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SUMS OF TWO-DIMENSIONAL SPECTRAL TRIPLES
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(Dedicated to the memory of Gert K. Pedersen)

Abstract

We study countable sums of two-dimensional modules for the continuous complex functions on
a compact metric space and show that it is possible to construct a spectral triple which gives the
original metric back. This spectral triple will be finitely summable for any positive parameter. We
also construct a sum of two-dimensional modules which reflects some aspects of the topological
dimensions of the compact metric space, but this will only give the metric back approximately. At
the end we make an explicit computation of the last module for the unit interval in R. The metric
is recovered exactly, the Dixmier trace induces a multiple of the Lebesgue integral and the growth
of the number of eigenvalues N(�) bounded by � behaves, such that N(�)/� is bounded, but
without limit for � → ∞.

1. Introduction

Gelfand’s fundamental theorem onAbelianC∗-algebras shows that the study of
unital commutativeC∗-algebras is the same as the study of compact, Hausdorff,
topological spaces. It has been clear for many years that the non commutative
C∗-algebras have many properties in common with their Abelian relatives, for
instance the theory of measure and integration was already well developed in
the non commutative setting by Murray and von Neumann. The basic differ-
ence is of course that for a unital Abelian C∗-algebras there is a space, the
spectrum, which can be investigated via lots of different mathematical the-
ories. Quite a few theories can on the other hand be expressed in terms of
certain subalgebras of the algebra of continuous functions on the spectrum.
As examples, one may think of differentiability and Lipschitz continuity. Also
other structures like K-theory are expressible in terms certain subalgebras of
the continuous functions on the spectrum and matrix algebras over such algeb-
ras. Especially Alain Connes has tried to express geometrical structures this
way in order to be able to extend the classical differential geometry to the non
commutative world. In the classical setting a differential geometric structure
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can be viewed as something – extra – added to the compact topological space
in question. In the non commutative case one should expect that there is a C∗-
algebra in the background and that the geometrical features such as smooth
functions is something extra. In Connes’ work [3] this has been synthesized in
the concept called a spectral triple, which is defined as

Definition 1.1. Let A be a unital C∗-algebra, H a Hilbert space which
carries a unital representationπ of A andD an unbounded self-adjoint operator
on H . The set (A , H,D) is called a spectral triple if

(i) the set {a ∈ A | ‖[D,π(a)]‖ < ∞} is a dense subset of A ,

(ii) the operator (I +D2)−1 is compact.

If tr((I +D2)−p/2) < ∞ for some positive p then the spectral triple is said to
be p-summable, or just finitely summable.

The set {a ∈ A | ‖[D,π(a)]‖ < ∞} may be thought of as the set of con-
tinuous functions which have essentially bounded derivatives, but the concept
of a spectral triple is much more than a way to express an analogy. One of the
striking results by Connes is the theorem which shows that the geodesic dis-
tance on a compact spin Riemannian manifold can be computed via a spectral
triple. This setup is described in [4] Chapter VI. The expression which gives
the geodesic distance back on a manifold can easily be extended to define a
metric on the set of regular Borel probability measures on the manifold. On
the other hand such probability measures are exactly what is called states on
a C∗-algebra so we get in this way a metric on the state space of a C∗-algebra
from a spectral triple, [4] VI.1, p. 544:

Definition 1.2. Let ST := (A , H,D) be a spectral triple then the induced
metric dST on the state space S (A ) is defined by:

∀φ,ψ ∈ S (A ): dST(φ, ψ) := sup{|φ(a)− ψ(a)| | ‖[D,π(a)]‖ ≤ 1}.

It should be remarked that such a metric is non-standard in the way that
it may take the value ∞ on certain pairs of states, but it is on the other hand
fascinating, that the non commutative world keeps track of the metric on a
space, which no longer exists in it’s classical form.

In the present paper we study especially the metric of compact metric spaces
from a non commutative point of view. This kind of investigation has already
been performed by Marc Rieffel. In several papers, among which we only cite a
few [21], [23], Rieffel studies a general compact metric space by considering a
subalgebra of the algebra of continuous functions on the space and a seminorm
on this algebra, rather than studying the space and a metric on the space. He
also showed how the metric of any compact metric space can be recovered from
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a Dirac operator which is a sort of a differential operator. This construction
does not give a spectral triple because the Dirac operator will not have compact
resolvent.

Connes has associated the concept called a Dixmier trace to a spectral triple,
and shown that in the case of a compact spin Riemannian manifold this in-
duces a functional, which is a multiple of the volume form [4], Formula 2,
p. 545. More than 10 years ago Michel L. Lapidus realized that Connes’ spec-
tral triples and associated Dixmier traces are important tools in his ongoing
search for possible extensions of classical results by Weyl on the asymptotic
growth of the eigenvalues of the Laplacian operator on a bounded open subset
of Rd with a nice boundary. Lapidus wanted to extend these results to bounded
open subsets of Rd with fractal boundaries [12] and even further to fractal
subsets of Rd [10], [13], [17], [18]. In these papers the study of the geometry
is linked to an investigation of the Laplacian and its spectral distribution. This
scope is a little bit different from ours since we are looking at possible Dirac
operators, whose squares are supposed to be Laplacians. On the other hand a
spectral triple, as constructed in this article, is of a discrete nature, since the
associated representation of the algebra of continuous functions takes place
inside an algebra of type �∞. For a classical differential operator the associ-
ated representation of the function algebra is usually as an ultraweakly dense
subalgebra of an L∞−algebra. Anyway the results of Weyl can make sense
in both settings, since both settings come with Dirac operators with discrete
spectra.

In the papers [13], [17], [18] Lapidus, Maier and Pomerance establish a
connection between the Riemann Hypothesis and the Weyl-Berry Conjecture
for a fractal string. The relations between Riemann’s zeta function and fractal
geometry is further developed in the book [16] Fractal geometry and number
theory, by Lapidus and Frankenhuysen. The possibility to continue this in-
vestigation based on Connes spectral triples and the Dixmier trace lies in the
fact that besides the connection between the Dirac operator and the Laplacian
in the classical case, the zeta function ζ(s) is a multiple of the trace of the
operator |D|−s and the Dixmier trace gives the volume form. The papers [14],
[15] contain detailed studies of the ways non commutative geometry can be
used to investigate important problems in fractal geometry.

In this paper we are studying abstract compact metric spaces and included
here are compact fractal subsets of Rd , and we hope that the spectral triple we
are proposing in Theorem 3.2 may turn out to be usable in Lapidus’ project
of studying fractal sets via concepts from non commutative geometry. On the
other hand the spectral triples of this articles Theorem 3.1 and Theorem 3.2
will give Laplacians of a quite different nature than the ones studied by Lapidus
and his coauthors. Still we think that there may be some hope that our modules
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may be usable in Lapidus’ project. In order to demonstrate this point of view
we have made an explicit construction of our module based on Theorem 3.2
for the unit interval and shown that the spectral triple reproduces the usual
metric, the Dixmier trace induces a multiple of the usual Lebesgue integral
and the growth of the number of eigenvalues N(�), numerically bounded by
�, is such that N(�)/� is bounded, but without limit for � → ∞. This very
last result shows that, in general, spectral triples are not uniquely determined,
even though they may be constructed by fairly reasonable algorithms. The
Dirac operator of this example will not satisfy Weyl’s asymptotic formula in
the way that there exists no constant c such that N(�)− c� is of lower order
than�. The reason for the failure has to be sought in the geometric growth of
the numerical value of the eigenvalues of the constructed Dirac operator. The
n’th eigenvalue, according to numerical size is roughly 2n and its multiplicity
is also 2n. Hence the gaps in the spectrum grow exponentially, but so do the
multiplicities too, and that makesN(�)/� a bounded function without a limit
for � → ∞.

In the book [4] Example 2a), p. 563, Connes introduces a spectral triple for
a set consisting of just two points, and in [5] this construction is applied to a
countable family of pairs of points from the classical middle third Cantor set in
the unit interval. The direct sum of these two-dimensional modules and their
Dirac operators gives a spectral triple for the algebra of continuous functions
on the Cantor set, and it is possible to obtain a lot of exact geometric data for
the Cantor set from this spectral triple. This construction has been studied in
details and extended to certain fractal subsets of Rn by D. Guido and T. Isola
in [7], [8], [9]. Their constructions are based on the fact that many fractals in
Rn can be obtained as limits for iterated function systems of contractions. As
in Connes’ construction they can then obtain a good description of the fractal
in question by looking at a pair of points and the sequence of images of this
pair, generated by the iterations of the function system. They also have another
construction based on a single point. The pairs will then be of the form (child,
parent) among the iterated images of the starting point.

In this paper we are studying an abstract compact metric space and we want
to see to which extend it can be described using a spectral triple which is a
countable direct sum of two-dimensional modules. We show that the metric
can be recovered exactly from such a spectral triple. This construction shows
that a metric is relatively easy to describe via a spectral triple, and that it is
difficult to put a ranking to spectral triples for general compact metric spaces.
The spectral triple which gives the metric back exactly is in principle optimal,
because no information regarding the metric space is lost when we compare
the algebra of continuous functions plus the spectral triple with the compact
space plus the metric. On the other hand the spectral triple under consideration
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is not the right one because it is summable for any positive value. In general
the spectral triple should somehow reflect the dimension of the space and the
local density of the space, as it has been nicely pointed out in [8]. For this
reason we give another construction of a spectral triple, which is much more
complicated and does not give the metric back exactly, but a metric which is
only Lipschitz equivalent, to the original one. This spectral triple reflects the
local structures of the space and gives some computable estimates of the upper
Minkowski dimension of the space. In concrete cases it is possible to do much
better as shown by Guido and Isola [7], [8], [9]. We have tried our spectral
triple on the unit interval and we get the expected results except for the growth
of the eigenvalues of the Dirac operator. The number N(�) of eigenvalues
numerically dominated by � is of the order O(�), but N(�)/� has no limit
for� → ∞. It is possible to obtain similar results for the unit cube in Rd , but
the details for the unit interval are already many.

2. Notation and definitions

The paper deals with elementary aspects of metric spaces and uses some of
the language of Connes theory of non commutative geometry to do so. The
standard reference to Connes work is his book [4]. We will also use some basic
results on operator algebras, and all what we use can be found in the books
by Kadison and Ringrose [11], but many other text books on operator algebra
will also describe the concepts we are using.

In the introduction we referred to Connes’ construction of a spectral triple
based on two points [4] p. 563, 2. Example a). We will use this construction
quite a lot and call such a spectral triple a two-point spectral triple. The basic
idea is that for a subset consisting of two different points {x, y} of a compact
metric space (T , d) it is possible to construct a spectral triple which can express
the distance between these points. It is done via the following definition.

Definition 2.1. Let (T , d) denote a compact metric space and x, y be
points in T . The two-point spectral triple STx,y := (C(T ),Hx,y,Dx,y) is
defined by

(a) If x = y then Hx,y = {0}.
(b) If x 	= y then Hx,y = C2 and πx,y : C(T ) → B(Hx,y) a representation

given by.
(i) for f ∈ C(T ) and (α, β) ∈ Hx,y πx,y(f )(α, β) := (f (x)α, f (y)β)

(ii) Dx,y : Hx,y → Hx,y and Dx,y(α, β) = (
β

d(x,y)
, α
d(x,y)

)
.

We remark that for the metric space (T , d) it follows by an elementary
calculation that the metric dSTx,y which by Definition 1.2 is induced on T will
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be given by the following table.

dSTx,y (u, v) =

⎧⎪⎨
⎪⎩

0 if u = v

d(x, y) if {u, v} = {x, y}
∞ if u 	= v and {u, v} 	= {x, y}

We will use some ingredients of the theory of dimension of metric spaces.
We will not repeat much of it, but refer the reader to the book by Falconer [6].
In order to use this language we will use the following notation.

Definition 2.2. Let (T , d) denote a metric space, then for r ≥ 0 and
t ∈ T we will let B(t, r) denote the closed ball of radius r centered at t .

For a compact metric space (T , d) and a positive real r the compactness
implies that T can be covered by a finite number of closed balls of radius
r . Such a covering will be called minimal if the number of balls is minimal
among all finite coverings by closed balls of radius r . The minimal number
in such a covering is denoted Nr and we remind the reader of the following
definition

Definition 2.3. The upper Minkowski dimension – or upper box counting
dimension – is defined as

dimM(T ) := lim sup
r→0

log(Nr)

− log(r)
.

This supremum may not be finite, but if the set T is a subset of Rd and the
metric on T is the one inherited from Rd then the upper Minkowski dimension
is at most d.

3. Sums of two-dimensional triples

This section contains two examples of spectral triples associated to a compact
metric space. Both triples are countable sums of two-dimensional modules and
both induce metrics for the given compact topology. The first example gives
the metric back exactly and the second triple depends on a parameter δ > 0,
and it can be constructed such that the induced metric is within a δ-distance
of the original one. Then why bother with the second example. The reason is
that the first triple is finitely summable for any positive real number s. Hence
this spectral triple contains no information on the dimension of the space. The
other spectral triple reflects dimension properties such as the upper Minkowski
dimension. It is much harder to construct and not so precise with respect to the
metric, but it is probably a more relevant module for topological investigations.
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One can then ask what is the difference. For us it seems that the explanation
for this phenomenon has to be found in the fact that the module H , we are
using, is a countable sum of two-dimensional Hilbert spaces. This means that
the operators in the representation of the continuous functions on the compact
metric space are all in a discrete maximal Abelian von Neumann subalgebra
A of B(H). If D is a Dirac operator for the module, and N is a self-adjoint
operator affiliated with A , such that N + D has a self-adjoint closure, then
for any operator a ∈ A we have [D, a] = [D + N, a]. Now such an N can
be chosen relatively freely and such that (I + (D +N)2)−s/2 is of trace class
for any positive s.

Theorem 3.1. Let (T , d) denote a compact metric space, then there exists
a sequence of pairs of non-equal points {xn, yn} from T such that the sum of
all the two-point spectral triples STxn,yn becomes a spectral triple for C(T ).
This triple is denoted ST(d), it induces the given metric d and it is summable
for any positive real s.

Proof. Since T is compact and metric it contains a dense sequence (ti).
We can then let the sequence {xn, yn} be a numbering of the set of unordered
pairs {{ti , tj } | i, j ∈ N and ti 	= tj }. For each pair {xn, yn} we consider
the two-point module STxn,yn , but we will modify Dxn,yn such that new Dirac
operator, which we call Dn is given by the following 2 by 2 matrix

Dn :=
⎛
⎜⎝

2n
1

d(xn, yn)
1

d(xn, yn)
−2n

⎞
⎟⎠

The other items are fixed, but in order to ease the notation, we will let Hn
denote the two-dimensional Hilbert space Hxn,yn and πn is the representation
πxn,yn of C(T ) on Hn. It is easy to see that

∀f ∈ C(T ): [Dn, πn(f )] =
⎛
⎜⎝

0
f (yn)− f (xn)

d(xn, yn)
f (xn)− f (yn)

d(xn, yn)
0

⎞
⎟⎠ .

Let us start by showing that there exists a dense set of functions f in C(T )

such that the commutators [D,π(f )] are all bounded and densely defined. To
this end we define

N := {f ∈ C(T ) | ∃y ∈ T ∀x ∈ T f (x) := d(x, y)}.
It is a simple consequence of the triangle inequality that for any of the pairs
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{xn, yn} and for any f (u) := d(u, v) in N we have

‖[Dn, πn(f )]‖ = |d(xn, v)− d(yn, v)|
d(xn, yn)

≤ 1

Hence for each f in N we have ‖[D,π(f )]‖ ≤ 1 and since this operator
clearly is defined on the linear span of the Hn spaces, it is densely defined
too. Since for any two points u 	= v we have d(u, v) > 0 = d(v, v), we see
that the algebra generated by the functions in N and the constant function
I separates the points in T , and hence by Stone-Weierstrass’ theorem it is
uniformly dense. On the other hand it follows from the derivation property of
a commutator that all elements in this algebra have bounded commutators with
D, so the first condition for ST(d) to be a spectral triple is fulfilled. Before
we start to prove that the second condition holds, we will collect some of the
results above for later use in the following statement.

(1) Let M := {g ∈ C(T ) | ‖[D,π(g)]‖ ≤ 1} then M separates the states.

Let us then return to the definitions of the Dn operators and of D. First we
compute the eigenvalues of each Dn, and we get the set below.

σ(Dn) = {−√
22n + d(xn, yn)−2,

√
22n + d(xn, yn)−2

}
So the two eigenvalues are both numerically bigger than 2n and we can conclude
that for the operator (I +D2)−1 there are at most 2n eigenvalues of absolute
value bigger than 2−n. This means that (I +D2)−1 is compact and that for any
positive real number s we have

tr
(
(I +D2)−s/2

)
< 2

∞∑
n=1

2−ns < ∞.

It then follows that (C(T ),H,D) is a spectral triple which is summable for
any positive s.

We will now show that the metric, say dST(d) induced by ST(d) on the
state space has the property that it agrees with the original metric on the pure
states, i.e. the point measures. We will first show that for any pair of points
{x, y} from T we have d(x, y) ≤ dST(d)(x, y). This type of inequality is quite
general and follows from the fact that the set of functions N is a subset of the
set M. To be more specific, let s, t be given points in T and define the function
g(u) := d(u, t) in N , then

dST(d)(s, t) = sup
f∈M

|f (s)− f (t)| ≥ sup
f∈N

|f (s)− f (t)|

≥ |g(s)− g(t)| = |d(s, t)− d(t, t)| = d(s, t).
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Let us then show the inequality dST(d)(s, t) ≤ d(s, t). Let again s, t be given
from T , and let us suppose first that

dST(d)(s, t) > diam(T ) := sup{d(u, v) | u, v ∈ T }.
Then there must exist a function f ∈ M such that |f (s)− f (t)| > diam(T ).
Let then ε > 0 be chosen such that |f (s) − f (t)| − diam(T ) > 3ε, and
find a natural number n such that the pair (xn, yn) is so close to the pair (s, t)
that |f (s) − f (xn)| < ε and |f (t) − f (yn)| < ε. Since f ∈ M we have
|f (xn)− f (yn)| ≤ d(xn, yn) ≤ diam(T ) and we get the contradiction

diam(T )+ 3ε < |f (s)− f (t)| ≤ |f (xn)− f (yn)| + 2ε ≤ diam(T )+ 2ε.

We now know that dST(d)(s, t) ≤ diam(T ) < ∞, so for any positive ε there
exists a function f ∈ M such that |f (s)− f (t)| > dST(d)(s, t)− ε/5. Again,
using the continuity of f and the original metric d, we find a pair (xn, yn) from
the sequence upon which the spectral triple is build, such that |f (s)−f (xn)| <
ε/5, |f (t) − f (yn)| < ε/5, d(s, xn) < ε/5 and d(t, yn) < ε/5. Having this
we finally may conclude as follows

dST(d)(s, t) < |f (s)− f (t)| + ε/5

< |f (xn)− f (yn)| + 3ε/5

≤ d(xn, yn)+ 3ε/5

< d(s, t)+ ε.

So for any pair (s, t) of points from T we have d(s, t) = dST(d)(s, t). We are
nearly done, but we think it is appropriate to note that the metric dST(d) really
is a metric on the state space and that it generates the w∗-topology on that
space. This can be seen in many ways. We will use the method which Rieffel
has described in [22] and we have used in [1], Proposition 3.2. Consider again
the set M, fix an element v ∈ T and define a subset Mv of M by

(2) Mv := {f ∈ M | f (v) = 0}
We know already by (1) that M separates the states of C(T ), so according to
Rieffel we then just have to show that Mv is relatively compact in C(T ). This
follows from the construction of Mv , since by the definition we have for any
f ∈ Mv and any pair of points {s, t} from T that |f (s)−f (t)| ≤ dST(d)(s, t) =
d(s, t). This means that the functions in M are equicontinuous. Further for any
t ∈ T and anyf ∈ Mv we have |f (t)| = |f (t)−f (v)| ≤ d(t, v) ≤ diam(T ),
so the set Mv is also bounded. By Arzelà-Ascoli’s Theorem we get that Mv is
a relatively compact subset of C(T ) and the theorem follows.



44 erik christensen and cristina ivan

Theorem 3.2. Let (T , d) denote a compact metric space and let 0 < δ be
a real number. Then there exists a countable set J of pairs of non-equal points
{x, y} from T such that the sum of all the two-point spectral triples STx,y over
{x, y} ∈ J becomes a spectral triple for C(T ). This triple is denoted ST(δ)
and it induces a metric dδ on T such that

∀s, t ∈ T : d(s, t) ≤ dδ(s, t) ≤ (1 + δ)d(s, t).

If the upper Minkowski dimension dimM(T ) is finite then the module is finitely
summable for any real s such that s > 2dimM(T ).

If the module is summable for some s > 0 and the topological space T is
connected, then dimM(T ) is at most s.

Proof. The construction can be done in many ways and it may be reason-
able to give a proof which reflects this. In this way the proof becomes a little
less transparent, but more easily applicable to different metric sets of fractal
type. The proof is based on a sequence of positive numbers (rn), rn = θρn−1

for some strictly positive real θ and a real ρ such that 0 < ρ < 1. The simplest
argument for the general case can probably be obtained when θ = diam(T ),
the diameter of T , and ρ = 1/2, but if one looks at the usual middle-third
Cantor set it turns out that θ = 1/2 and ρ = 1/3 will be the most natural
choice. On the other hand it is quite clear that other sequences (rn) of positive
reals which are finitely summable may be used in certain cases. We have not
been able to find a proof which works in this generality, so the proof here will
be based on sequences of geometric descent.

Let us then suppose that some positive reals δ, θ and 0 < ρ < 1 are given.
We are then going to specify a sequence (Tn) of finite subsets of the set T ,
on which we can base our constructions. The points in Tn will consist of the
centers of a minimal covering of T by closed balls of radius θρn−1. It should
be remarked that each set Tn is not uniquely determined and it is also possible
that two points sm, tn from the sets Tm and Tn for m 	= n may be equal. This
will not cause any trouble as one can see below. Later the numbers δ, θ and ρ
will determine which pairs of centers from the union ∪Tn we will use for the
construction of the two-point spectral triples, which will be the summands in
the spectral triple ST(δ).

Given δ, then the smaller it is, the more accurate the metric dδ describes the
original metric. A better approximation to the given d can only be achieved at
a cost of having more points in the model. The exact content of this statement
is coded in the integer l(δ)which we define below. We use the term interaction
length for l(δ). It is not possible to see the meaning of this number right away,
but it follows – hopefully – as the proof proceeds. The diameter of the space
is given as diam(T ) = max{d(s, t) | s, t ∈ T } and its logarithm plays a role
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for the size of l(δ) so we define an integer k0 – not necessarily non negative –
by

(3) k0 ∈ Z, θρk0+1 < diam(T ) ≤ θρk0 .

Then we can define the interaction length l := l(δ) by the conditions:

If
4

1 − ρ
< δ then l = max{0,−k0}(4)

If
4

1 − ρ
≥ δ then l ∈ N is the least natural number s. t.(5)

l ≥ −k0 and
4ρl

1 − ρ
< δ.(6)

Remark that even though k0 may be negative the inequalities above imply that

(7) k0 + l ≥ 0 and
4ρl

1 − ρ
< δ,

which will be useful later. The two-point modules which will go into the
construction of the spectral triple ST(δ) can then be determined. As index set
J we will consider all pairs of points {x, y} from T such that

(8)

(i) ∃n ∈ N: x ∈ Tn and y ∈ Tn ∪ Tn+1.

(ii) x 	= y.

(iii) If y ∈ Tn then d(x, y) ≤ (
2 + ρ−(l+1)

)
θρn−1

(iv) If y ∈ Tn+1 then d(x, y) ≤ (
1 + ρ

)
θρn−1.

Now our first task is to show that the direct sum of all these two-point spectral
triples will give a spectral triple. The first part of the proof of this is done as in
the proof of Theorem 3.1, but we remind the reader that we are now using the
standard two-point spectral triples as defined in Definition 2.1. We will let H
denote the Hilbert space sum of all the Hx,y for all the pairs {x, y} ∈ J . This
sum is countable and we may then define a self-adjoint operator D on H as
the closure of the sum of all the operators Dx,y on Hx,y over {x, y} ∈ J . We
will let π denote the representation of C(T ) on H which is equal to the sum
of the representations πx,y on the spaces Hx,y , for {x, y} ∈ J .

As in the proof of Theorem 3.1 we define the set N , by

N := {f ∈ C(T ) | ∃y ∈ T ∀x ∈ T : f (x) = d(x, y)}.
and you will find, as before, that the algebra generated by N and the unit
I is uniformly dense in C(T ), and for any element, f in this algebra, the
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commutator [D,π(f )] is bounded. The first condition in Definition 1.1 is then
fulfilled. The second condition, which asks for the compactness of the operator
(I+D2)−1 has to be considered in more details in order to be verified. In order
to prove that (I +D2)−1 is compact we just have to show that for any positive
number r the self-adjoint operator D has only finitely many eigenvalues in
the interval [−r, r]. Let {x, y} be a pair from J then the eigenvalues, i.e. the
spectrum σ(Dx,y) of Dx,y is the set

{−d(x, y)−1, d(x, y)−1
}
, so we get that

If x, y ∈ Tn, {x, y} ∈ J and λ ∈ σ(Dx,y) then |λ| ≥ ρ1−n

(2 + ρ−(l+1))θ
.

If x ∈ Tn, y ∈ Tn+1, {x, y} ∈ J and λ ∈ σ(Dx,y) then |λ| ≥ ρ1−n

(1 + ρ)θ
.

In both of the cases we see, that for any given r > 0 there will be an n0 such
that only the finitely many elements {x, y} ∈ J for which x ∈ Tn for some
n ≤ n0 can yield operators Dx,y with eigenvalues of absolute value less than
or equal to r .

We will now turn to the properties of the metric induced by ST(δ). The
first inequality claimed, d(x, y) ≤ dδ(x, y), is quite general and it is proved
exactly as in the proof of Theorem 3.1

We will then show the inequality dδ(s, t) ≤ (1 + δ)d(s, t). Let s, t be given
from T , then we are first going to determine the scale of the argument for this
particular pair (s, t), and this is done by finding the unique integer k, it may
be negative, such that

(9) θρk < d(s, t) ≤ θρk−1.

By definition of k0 we find that k > k0 and by equation (7) we then get

(10) k + l ≥ 1

For any natural number n we can by equation (10) choose points an, bn ∈
Tk+l+n such that

(11) d(s, an) ≤ θρ(k+l+n−1) and d(t, bn) ≤ θρ(k+l+n−1).

Based on this we get via the triangle inequality

∀n ∈ N: d(an+1, an) ≤ θρ(k+l+n) + θρ(k+l+n−1) and(12)

d(bn+1, bn) ≤ θρ(k+l+n) + θρ(k+l+n−1).(13)

d(a1, b1) ≤ d(s, t)+ 2θρk+l .(14)
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From the last one and the definition of k we get

(15) d(a1, b1) ≤ θρk−1 + 2θρk+l = θρk+l
(
2 + ρ−(l+1)

)
.

Since both a1 and b1 belongs to Tk+l+1 the last inequality implies that the pair
{a1, b1} is in J and the two-point spectral triple STa1,b1 is a summand in the
spectral triple we consider.

Next we are going to show that the pairs {an, an+1}, {bn, bn+1} also belong
to J . Let us look at {an, an+1} then an ∈ Tk+l+n and an+1 ∈ Tk+l+n+1, so we
must check their distance. According to (12) we get

(16) d(an+1, an) ≤ θρ(k+l+n) + θρ(k+l+n−1) = θρ(k+l+n−1)(1 + ρ),

and it follows that these pairs also go into the formation of ST(δ), and analog-
ously the pairs {bn, bn+1} belong to J too.

We can then collect the estimates. The basic idea is that we jump from s to
an an, which is nearby, and then continues to jump from ai to ai−1 until we
reach a1. From here we jump to b1 and continues the jumping up to bn from
where there is only a short distance to t . All the jumps except the first and the
last are controlled by ST(δ). The end jumps can be made of arbitrary small
importance by continuity arguments. To be precise let us choose a function
f ∈ M, i.e. a continuous function such that ‖[D,π(f )]‖ ≤ 1 and try to get
an upper estimate for |f (s) − f (t)|. For a given ε > 0 there exists an n ∈ N
such that |f (s) − f (an)| ≤ ε/2 and |f (t) − f (bn)| ≤ ε/2. By construction
the function f ∈ M has the property that for any pair {x, y} ∈ J we have
|f (x)− f (y)| ≤ d(x, y), so

|f (s)− f (t)| ≤ |f (an)− f (bn)| + ε

≤ |f (a1)− f (b1)| +
n−1∑
i=1

(|f (ai)− f (ai+1)| + |f (bi)− f (bi+1)|
) + ε

≤ d(a1, b1)+
n−1∑
i=1

(
d(ai, ai+1)+ d(bi, bi+1)

) + ε

≤ d(s, t)+ 4θ
∞∑
i=1

ρ(k+l−1+i) + ε

= d(s, t)+ 4θρk+l

1 − ρ
+ ε and by (9)

≤ d(s, t)

(
1 + 4ρl

1 − ρ

)
+ ε which by (7)

≤ d(s, t)(1 + δ)+ ε.
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Hence dδ(x, y) ≤ (1 + δ)d(s, t).
We will then prove that dδ generates the w∗-topology on the state space

S (C(T )). This is also done as in the proof of Theorem 3.1 so we have to
show that the set Mv , which is defined as in the proof of Theorem 3.1 in the
relations (1) and (2) is relatively compact and separates the states of C(T ).
The proof here is practically the same as the one given at the end of the proof
of Theorem 3.1. The only difference being that we get the equicontinuity and
the boundedness of Mv from the following inequality.

∀f ∈ Mv ∀s, t ∈ T : |f (s)− f (t)| ≤ (1 + δ)d(s, t).

We will now turn to the summability questions. We think that the results
obtainable will turn out to be much more precise in the future, but we have
gotten into a lot of combinatorial problems when we tried to sharpen our results
on the connection between finite summability of ST(δ) and finiteness of the
upper Minkowski dimension of T .

Let us suppose that the upper Minkowski dimension, dimM(T ) is finite, and
recall that for n ∈ N the set Tn consists of the centers of a minimal covering
of T by closed balls of radius θρn−1. We will let |Tn| denote the number of
points in Tn then we get by Definition 2.3

dimM(T ) := lim sup
n→∞

log(|Tn|)
− log(θρn−1)

< ∞.

Letμ be a real number such thatμ > dimM(T ) then there must exist a natural
number n0 such that

∀n > n0:
log(|Tn|)

− log(θρn−1)
< μ,

and then there must be a natural number n1 ≥ n0 such that

∀n > n1:
log(|Tn|)
− log(ρn)

< μ,

which implies that ∀n > n1: |Tn| < ρ−μn.

We can now make estimates of the value of tr
(
(I +D2)−s/2

)
and we will show

that it is finite for any real s > 2dimM(T ). Suppose such an s is given and μ
is chosen such that 2dimM(T ) < 2μ < s. First we remark that for λ 	= 0 we
have the inequality

1√
1 + |λ|2 ≤ |λ|−1.
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When we have to estimate the trace tr
(
(I +D2)−s/2

)
we must go back to the

definition of D, and we find that the index set J , over which D is formed, is
grouped into disjoint subsets Jn, n ∈ N such that

Jn := {{x, y} ∈ J | x ∈ Tn and y ∈ Tn ∪ Tn+1}.
Having this and the inequality just above we get

tr
(
(I +D2)−s/2

) ≤
∞∑
n=1

( ∑
{x,y}∈Jn

2d(x, y)s
)
.

In this sum we recall that there are upper limits for d(x, y) which were used
in the definition of the spectral triple. By inspection of the definition it turns
out that we have the following inequalities

∃c > 0 ∀n ∈ N ∀{x, y} ∈ Jn: d(x, y) ≤ cρn.

The number, say |Jn|, of pairs in Jn is not known, because it depends of the
local structure of the metric d. Without further knowledge we can only get
some very rough estimates of the size of |Jn|, but we can remark that for a
nice subset of the space Rd such as the unit cube, one can do much better. The
general estimate we can get is simply the largest possible numbers of pairs, so
we get

∀n ∈ N: |Jn| ≤ |Tn|2
2

+ |Tn||Tn+1|.

This can then be combined with the estimates |Tn| < ρ−μn, for n > n1, so we
obtain

tr
(
(I +D2)−s/2

)

≤
n1∑
n=1

( ∑
{x,y}∈Jn

2d(x, y)s
)

+
∑
n>n1

(
(cρn)s

(
ρ−2μn

2
+ ρ−μ(2n+1)

))
.

This means that there exist positive reals A and B such that

tr
(
(I +D2)−s/2

) ≤ A+ B
∑
n>n1

ρ(s−2μ)n < ∞,

and the module is finitely summable for any s > 2dimM(T ).
Let us now suppose that the module is finitely summable for some s > 0

and the space T is connected. By the construction of the spectral triple (8) a
pair of centers {x, y} in Tn belongs to Jn if d(x, y) ≤ (

2 + ρ−(l+1)
)
θρn−1.

This means, among other things, that there exists a natural number n2 such that
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for any natural number n > n2 and any pair {x, y} ∈ Tn such that x, y ∈ Jn

then we have

d(x, y) ≤ 1, and 2θρn−1 ≤ diam(T )/3.

The inequality d(x, y) ≤ 1 implies
(
1 + d(x, y)−2

)−s/2 ≥ 2−s/2d(x, y)s , so
the assumption of finite summability of the module and these considerations
imply

∞ > tr
(
(I +D2)−s/2

)
(17)

=
∞∑
n=1

( ∑
{x,y}∈Jn

2
(
1 + d(x, y)−2

)−s/2
)

(18)

≥
∑
n>n2

( ∑
{x,y}∈Jn,x,y∈Tn

2(1−s/2)d(x, y)s
)
.(19)

We are now going to show that for each n > n2 there are at least |Tn|/2 number
of pairs {x, y} in Jn such that x and y both are in Tn and d(x, y) ≥ θρn−1.
We do this by showing that for any x ∈ Tn there exists at least one y ∈ Tn

such that {x, y} ∈ Jn and d(x, y) ≥ θρn−1. Let x ∈ Tn then there must
exist a t ∈ T such that d(x, t) ≥ diam(T )

3 . By assumptions T is connected

and for n > n2, 2θρn−1 ≤ diam(T )

3 , hence there must be a u ∈ T such that
d(x, u) = 2θρn−1. Finally we choose y ∈ Tn such that d(y, u) ≤ θρn−1 and
we get

d(x, y) ≤ d(x, u)+ d(u, y) ≤ 3θρn−1 <
(
2 + ρ−(l+1)

)
θρn−1,

so by (8) the pair {x, y} belongs to the index set Jn, if x 	= y. On the other
hand, if we use the triangle inequality the other way around, we get

d(x, y) ≥ d(x, u)− d(u, y) ≥ θρn−1 > 0, so x 	= y.

We have then seen that any point x in Tn belongs to a pair {x, y} in Jn with
y in Tn and d(x, y) ≥ θρn−1, so we may continue our lower bound estimates
(19) on the trace of (I +D2)−s/2 in order to get the following result

∑
n>n2

|Tn|(ρs)n < ∞.

In particular this means that there exists a natural number n3 > n2 such that
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for any n > n3

|Tn|(ρs)n < 1, and

log |Tn| < −s log ρn

log |Tn|
− log ρn

< s, and for n suff. large

log |Tn|
− log(θρn−1)

< s.

Since the set Tn is a set of centers for a minimal covering of T by balls of
radius θρn−1, the last inequality shows that the upper Minkowski dimension
of T is at most s, and the theorem follows.

Remark 3.3. The result raises a number of questions. First of all, is it
possible to construct discrete spectral triples which are more accurate with
respect to the calculation of the Minkowski dimension? We think that the
answer definitely is yes, and for all the known examples we have thought of,
there are ad hoc constructions which are very precise. The works by Guido
and Isola [7], [8], [9] offer spectral triples which works for a large collection
of fractals in Rn. Some of the problems we have faced when we have tried
to get more precise results is – in the language of the proof just above – to
determine the number of pairs {x, y} ∈ Jn which contains a given x. In known
examples there exists a constant c such that this number is at most c for any
value of n. In our proof of Theorem 3.2 the estimate is 3/2|Tn|2 which is far
away from being universally bounded. To illustrate the exact content of these
cryptical remarks we will compute an example based on the unit interval.
A similar result can be obtained for any unit cube in Rd , but the counting
of the multiplicities of the eigenvalues is much more complicated in higher
dimensions, so in order to avoid huge combinatorial arguments we will just
compute the Dirac operator D for the unit interval based on the construction
given in the proof of Theorem 3.2. We then show that this spectral triple behaves
very nicely. The only un-excepted result is that for this module the so called
Weyl’s asymptotic formula for the growth of the eigenvalues does not hold
completely. The reason for this is that this Dirac operator has gaps between
the eigenvalues which grow exponentially and also the multiplicities of the
eigenvalues grow exponentially. You can see the details just below.

Example 3.4. We consider the unit interval [0, 1] with the usual metric.
In the construction from the proof of Theorem 3.2 we let δ = 9, θ = 1 and
ρ = 1/2. Then for the spectral triple ST(9) = (

C([0, 1]),H,D
)

constructed
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by the algorithm of Theorem 3.2 we get:

(a) The metric induced by the spectral triple is the usual one.

(b) The module is finitely summable for s > 1, but not for s = 1.

(c) Let for� > 0, N(�) denote the number of eigenvalues ofD of absolute
value at most � then

10 < lim inf
�→∞

N(�)

�
≤ 13 < 17 ≤ lim sup

�→∞
N(�)

�
< 20.

(d) For � > 0 let P� denote the orthogonal projection onto the subspace
of H spanned by the eigenvectors of D with non zero eigenvalues of
numerical value at most�. For any any continuous function f on [0, 1]
we get

lim
�→∞

1

log(�)
tr

(|D|−1P�π(f )
) = 10

log 2

∫ 1

0
f (x) dx.

(e) For any ultrafilter ω on N and any continuous function f on [0, 1] the
Dixmier trace for this spectral triple is given by

trω
(
π(f )|D|−1

) = 10

log 2

∫ 1

0
f (x) dx.

A different choice of δ, θ and ρ would give a similar result, except for the
constants log 2, 10, 13, 17, 20.

Details of the example

The whole construction is based on the sets Tn, which for a given n is a
set of centers for a minimal covering of the interval [0, 1] by balls of radius
θρn−1 = 21−n. So T1 = T2 = {2−1}, and for

n > 2, Tn = {
(2j + 1)21−n | 0 ≤ j ≤ 2n−2 − 1

}
.

In particular the number of points |Tn| = 2n−2 for n ≥ 2. We can then prove
the statement (a) without too much trouble. Let u < v be points in [0, 1] and let
ε > 0 be given. Let dδ denote the metric induced by the spectral triple. We then
know from the theorem, that for any pair of points u, v from the unit interval
we have |u − v| ≤ dδ(u, v). Let then f be a continuous function such that
‖[D,π(f )]‖ ≤ 1, and let ε > 0 be given. Then by the continuity of f we can
find a natural number n and points xj , xk from Tn such that u ≤ xj < xk ≤ v,
|f (u)− f (xj )| < ε/2 and |f (v)− f (xk)| < ε/2. By the choice of f we have

|f (xk)− f (xj )| ≤
k−1∑
m=j

|f (xm+1)− f (xm)| ≤
k−1∑
m=j

|xm+1 − xm| = xk − xj .
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Hence

|f (v)− f (u)| ≤ |f (xk)− f (xj )| + ε ≤ |xk − xj | + ε ≤ |v − u| + ε,

and claim (a) follows.

The next task is then for a given natural number n and each point x in the set
Tn to study the one-dimensional representation, say πx , given as C([0, 1]) 
f → f (x) as a summand in the representationπ of the spectral triple. Suppose
that a pair {x, y} belongs to the index set J then bothπx andπy will be counted
once more in π so the multiplicity of πx in π is exactly the number of pairs
{u, v} ∈ J which contains x. To find that number we will first determine the
numbers k0 and l used in the proof of Theorem 3.2. According to the relation
(3) we get k0 = 0 and by (4) we get l = 0 too. We then have to look at the
rules (8) which defines the pairs in J , and one gets for an n ≥ 5 and an xj =
(2j + 1)21−n in Tn that we have to look for points vi = (2i+ 1)22−n ∈ Tn−1,
yk = (2k + 1)21−n ∈ Tn and zm = (2m + 1)2−n ∈ Tn+1 such that the pairs
{vi, xj }, {xj , yk}, {xj , zm} in which xj appears, are determined by the following
relations

|vi − xj | ≤ 3

2
· 22−n = 6 · 2−n

|xj − yk| ≤ 4 · 21−n = 8 · 2−n

|xj − zm| ≤ 3

2
· 21−n = 3 · 2−n.

There is a pattern for the computation of this, but it only holds for an xj which
is not very near 0 or 1. A detailed investigation shows that the regular pattern
is valid for all xj for which j ∈ {2, . . . , 2n−2 − 3}, so it is only 4 points from
each of the sets Tn which we will forget in the computations to come. Further
it is not difficult to realize that the properties of the module is not dependent
on any finite number of summands. Any finite number of two-point modules
may be omitted without disturbing the properties of the module with respect
to the metric or any of the asymptotic properties which we want to prove now.
The reason for this is that any sort of property is always better described for
a higher n. We may, and will, then assume that the module only starts by the
summation of all the modules which involves points from Tn for n ≥ 5. This
means that some points from T4 will be introduced, as they are part of some
two-point modules with points from T5. Let now xj = (2j+1)21−n be a point
from Tn for an n ≥ 5 and a j such that 2 ≤ j ≤ 2n−2 − 3. We then get the
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following table for the number of points.∣∣{vi ∈ Tn−1 | |vi − xj | ≤ 3
2 · 22−n}∣∣ = 2

and the distances between xj and vi
= (

2 · 2−n, 6 · 2−n) .∣∣{yk ∈ Tn | |yk − xj | ≤ 4 · 21−n}∣∣= 4

and the distances between xj and yk and repeated if necessary

= (
4 · 2−n, 4 · 2−n, 8 · 2−n, 8 · 2−n) .∣∣{zm ∈ Tn+1 | |zm − xj | ≤ 3

2 · 21−n}∣∣ = 4

and the distances between xj and zm and repeated if necessary

= (
2−n, 2−n, 3 · 2−n, 3 · 2−n) .

With respect to a point xj in Tn we then get that the multiplicity of πx is at
most 10, and it is 10 for all the points in Tn except for the 4 points nearest the
boundary {0, 1}.

We then turn to the absolute value |D| of the Dirac operator. Let us then look
at a pair {x, y} ∈ J , then the Definition 2.1 shows that |Dx,y | = |x−y|−1IHx,y
so a unit vector in the Hilbert space Hx,y corresponding to the representation
πx is an eigenvector for |D| corresponding to the eigenvalue |x − y|−1. This
means that for an xj = (2j+1)21−n, with 2 ≤ j ≤ 2n−2 −3 the 10 eigenvalues
for the operator |D| corresponding to the summands of πxj in π will be; when
listed by multiplicity and increasingly,{

2n−3, 2n−3,
2n−1

3
, 2n−2, 2n−2,

2n

3
,

2n

3
, 2n−1, 2n, 2n

}
.

We can now begin to compute the multiplicities of the eigenvalues for |D|.
We know that all of the 2n−2 points xj in the set Tn, except 4, behave alike.
For these 4 points the set of eigenvalues for |D| are the same, but with lower
multiplicities. In the computations to come it makes no difference, when es-
timating limits, to neglect this irregularity, so we will just assume that the 4
outmost points of each set Tn have the property that the absolute value of
the Dirac operator follow the same eigenvalue pattern here, as for the regular
points. From the list above we find that the only possible eigenvalues for |D|
on a vector corresponding to πxj are of the forms 2k

3 and 2m. Further we see
from the list, that the eigenvalue 2n can only be associated with points from
Tn, Tn+1, Tn+2 and Tn+3 and we get, since the number of points in a set |Tk|
is 2k−2, that the multiplicity of the eigenvalue 2n will be nearly

2 · 2n−2 + 1 · 2n−1 + 2 · 2n + 2 · 2n+1 = 7 · 2n
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Similarly the eigenvalue 2n

3 , will be generated by points in Tn and Tn+1 and
the multiplicity of 2n

3 for |D| is approximately

2 · 2n−2 + 1 · 2n−1 = 2n.

We then get

tr(|D|−s) =
∞∑
n=5

(
7 · 2(n−ns) + 3s · 2(n−ns) + E(n, s)2−ns)

such that |E(n, s)| ≤ 40 · 3s .

It then follows that the module is summable for s > 1 and not summable
for s = 1. The item (b) of the example is then proved, and we will begin
to estimate N(�), the number of eigenvalues for |D|, dominated by �. We
can base the computation on the counting of the multiplicities which we just
performed above. Let

⌊ log�
log 2

⌋
denote the largest integer smaller than or equal

to log�
log 2 , then the number of eigenvalues N(�) for |D|, which are dominated

by � is nearly

(20)

⌊
log�
log 2

⌋
∑
n=5

7 · 2n +

⌊
log 3�
log 2

⌋
∑
n=5

2n

and we get
N(�) = 7 · 2� log�

log 2 �+1 + 2� log 3�
log 2 �+1 + R(�)

such that

|R(�)| < 40
log�+ 3

log 2
+ 100 < 80 log(�)+ 500.

We then get

N(�) = �

(
7 · 2

(
1−

(
log�
log 2 −

⌊
log�
log 2

⌋))
+ 3 · 2

(
1−

(
log 3�
log 2 −

⌊
log 3�
log 2

⌋)))
+ R(�).

The exponents for 2 in the expression above are always between 0 and 1 and
they will vary discontinuously between these values so N(�)

�
has no limit for

� → ∞ and we get

10 ≤ lim inf
�→∞

N(�)

�
≤ 13 < 17 ≤ lim sup

�→∞
N(�)

�
≤ 20
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This establishes the item (c) of the example. It seems likely that one can do
better, but log 3

log 2 is not an integer so it is not possible to get down to 10 or up to
20.

Let us then turn to item (d). Let ε > 0 and f a continuous complex function
on the interval [0, 1] be given. Since f is continuous there exists a natural
number N1 such that
(21)

∀n ∈ N, n ≥ N1:

∣∣∣∣
∫ 1

0
f (x) dx −

2n−2−1∑
j=0

f
(
(2j + 1)21−n) 22−n

∣∣∣∣ ≤ ε

120

and

(22) 40‖f ‖22−n ≤ ε

12

Then we define for any natural number n ≥ 5 and any j ∈ {0, . . . , 2n−2 − 1},
the point xj ∈ Tn as before by xj = (2j+1)21−n and the inequality (21) gives

(23) ∀n ∈ N, n ≥ N1:

∣∣∣∣
∫ 1

0
f (x) dx −

2n−2−1∑
j=0

f (xj )2
2−n

∣∣∣∣ ≤ ε

120
.

Let now Qn,j be the orthogonal projection onto the span of the vectors in
H which have the property that each of them generates the one-dimensional
representation πxj of C([0, 1]). Let us then go back to the computations of the
pairs which involved an xj , and we find – again except for the 4 points which
are closest to either 0 or 1 – that for an xj from Tn, the multiplicity of πxj in
π is 10 and the corresponding 10 eigenvalues for |D|−1 are{

2−n, 2−n, 21−n, 3 · 2−n, 3 · 2−n, 22−n, 22−n, 3 · 21−n, 23−n, 23−n}
We can then for 2 ≤ j ≤ 22n−1 − 3 compute

tr(Qn,j |D|−1) = 2−n(1 + 1 + 2 + 3 + 3 + 4 + 4 + 6 + 8 + 8) = 10 · 22−n,

and for the 4 outmost points we get

22−n < tr(Qn,j |D|−1) < 10 · 22−n,

It then follows that for the projectionQn := ∑2n−2−1
j=0 Qn,j and any continuous

complex function g on [0, 1] we have

(24) tr(Qnπ(g)|D|−1) = 10
2n−2−1∑
j=0

g(xj )2
2−n + I (n)
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such that

(25) |I (n)| ≤ 40‖g‖22−n

and we also get

(26)
∣∣tr (

Qnπ(g)|D|−1
)∣∣ ≤ 10‖g‖.

Hence for the given f and a natural number n ≥ N1 we may use (22), (23),
(24), (25) to obtain

(27)

∣∣∣∣tr(Qnπ(f )|D|−1
) − 10

∫ 1

0
f (x) dx

∣∣∣∣ ≤ ε

6
.

We can now introduce the positive real � and we will choose it such that

(28) � ≥ exp

(
90(N1 + 2)(‖f ‖ + 1)

ε

)
and � ≥ 25 = 32

so

(29)
ε

90
≥ (N1 + 2)(‖f ‖ + 1)

log�
.

Then we get for the given continuous function f and for M a natural number

defined by M :=
⌊

log�
log 2

⌋
that

(30)
1

log�
tr
(
P�π(f )|D|−1

) = 1

log�

M∑
n=5

tr
(
Qnπ(f )|D|−1

) + J (�)

such that

|J (�)| =
∣∣∣∣ 1

log�
tr

((
P� −

M∑
n=5

Qn

)
π(f )|D|−1

)∣∣∣∣(31)

≤
∣∣∣∣ ‖f ‖
log�

tr

((
P� −

M∑
n=5

Qn

)
|D|−1

)∣∣∣∣, by (20)(32)

≤
∣∣∣∣ ‖f ‖
log�

tr
(
(Q4 +QM+1 +QM+2)|D|−1

)∣∣∣∣(33)

≤ 30‖f ‖
log�

(34)

<
ε

90
.(35)
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We can then continue as

1

log�

M∑
n=5

tr
(
Qnπ(f )|D|−1

)
(36)

= 1

log�

N1∑
n=5

tr
(
Qnπ(f )|D|−1

)
(37)

+ 1

log�

M∑
n=N1+1

tr
(
Qnπ(f )|D|−1

)

= M −N1 − 1

log�
10

∫ 1

0
f (x) dx +K(�)(38)

such that by (26), (27)

(39) |K(�)| ≤ 10‖f ‖N1

log�
+ M −N1 − 1

log�

ε

6
≤ ε

9
+ ε

6
<
ε

3
.

The final estimation then becomes
∣∣∣∣ 1

log�
tr

(
P�π(f )|D|−1

) − 10

log 2

∫ 1

0
f (x) dx

∣∣∣∣ by (31)–(35)

≤
∣∣∣∣ 1

log�

M∑
n=5

tr
(
Qnπ(f )|D|−1

) − 10

log 2

∫ 1

0
f (x) dx

∣∣∣∣ + ε

90
by (36)–(39)

≤
∣∣∣∣10(M −N1 − 1)

log�
− 10

log 2

∣∣∣∣
∣∣∣∣
∫ 1

0
f (x) dx

∣∣∣∣ + ε

3
+ ε

90

< 10‖f ‖ log�− log 2
(� log�

log 2 � −N1 − 1
)

log 2 log�
+ ε

2

≤ 10‖f ‖ log�− log 2
( log�

log 2 − 1 −N1 − 1
)

log 2 log�
+ ε

2

= 10‖f ‖N1 + 2

log�
+ ε

2
which by (29)

≤ ε

9
+ ε

2
< ε.

This establishes item (d) of the example and we will turn to look at item (e),
but when we have a convergence as described in item (d), then it follows from



sums of two-dimensional spectral triples 59

the construction of the Dixmier trace [4] Chapter IV 2.β, pp. 303–308, that
the limit obtained in (d) is the Dixmier trace of π(f )|D|−1.
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