,θ (M̃) �→ Out(M) is only guaranteed by the axiom
of choice, we have no idea if it consistent with the map α̇ : G �→ Out(M),
for example it can happen that �(Outτ,θ (M̃)) ∩ α̇(G) = {id}. Namely, we
cannot pull back the cross-section � of Outτ,θ (M̃). So we have to work with
a cross-section � : Q = G/N �→ G directly. But this does not change the
picture concerning the modular obstruction Obm(α). If we consider all cross-
sections of Outτ,θ (M̃) and form the group Hout(Out(M),H1

θ ,T) as in [17,
p. 218], in which we locate the intrinsic modular obstruction, then one can
pull back Obm(M) to form the modular obstruction Obm(α) ∈ Hout(G,N,T)
since cross-section of Q �→ G can be carried to Outτ,θ (M̃) as a part of a
cross-section of Outτ,θ (M̃), i.e., we can have a cross-section � of Outτ,θ (M̃)

so that α̇−1(�(Outτ,θ (M̃))N = G, which enables us to pull back the structure
concerning Aut(M),Out(M) and Outτ,θ (M̃).

Theorem 4.8. Suppose that M is a factor of type IIIλ, 0 < λ < 1,
and that ψ is a periodic faithful semi-finite normal weight with period T =
−2π/ log λ. Let m:α ∈ Aut(M) �→ mod(α) ∈ R/T ′Z = Autθ (C) be the
modulus homomorphism of Aut(M) to the automorphism group Autθ (C) of
the flow of weights {C,R, θ} = {L∞(R/T ′Z),Translation} which is identified
with the quotient group R/T ′Z, then the discrete core M̃d gives rise to an
Aut(M)m-equivariant commutative square of exact sequences:

1 1 1

↓ ↓ ↓
1 −−−→ T −−−→ T −−−→ 1 −−−→ 1

↓ ↓ ↓
1 −−−→ U(M) −−−→ Ũ0(M)

∂θ
T ′−−−→←−−−
uψ

R/T Z −−−→ 0

↓ ↓ ↓
1 −−−→ Int(M) −−−→ Cntr(M)

∂̇θ
T ′−−−→←−−−
σψ

R/T Z −−−→ 0

↓ ↓ ↓
1 1 0
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where Ũ0(M) is the unitary normalizer of M in the discrete core M̃d , i.e.,

Ũ0(M) = Ũ(M) ∩ M̃d = {u ∈ U(M̃d) : uMu∗ =M}.

This is an easy consequence of the previous discussion, in particular Lemma
4.2.iii and so we leave the proof to the reader.

Definition 4.9. The above exact square is called the reduced character-
istic square of M.

5. Outer actions of a Countable Discrete Amenable Group on an
AFD Factor of Type III1

The triviality of the flow of weights on a factor of type III1 makes the charac-
teristic square very simple:

1 1 1

↓ ↓ ↓
1 −−−→ T −−−→ T −−−→ 1 −−−→ 1

↓ ↓ ↓
1 −−−→ U(M) −−−→ Ũ(M)

∂θ−−−→←−−−
bϕ

R −−−→ 0

↓Ad ↓Ãd

1 −−−→ Int(M) −−−→ Cntr(M)
∂̇θ−−−→←−−−
σϕ

R −−−→ 0

↓ ↓ ↓
1 1 0

Furthermore, the horizontal exact sequences split nicely. When we view R as
a central subgroup of Out(M), we denote it by H1

θ . We will identify H1
θ and R

frequently to avoid heavy notations in the case of type III1.

Theorem 5.1. Let M be a factor of type III1. Fix a cross-section

�π :p ∈ Outτ,θ (M̃) �→ �π (p) ∈ Out(M)

of the quotient map π : Out(M) �→ Outτ,θ (M̃) = Out(M)/H1
θ and the asso-

ciated R-valued cocycle:

�R(p, q) = �(p)�(q)�(pq)−1 ∈ R ∼= H1
θ , p, q ∈ Outτ,θ (M̃).
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It is possible to select cross-sections α: g ∈ Out(M) �→ αg ∈ Aut(M) and
u:m ∈ Cntr(M) �→ u(m) ∈ Ũ(M) so that

i) m = Ãd(u(m)), m ∈ Cntr(M);

ii) the associated intrinsic modular obstruction cocycle cM takes the form:

cM(p̃, q̃, r̃) = exp(−is�R(q, r))cOutτ,θ (M)(p, q, r),

for each p̃ = (p, s), q̃, r̃ ∈ Outτ,θ (M̃)× R.

Let α be an outer action of a countable discrete group G on M with N =
α−1(Cntr(M)) and να(m) = α̇m ∈ R ∼= H1

θ , m ∈ N . Fix a cross-section
�:Q = G/N �→ G of the quotient map π : G �→ Q along with the associated
N -valued cocycle:

�N(p, q) = �(p)�(q)�(pq)−1 ∈ N, p, q ∈ Q.
Then the pullback cocycle cα of cM by α∗ takes the form:

cα(p̃, q̃, r̃) = exp(−isνα(�N(q, r)))cQ(p, q, r),

for each p̃ = (p, s), q̃, r̃ ∈ Q̃ = Q × R. Its cohomology class ([cα], να) ∈
Hout

� (G,N,T) is the modular obstruction Obm(α) of α.

Proof. Fix a dominant weight ϕ on M and observe that

Aut(M) = Int(M)Autϕ(M), Autϕ(M) = {α ∈ Aut(M) : ϕ ◦ α = ϕ} .
Then we have

Out(M) = Aut(M)/ Int(M) = Autϕ(M)/(Autϕ(M) ∩ Int(M)),

Outτ,θ (M) = Aut(M)/Cntr(M) = Autϕ(M)/(Autϕ(M) ∩ Cntr(M)),

Ũ(M) = U(M)�σϕ R.

The invariance ϕ = ϕ ◦ Ãd(u), u ∈ Ũ(M), of ϕ gives the decomposition
u = vϕis for some v ∈ U(Mϕ) and s ∈ R. Hence we get the decomposition:

Ãd
−1
(Cntr(M) ∩ Autϕ(M)) ∼= U(Mϕ)× R.

Therefore, we can choose a cross-section p ∈ Outτ,θ (M) �→ αp ∈ Autϕ(M)

such that

αp ◦αq = Ad(v(p, q))◦σϕ�R(p,q)
◦αpq, v(p, q) ∈ U(Mϕ), p, q ∈ Outτ,θ (M).

We then set
αg = σs(g) ◦ απ(g), g ∈ Out(M),
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where
g = σϕs(g)�π (π(g)).

Setting

u(p̃, q̃) = v(p, q)ϕi�R(p,q), p̃ = (p, s), q̃ = (q, t) ∈ Outτ,θ (M)× R,

we compute the intrinsic modular obstruction cocycle:

cM(p̃, q̃, r̃) = αp̃(u(q̃, r̃))u(p̃q̃, r̃){u(p̃, q̃)u(p̃q̃, r̃)}∗
= αp ◦ θs(u(q, r))u(pq, r){u(p, q)u(pq, r)}∗
= exp(−is�R(q, r))αp(u(q, r))u(p, qr){u(p, q)u(pq, r)}∗
= exp(−is�R(q, r))αp(v(q, r))v(p, qr){v(p, q)v(pq, r)}∗,

where the last step follows from the fact that �R is an R-valued two cocycle
over Outτ,θ (M). Therefore, we conclude that

cM(p̃, q̃, r̃) = exp(−is�R(q, r))cOutτ,θ (M)(p, q, r).

Now we look at αg ◦ αh, g, h ∈ Out(M):

αg ◦ αh = σϕs(g) ◦ α�π (π(g))
◦ σ

ϕ
s(h)

◦ α�π (π(h))

= σϕs(g) s(h)
◦ α�π (π(h))

◦ α�π (π(h))

= σϕs(g) s(h)
◦ Ãd(u(π(g), π(h))) ◦ α�π (π(gh))

= σϕs(g) s(h)
◦ σ

ϕ

�R(π(g),π(h))
◦ Ad(v(π(g), π(h)) ◦ α�π (π(gh)).

Also we observe:

gh = s(g)�π (π(g)) s(h)�π (π(h)) = s(g) s(h)�π (π(g))�π (π(h))

= s(g) s(h)�H1
θ
(π(g), π(h))�π (π(gh))

= s(gh)�π (π(gh)), g, h ∈ Out(M);
s(g)+ s(h) = s(gh)− �R(π(g), π(h)).

Plugging this into the previous computation, we get

αg ◦ αh = Ad(v(π(g), π(h)) ◦ αgh, g, h ∈ Out(M).

Therefore, the intrinsic obstruction cocycle c is given by the pullback:

c(g, h, k) = cOutτ,θ (M)(π(g), π(h), π(k)), g, h, k ∈ Out(M),

of the restriction of the intrinsic modular obstruction cocycle cM̃ to the sub-
group Outτ,θ (M). This completes the proof.
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