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Abstract

We explore various constructions with ideals in a C∗-algebra A in relation to the notions of
real rank, stable rank and extremal richness. In particular we investigate the maximum ideals of
low rank. And we investigate the relationship between existence of infinite or properly infinite
projections in an extremally rich C∗-algebra and non-existence of ideals or quotients of stable
rank one.

1. Introduction

The concept of dimension for a topological space X originates in the basic
fact that manifolds are locally homeomorphic to euclidean spaces, which have
an obvious linear dimension. In the more abstract version given by Čech’s
covering dimension of a normal space X, the dimension gives conditions under
which certain functions extend and certain cohomology groups vanish.

Regarding a C∗-algebra A as the non-commutative analogue of C(X) (or
C0(X)) for a compact (or just locally compact) Hausdorff space X, it is natural
to try to extend the notion of topological dimension of X to the analogous
setting. The more so as the covering dimension of X is easily characterized
in terms of elements in C(X). In [34] Rieffel defined the (topological) stable
rank, tsr(A), of an arbitrary C∗-algebra A, using concepts from dimension
theory. Shortly after, the stable rank was identified with the Bass stable rank of
A, [21], which is a purely algebraic concept. In particular, by an earlier result
of Vaserstein, [41], we have tsr(C0(X)) = [

1
2 dim(X ∪ {∞})] + 1; the factor

1
2 arising from the use of complex scalars in C0(X).

The real rank of a C∗-algebra was introduced in [9] as an alternative to
Rieffel’s stable rank. Formally the only difference is that self-adjoint elements
replace the general elements in Rieffel’s definition, but this has unexpected con-
sequences, especially for small values of the rank. In general one has RR(A) ≤
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2 tsr(A)−1, and – pleasing for the eye – RR(C0(X)) = dim(X ∪{∞}). How-
ever, in the lowest possible cases, tsr(A) = 1 and RR(A) = 0, the two notions
are independent: one may be satisfied without the other.

One of the real surprises is the symmetry with which stable rank one and real
rank zero sometimes interact with the two K-groups for a unital C∗-algebra A:
If I is a closed ideal in A and tsr(A) = 1, the natural map K0(I ) → K0(A) is
injective, whereas the map K1(I ) → K1(A) is injective if RR(A) = 0. Also,
the natural map from Murray-von Neumann equivalence classes of projections
in A to K0(A) is injective if A has stable rank one, whereas its image generates
the whole group if A is of real rank zero.

Recall from [10] that a unital C∗-algebra A is extremally rich if the open
set A−1

q of quasi-invertible elements is dense in A. Here A−1
q is defined as

A−1E (A)A−1, where E (A) denotes the set of extreme points in the closed unit
ball A1 of A. Equivalently, cf. [11], A is extremally rich if conv(E (A)) =
A1, so that – as a Banach space – A has the λ-property, cf. [31]. If A =
C(X), extremal richness is equivalent to dim(X) ≤ 1. In general, extremal
richness is a generalization of Rieffel’s notion of stable rank one suitable for
not necessarily finiteC∗-algebras. Thus every purely infinite simpleC∗-algebra
is extremally rich, as is every von Neumann algebra.

Evidently extreme partial isometries are not as natural a class to work with
as unitaries. For this reason the concept of quasi-invertibility may appear some-
what artificial. But it keeps coming up in connection with various quite natural
problems; the most recent being the question of characterizing elements in
C∗-algebras with persistently closed range, cf. [12, §7]. The following minor
result can also be taken as an indication of the ubiquity of quasi-invertibility.
Formally it may be considered as an extension of Rørdam’s results in [37, §3]
from prime to general C∗-algebras.

The symbol “=” denotes norm closure and Ã denotes the unitization of A

(Ã = A if A is unital). Let A be a C∗-algebra and define the set of symmetric
zero-divisors

ZD∗(A) = {x ∈ A | ∃y ∈ A, ‖y‖ = 1 : xy = yx = 0}.
Similarly, define the set of symmetric topological zero-divisors as

ZD∗
∞(A) = {x ∈ A | ∃(yn) ⊂ A, ‖yn‖ = 1 : lim xyn = lim ynx = 0}.

Proposition 1.1. The following conditions on an element x in A are equi-
valent:

(i) x ∈ ZD∗
∞(A).

(ii) x ∈ (ZD∗(A))=.

(iii) x �∈ Ã−1
q .
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Proof. (i) ⇒ (iii) If x ∈ Ã−1
q , there is by [10, Theorem 1.1] a pair of

morphisms λ and ρ of Ã with ker λ∩ker ρ = 0, such that λ(x) is left invertible
in λ(Ã), but ρ(x) is right invertible in ρ(Ã). So ax − 1 ∈ ker λ and xb − 1 ∈
ker ρ for suitable elements a, b in Ã. If now xyn → 0 and ynx → 0, then
λ(yn) → 0 and ρ(yn) → 0. However, the morphism λ ⊕ ρ is isometric, so
yn → 0. Consequently x �∈ ZD∗

∞(A).
(iii) ⇒ (ii) If x �∈ Ã−1

q we distinguish two cases:
(a) Zero is isolated in sp(|x|). In that case we have a polar decomposition

x = v|x| with v a partial isometry in A. Let p+ = 1 − v∗v and p− = 1 − vv∗.
If p+Ap− = 0 then A must be unital and x ∈ A−1

q , contrary to the hypothesis.
There is therefore a non-zero element y in p+Ap−. Evidently

xy = (v|x|v∗v)(p+y) = 0 and yx = (yp−)(vv∗v|x|) = 0;
so x ∈ ZD∗(A).

(b) Zero is a limit point in sp(|x|). In that case let (fn) and (gn) be sequences
of continuous functions on R+ such that 0 ≤ fn ≤ 1, fn(0) = 0, fn(t) = 1
for 2−n−1 ≤ t ≤ 2−n, fn(t) = 0 for t ≥ 2−n+1, gn(t) = 0 for 0 ≤ t ≤ 2−n+1,
gn(t) = t for t ≥ 2−n+2, and 0 ≤ gn(t) ≤ t . If x = v|x| is the polar
decomposition of x (now with v in A′′), then yn = fn(|x|)v∗ ∈ A, ‖yn‖ = 1
if sp(|x|) ∩ [2−n−1, 2−n] �= ∅, xn = vgn(|x|) ∈ A, and ‖xn‖ ≤ ‖x‖. Passing if
necessary to a subsequence we may assume that ‖yn‖ = 1 for all n. Now

xnyn = vgn(|x|)fn(|x|)v∗ = 0 and ynxn = fn(|x|)v∗vgn(|x|) = 0.

Hence xn ∈ ZD∗(A) and x ∈ (ZD∗(A))=.
(ii) ⇒ (i) If x = lim xn and xnyn = ynxn = 0 for a normalized sequence

(yn), then lim xyn = lim ynx = 0, as desired.

Remark 1.2. Note that when A is non-unital we have A ∩ Ã−1
q = ∅,

because Ã−1
q /A = C 1 \ {0}. So every element in A is a symmetric topological

zero-divisor.

The plan of the paper is as follows: In Section 2 we treat the maximum
ideal of real rank zero, IRR 0(A), and the “maximum” extremally rich ideal,
Ier(A), parallel to Rørdam’s treatment [36] of Itsr 1(A), the maximum ideal of
stable rank one. In fact, in general A has no largest extremally rich ideal. But
there are two ways to characterize Itsr 1(A) other than that it is the largest ideal
of stable rank one (see 2.2(ii) and 2.14(ii)/2.16), and Ier(A) has properties
exactly parallel to these. For extremally rich C∗-algebras we also discuss the
sense in which tsr(A) > 1 or Itsr 1(A) = 0 implies infinite behavior. In Sec-
tion 3 we discuss defect ideals, which measure the stable rank one quotients of
extremally rich C∗-algebras. We give three different results with hypotheses
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of increasing strength showing that lack of stable rank one quotients implies
existence of properly infinite projections. Also we define purely properly in-
finite for non-simple C∗-algebras. In Section 4 we discuss isometric richness,
a concept intermediate between stable rank one and extremal richness, and its
relationship to ideal structure.

The authors previously announced a paper entitled, “Extremally rich ideals
in C∗-algebras.” The present paper and [13] constitute an expanded version of
that paper.

2. Maximum ideals of minimal rank

All three concepts, stable rank one, extremal richness and real rank zero,
are formulated as attempts to describe low-dimensional behaviour in a non-
commutative setting. In this section we shall explore constructions that lead to
hereditary C∗-subalgebras and even ideals of low rank in general C∗-algebras.
Our first result is a typical sample.

Theorem 2.1. Let B be a hereditary C∗-subalgebra of a C∗-algebra A.

(i) If B̃ ⊂ (Ã−1
q )= then B is extremally rich.

(ii) If B̃ ⊂ (Ã−1)= then B has stable rank one.

(iii) If B̃sa ⊂ (Ã−1
sa )= then B has real rank zero.

Proof. In essence the argument is contained in the second half of the proof
of [10, Theorem 3.5]. However, for the convenience of the reader we give the
details.

(i) We may assume that A is unital. Given now an element b̃ in B̃ we may
assume for the purpose of approximation that it has the form b̃ = 1 + b

for some b in B. By assumption we can for any ε > 0 find a in A−1
q such

that ‖1 + b − a‖ < ε. For ε small enough we can then define the elements
d = 1 − (a − b)−1 and

c = (a − b)−1a(1 − db)−1 = (1 − d)(a − b + b)(1 − db)−1

= (1 + (1 − d)b)(1 − db)−1 = 1 + b(1 − db)−1.

By construction c ∈ A−1
q ; and since b(1 − db)−1 = ∑∞

n=0 b(db)n and B

is hereditary we see that b(1 − db)−1 ∈ B, whence c ∈ B̃. Consequently
c ∈ A−1

q ∩ B̃ = B̃−1
q . Finally, since ‖d‖ ≤ (1 − ε)−1ε we can estimate

‖1 + b − c‖ =
∥∥∥∥

∞∑
n=1

b(db)n
∥∥∥∥ ≤ ‖b‖2(1 − ‖b‖‖d‖)−1‖d‖

≤ ‖b‖2(1 − ε − ‖b‖ε)−1ε,
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which shows that c is an approximant to 1 + b. Thus B̃−1
q is dense in B̃, as

required.
(ii) Replacing quasi-invertibles with invertibles in the argument above we

obtain a proof of (ii).
(iii) Replacing quasi-invertibles with self-adjoint invertibles in the argument

for (i) we will get a proof of (iii), but a little caution is required. Both a and b

are now self-adjoint so d = d∗ as constructed. But then the computation

b(1 − db)−1 = b

∞∑
n=0

(db)n =
∞∑

n=0

(bd)nb = (1 − bd)−1b = (b(1 − db)−1)∗

shows that also c = c∗, as desired.

Definitions 2.2. (i) Unless expressly mentioned, the word ideal will in
this paper designate a closed (and therefore ∗-invariant) ideal in a C∗-algebra.

(ii) Rørdam shows in [36, 4.1–4.3] that in every C∗-algebra A there is a
largest ideal Itsr 1(A) of stable rank one, given by

Itsr 1(A) = {x ∈ A | ∀y ∈ Ã : α(x + y) = α(y)},
where α(y) = dist(y, Ã−1). Equivalently,

Itsr 1(A) = {x ∈ A | x + Ã−1 ⊂ (Ã−1)=}.

A similar construction is possible with respect to ideals of real rank zero:

Theorem 2.3. For a given C∗-algebra A let αr(z) = dist(z, Ã−1
sa ) and

define
R = {x ∈ Asa | ∀y ∈ Ãsa : αr(x + y) = αr(y)}

= {x ∈ Asa | x + Ã−1
sa ⊂ (Ã−1

sa )=}.
Then IRR 0(A) = R + iR is an ideal of real rank zero in A, and the largest
such.

Proof. If an element x in Asa satisfies the first condition, then we have
αr(x + y) = αr(y) = 0, for each y in Ã−1

sa , whence x + y ∈ (Ã−1
sa )=.

Conversely, if x satisfies the second condition and y ∈ Ãsa , then for each
ε > 0 there is a z in Ã−1

sa such that

αr(x + y) + ε > ‖x + y + z‖ = ‖y + (x + z)‖ ≥ αr(y),

since x + z ∈ (Ã−1
sa )=. Thus αr(x + y) ≥ αr(y). Since R = −R we can

replace x with −x and then y with x +y to obtain the reverse inequality, hence
equality.
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The set R defined by the two equivalent conditions is clearly a a closed real
subspace of Asa contained in (Ã−1

sa )=. If x ∈ R and y ∈ Ãsa , then for each real
t and z in Ã−1

sa we have

(1 + ity)x(1 − ity) + z = (1 + ity)(x + (1 + ity)−1z(1 − ity)−1)(1 − ity)

∈ (1 + ity)(Ã−1
sa )=(1 − ity) = (Ã−1

sa )=.

Thus (1+ ity)x(1− ity) ∈ R. Since R is a closed subspace we get by first and
second order expansions in t that i(yx − xy) ∈ R and that yxy ∈ R. Applied
with y = 1 ± z for some z in Asa , the second fact shows that zx + xz ∈ R. In
conjunction with the stability under commutators this implies that IRR 0(A) =
R + iR is a closed ideal of A. Since (IRR 0(A))̃ sa = R̃sa ⊂ (Ã−1

sa )= by
definition, it follows from Theorem 2.1 that RR(IRR 0(A)) = 0.

Assume now that I is an ideal of A with RR(I ) = 0. For each x in Isa and
y in Ã−1

sa with polar decomposition y = u|y| (so that u = u∗) we let B denote
the C∗-subalgebra of Ã generated by Ĩ and the projection p = 2u − 1. Then
pBp = pĨp, which is isomorphic to (pIp)̃ and therefore of real rank zero.
Similarly RR((1−p)Ĩ (1−p)) = 0, and it follows from [9, Theorem 2.5] that
RR(B) = 0. Therefore, with x0 = |y|−1/2x|y|−1/2 in I , we have

x + y = |y|1/2(x0 + u)|y|1/2 ∈ |y|1/2Bsa|y|1/2

⊂ |y|1/2(B−1
sa )=|y|1/2 ⊂ |y|1/2(Ã−1

sa )=|y|1/2 = (Ã−1
sa )=.

This means that x ∈ R, whence I ⊂ IRR 0(A).

Our construction from [12, Proposition 5.3] carries over (changing 1 to 0) to
produce a largest ideal of real rank zero whose K0−group vanishes in K0(A).
The following easy lemma is a translation (1 → 0) of [12, Lemma 5.2].

Lemma 2.4. For each ideal I and every C∗-subalgebra B of a unital C∗-
algebra A consider the induced maps

ι0: K0(I ) ⊕ K0(B) −→ K0(I + B) and ι1: K1(I ) −→ K1(I + B).

If RR(B) = 0 then ι0 is surjective and ι1 is injective.

Proof. Without loss of generality we may assume that I + B is unital. If
now p is a projection in I + B and π : I + B −→ (I + B)/I denotes the
quotient morphism then π(p) is a projection in (I +B)/I = B/(I ∩B). Since
RR(B) = 0 projections lift from every quotient of B, cf. [9], so there is a
projection q in B such that π(q) = π(p). Thus the K-theory exact sequence
implies that [p] − [q] is in ι0(K0(I )). This argument passes to matrix algebras
over B + I and proves that K0(I + B) = ι0(K0(I )) + ι0(K0(B)).
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Replacing in the argument above π(p) with an arbitrary projection in
B/(I∩B) shows that the induced morphism π0: K0(I+B) −→ K0((I+B)/I)

is surjective. By the six-term-exact sequence this means that ∂0: K0((I +
B)/I) −→ K1(I ) is the zero map, whence ι1: K1(I ) −→ K1(I + B) must be
injective.

Proposition 2.5. For every C∗-algebra A there is a largest ideal I0,0(A) of
real rank zero such that the induced map ι0: K0(I0,0(A)) −→ K0(A) is zero.

Proof. Let I0,0(A) denote the class of ideals I such that RR(I ) = 0 and
ι0: K0(I ) −→ K0(A) is zero. If I and J belong to I0,0(A) we consider the
extension

0 −→ J −→ I + J −→ (I + J )/J (= I/(I ∩ J )) −→ 0.

Since projections lift from I/(I ∩ J ) to I it follows that RR(I + J ) = 0.
Moreover, by Lemma 2.4,

ι0(K0(I + J )) = ι0(K0(I )) + ι0(K0(J )) = {0}.
Thus I + J ∈ I0,0(A). This means that I0,0(A) is inductively ordered under
inclusion, and since both real rank and K-groups are stable under inductive
limits we can define

I0,0(A) = lim−→ I, I ∈ I0,0(A).

Note that the first half of the argument provides another proof of the ex-
istence of IRR 0(A) as the largest ideal of real rank zero. It does not, however,
give its other characteristics.

Definitions 2.6. (i) If Itsr 1(A) = 0 we say that A has no ideals of stable
rank one. In the presence of extremal richness this forces A to exhibit a highly
infinite behaviour, as we shall see.

(ii) Recall that a projection p in a C∗-algebra A is finite if it is not Murray-
von Neumann equivalent to a proper subprojection. Following tradition we
say that a unital C∗-algebra A is finite if it contains no infinite projections; i.e.
if every isometry is unitary. For non-prime C∗-algebras this definition is not
optimal, but we will not argue with tradition. Fortunately the discrepancies
disappear when we define A to be absolutely finite if no (primitive) quotient
of A contains any infinite projections. If this even holds for all matrix algebras
over A we say that A is absolutely stably finite.

Proposition 2.7. For an extremally rich unital C∗-algebra A the following
conditions are equivalent:
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(i) A is absolutely finite.

(ii) A is absolutely stably finite.

(iii) tsr(A) = 1.

(iv) E (A) = U(A).

Proof. (i) ⇒ (iv) If v ∈ E (A) \ U(A) there must be some irreducible rep-
resentation (π, H ) of A in which π(v) is not unitary. Since π(A) is primitive,
π(v) is either an isometry or a co-isometry, contradicting (i).

(iv) ⇒ (iii) By assumption A−1
q = A−1, and since A is extremally rich this

set is dense, whence tsr(A) = 1.
(iii) ⇒ (ii) Being of stable rank one is a stable property preserved under

quotient maps, so no (primitive) quotient of Mn(A) can contain a non-unitary
isometry.

Evidently (ii) ⇒ (i).

Theorem 2.8. An extremally rich C∗-algebra A has no ideals of stable
rank one if and only if:

(i) Every non-zero hereditary C∗-subalgebra of A contains a non-zero pro-
jection, and

(ii) Every non-zero projection in A supports a non-unitary extreme partial
isometry.

Proof. Only the forward implication needs proof, and for this we may
evidently assume that A is unital. Now let B be a non-zero hereditary C∗-
subalgebra of A. If I (B) denotes the closed ideal of A generated by B, then B

and I (B) are Rieffel-Morita equivalent by [8]. By assumption tsr(I (B)) > 1,
and consequently also tsr(B) > 1, cf. [10, Corollary 5.8]. Since B̃ is extremally
rich by [10, Theorem 3.5], viz. Theorem 2.1, we deduce from Proposition 2.7
that B̃ contains a non-unitary extreme partial isometry v. We may assume that
v = 1 + b for some b in B, which implies that both defect projections of v

belong to B. One (or both) of them is non-zero, which establishes condition
(i) in the theorem.

For condition (ii), note that if p is a non-zero projection in A then pAp is a
unital, hereditary C∗-subalgebra of A. As before this implies that tsr(pAp) >

1, and since pAp is extremally rich we can find w in E (pAp) \ U(pAp),
whence

(∗) (p − ww∗)A(p − w∗w) = 0,

and either ww∗ �= p or w∗w �= p.

Corollary 2.9. A simple C∗-algebra is extremally rich if and only if it is
either purely infinite or has stable rank one.
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Proposition 2.10. If A is any simple, unital C∗-algebra and B is a UHF-
algebra then A ⊗ B is extremally rich.

Proof. If A is stably finite Rørdam showed that A⊗B has stable rank one,
cf. [37, 6.7], and therefore is extremally rich. Otherwise, by [37, 6.8], A ⊗ B

is purely infinite and thus extremally rich by [31, Theorem 10.1].

Remark 2.11. If A is not prime we cannot deduce that every non-zero pro-
jection p in A is infinite under the circumstances in Theorem 2.8. However, if
in equation (∗) in the proof of 2.8 we have both ww∗ �= p and w∗w �= p, it fol-
lows that pAp contains a C∗-subalgebra isomorphic to the extended Toeplitz
algebra Te, cf. [10, Proposition 6.10]. Consequently, if p is finite pAp con-
tains two centrally orthogonal sequences of mutually equivalent, orthogonal
projections (pn) and (qn) (corresponding to the ideal K⊕K in Te). Even worse,
each projection pn (or qn) has the same properties as p. In particular, the ideal
structure of A must be rich: Every non-zero closed ideal of pAp contains an
orthogonal pair of non-zero ideals if p is a finite projection. We proceed to
show that this behavior actually can occur.

2.12. Infinite Tensor Products

Let (An) be a sequence of unital C∗-algebras and for each n let A(n) = ⊗n
k=1 Ak

denote the spatial tensor product. There is a natural embedding A(n) −→
A(n+1) given by an −→ an ⊗ 1, and as usual we define

A =
∞⊗

n=1

An = lim−→ A(n).

Then A is a unital C∗-algebra which is separable and nuclear provided that all
the An’s are; and its ideal structure can – in principle – be determined from
that of the An’s. In particular we note that if πn: An −→ Qn is a sequence of
unital morphisms there is a unique morphism

π :
∞⊗

n=1

An −→
∞⊗

n=1

Qn

given by π |A(n) = ⊗n
k=1πk for all n. We shall write π = ⊗∞

n=1πn, and we note
that ker π is the ideal in A generated by elements of the form

A(πn) = {a = ⊗∞
k=1ak | ak = 1 for k �= n and an ∈ ker πn}.

Assume now that in each An we have chosen an ideal In. In the applications In
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will always be essential in An and often simple. We define the C∗-subalgebras

Bn =
( n−1⊗

k=1

Ik

)
⊗ An ⊗ 1 ⊂ A(n) ⊗ 1 ⊂ A.

Observe now that BnBm ⊂ Bm if n ≤ m. We can therefore define

B(n) = B1 + B2 + · · · + Bn = C∗(B1 ∪ B2 ∪ · · · ∪ Bn) ⊂ A(n) ⊂ A.

Note that each B(n) contains the ideal I (n) = ⊗n
k=1 In. Finally we put

B = lim−→ B(n) = C∗(∪∞
n=1Bn

) ⊂ A.

The idea behind the construction is that we can find all the irreducible rep-
resentations of each B(n), hence ultimately also the primitive ideals of B, as
either coming from the ideal I (n) or arising from one and only one of the
summands Bk in B(n) and corresponding to a representation of the quotient
Bk/I

(k) = I (k−1) ⊗ (Ak/Ik).
We shall employ the tensor product construction above with all the An’s

being equal to one of three algebras: The (ordinary) Toeplitz algebra T , the
extended Toeplitz algebra Te (cf. [31, 9.3–9.5]) or the trivial Toeplitz algebra
Tt . If s demotes the unilateral shift on 	2 and K the algebra of compact operators
on 	2 then T = C∗(s). Moreover, Te = C∗(s ⊕ s∗) (on 	2 ⊕ 	2), and Tt =
Te + K(	2 ⊕ 	2). It follows that each of these algebras is an extension, viz.

0 −→ K −→ T −→ C(S) −→ 0;
0 −→ K ⊕ K −→ Te −→ C(S) −→ 0;
0 −→ K(	2 ⊕ 	2) −→ Tt −→ C(S) −→ 0.

The first two are non-trivial, but in the third we notice that since s ⊕ s∗ is a
compact perturbation of the bilateral shift u on 	2 ⊕	2 = 	2(Z), the algebra is a
split extension, Tt = C∗(u) + K(	2(Z)). In particular, Tt has stable rank one,
whereas T and Te are only extremally rich. Even so, T is isometrically rich
(see Section 4), whereas Te is our pet example of an algebra that is extremally
rich, but not isometrically rich.

The algebras obtained will be denoted BI , BII , BIII , respectively. All three
are extremally rich with no ideals of real rank zero. Also BI and BII have no
ideals of stable rank one, whereas tsr(BIII) = 1. The algebras BI and BIII

are primitive. Hence BI is isometrically rich and 2.8(ii) implies that every
non- zero projection in BI is infinite. On the other hand, BII ⊂ BIII , whence
BII is stably finite in the classical sense, though by 2.8 it should be regarded
as highly infinite. Despite this infinite behavior, it is true that every non-zero
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hereditary C∗-subalgebra of BI or BII has a non-trivial stable rank one quotient
(cf. Section 3, below).

The primitive ideal spaces of BI and BIII , aside from the dense point, consist
of an infinite sequence (Tn) of circles. The closure of each point of Tn contains
T1, . . . , Tn−1. Because there are two natural maps from Te onto T , there is
a family of maps from BII onto BI indexed by the Cantor set. This gives a
Cantor set “at the bottom” of the primitive ideal space B∨

II instead of a dense
point. And instead of a sequence of circles there is a binary tree of circles. Each
Tn is replaced by the union of 2n−1 disjoint circles. Each point in the Cantor
set corresponds to an infinite path in the tree, and its closure contains just the
circles on this path. And the closure of a point on one of the circles contains
the ancestor circles.

We provide a few indications of proof, but many details are left to the
reader. Because I (n) is essential in B(n) (even in A(n)), it is easy to see that
the inclusion of B(n−1) in B(n) is extreme point preserving (e.p.p.). Hence to
prove B extremally rich, it suffices to prove by induction that each B(n) is. To
do this we use [10, Theorem 6.1] for the extension in which the ideal is Bn and
the quotient is B(n−1)/B(n−1) ∩ Bn = B(n−1)/I (n−1). Clearly extremal partial
isometries lift, and each minor defect projection is in I (n) (which is either K
or the direct sum of 2n copies of K). It is easy to see that for any projections
P in M(I (n)) and Q in I (n) the bimodule PI (n)Q is extremally rich. Thus the
hypotheses of [10, Theorem 6.1] are verified.

Because I (n) is essential in B(n), each non-trivial ideal of B(n) contains I (n)

or one of its simple summands. Thus every non-zero ideal of B contains an
ideal isomorphic to K ⊗ B. Since B has neither stable rank one (except in
case III) nor real rank zero, the assertions on non-existence of ideals of low
rank are justified.

Suppose π is an irreducible representation of B. In case II for each n π|I (n)

must vanish on all but one of the simple summands. Thus π is the pullback
of an irreducible representation of BI by one of the maps from BII onto BI

mentioned above. Now if π|I (n) �= 0 for all n, we see that π is faithful in
cases I and III; and in case II the kernel of π is the kernel of the map from
BII onto BI . Otherwise, choose the smallest value of n such that π|I (n) = 0.
Then π vanishes on Bn+1, Bn+2, . . . but not on Bn. Thus π is determined by
an irreducible representation of Bn/I

(n) (recall that (Bn + Bn+1 + . . .)= is an
ideal of B). This gives us the circle Tn, or the n’th level of the tree in case II.

Lemma 2.13. Let I be a closed ideal in a unital C∗-algebra A. For each u

in E (A) and x in I such that u + x ∈ (A−1
q )=, there is a sequence (an) in A−1

q

converging to u+x, such that an −u ∈ I for all n. In particular, if an = un|an|
is the polar decomposition of an in A, then un ∈ E (A) and u − un ∈ I .
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Analogous statements hold if u ∈ U(A) and u + x ∈ (A−1)=, and when
u ∈ U(A)sa (so u is a symmetry) and u + x ∈ (A−1

sa )= (so x ∈ Isa).

Proof. By assumption there is a sequence (bn) in A−1
q converging to u+x.

If π : A −→ A/I denotes the quotient morphism we see that π(bn) → π(u).
We can therefore eventually write π(bn) = vnen, with vn in E (A/I) and en

in (A/I)−1
+ , such that vn → π(u) and en → 1. By [12, Theorem 2.1] there

are sequences π(wn) and π(w′
n) of unitaries in U0(A/I) converging to 1,

such that π(wn)vnπ(w′
n) = π(u); and by a standard lifting argument we may

assume that (wn) and (w′
n) are sequences in U0(A) converging to 1. We may

also choose a sequence (dn) in A−1
+ converging to 1 such that π(dn) = en.

Replacing bn with an = wnbnd
−1
n w′

n we still have an in A−1
q and an → u + x,

but now π(an) = π(wn)vnene
−1
n π(w′

n) = π(u). Therefore, if an = un|an| is
the polar decomposition in A, then |an| − u∗u ∈ I , whence an − un ∈ I , so
u − un ∈ I , as claimed.

The analogous statements for the stable rank one or real rank zero situations
are proved in exactly the same manner, using the well-known facts that two
unitaries or two symmetries that are close are also homotopic.

Proposition 2.14. Let I be an ideal in a unital C∗-algebra A, and let B

be a unital C∗-subalgebra of A.

(i) If I and B are extremally rich and B is extreme-point-preservingly
(e.p.p.) embedded in A, then I +B is e.p.p. embedded in A. If moreover
I + B ⊂ (A−1

q )= then I + B is extremally rich.

(ii) If I and B have stable rank one, then I + B has stable rank one.

(iii) If I and B have real rank zero, then I + B has real rank zero.

Proof. (i) Take v in E (I +B) with defect projections p+ and p−. If (π, H )

is an irreducible representation of A there are only two possibilities: For one,
I ⊂ ker π , in which case

π(v) ∈ E (π(B)) = π(E (B)) ⊂ π(E (A)) ⊂ E (π(A)),

since B is extremally rich and e.p.p. embedded in A. Thus π(p+Ap−) = 0.
Otherwise I �⊂ ker π , in which case π(I) is strongly dense in B(H ), and again

π(p+Ap−) ⊂ π(p+)π(I )−sπ(p−) ⊂ (π(p+(I + B)p−))−s = 0.

Consequentlyπ(p+Ap−) = 0 for allπ , whencep+Ap− = 0, so thatv ∈ E (A)

as claimed.
Assume now that I + B ⊂ (A−1

q )=, and consider the extension

(∗) 0 −→ I −→ I + B
ρ−→ (I + B)/I −→ 0.
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Both I and (I + B)/I (being isomorphic to a quotient of B) are extremally
rich, and for every w in E ((I +B)/I) there is a u in E (B) such that ρ(u) = w;
so extreme partial isometries lift. To show that I + B is extremally rich we
need therefore, by condition (iv) in [10, Theorem 6.1], only check that u+x ∈
((I + B)−1

q )= for every u in E (I + B) and x in I .
By the first part of the argument u ∈ E (A) and by assumption there is a

sequence (an) in A−1
q converging to u + x. This means that an = un|an| with

un in E (A) and zero an isolated point in sp(|an|). Using Lemma 2.13 we may
assume that un − u ∈ I and |an| − u∗u ∈ I . It follows that |an| ∈ I + B and
also un ∈ E (I + B), whence an ∈ (I + B)−1

q as desired.
(ii) This is proved in the same manner as above, but now we do not have to

worry about extreme points being correctly embedded.
(iii) This is proved as above.

Definitions 2.15. Applying Theorem 2.1 to ideals instead of hereditary
C∗-subalgebras we see, as in [36, Proposition 4.2], that Rørdam’s ideal Itsr 1(A)

may be characterized as the largest ideal I of A such that Ĩ ⊂ (Ã−1)=. Simil-
arly, IRR 0(A) is the largest ideal I of A for which Ĩsa is contained in (Ã−1

sa )=.
An analogous characterization is not possible for ideals in the closure of the
quasi-invertible elements. Looking for large ideals that are extremally rich in-
side a C∗-algebra A, we shall instead mimic Rørdam’s construction (cf. 2.2))
and define

Ier(A) = {x ∈ A | x + Ã−1
q ⊂ (Ã−1

q )=}.

Theorem 2.16. The set Ier(A) is an extremally rich ideal of A, and the
largest ideal such that Ier(A) + B is extremally rich for every extremally rich
C∗-subalgebra B of A such that B̃ is is e.p.p embedded in Ã. In particular
Itsr 1(A) ⊂ Ier(A). Moreover, with αq(x) = dist(x, Ã−1

q ) we have

Ier(A) = {x ∈ A | ∀y ∈ Ã : αq(x − y) = αq(y)}.

Proof. For the last assertion, take x in Ier(A) and y in Ã. Then for each
ε > 0 there is a z in Ã−1

q such that

αq(x − y) = dist(x − y, Ã−1
q ) ≥ ‖x − y + z‖ − ε ≥ αq(y) − ε,

since x+z ∈ (Ã−1
q )=. Thus αq(x−y) ≥ αq(y). Replacing y with x−y we get

αq(y) ≥ αq(x − y), and thus the desired equality. Conversely, if an element x

in A satisfies this equality for every y, then by taking y in Ã−1
q we get

αq(x + y) = αq(−y) = 0,
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whence x + y ∈ (Ã−1
q )=; so that x ∈ Ier.

From the two equivalent definitions of Ier(A) it is now clear that it is a closed,
∗-invariant subspace contained in (Ã−1

q )=. Since yÃ−1
q = Ã−1

q if y ∈ Ã−1 we
see that if furthermore x ∈ Ier(A), then

yx + Ã−1
q = y(x + Ã−1

q ) ⊂ y(Ã−1
q )= = (Ã−1

q )=,

whence yx ∈ Ier(A). It follows that Ã−1Ier(A) = Ier(A) (and Ier(A)Ã−1 =
Ier(A) by ∗-invariance), from which we conclude that Ier(A) is a closed ideal
of A.

Since Ĩer(A) = Ier(A) + C1 ⊂ (Ã−1
q )= it follows from Theorem 2.1 that

Ier(A) is extremally rich. Moreover, from the definition of Ier(A) we see that
if B is any unital, extremally rich and e.p.p. embedded C∗-subalgebra of Ã,
then

Ier(A) + B = Ier(A) + (B−1
q )= ⊂ Ier(A) + (Ã−1

q )= ⊂ (Ã−1
q )=,

whence Ier(A) + B is extremally rich by Proposition 2.14.
Conversely, if I is an ideal of A that satisfies the conditions above, take v in

E (Ã), and let B denote the unital C∗-subalgebra of Ã generated by v. Then B

is isomorphic to the extended Toeplitz algebra Te or one of its quotients, and
therefore extremally rich and e.p.p. embedded in Ã, cf. [10, Proposition 6.10].
By Proposition 2.14 the C∗-algebra I + B is then also e.p.p. embedded in Ã,
and by assumption I + B is extremally rich. Thus for every x in Ã−1 we have

I + vx = (I + v)x ⊂ ((I + B)−1
q )=x ⊂ (Ã−1

q )=x = (Ã−1
q )=.

Since this holds for every v in E (Ã) and every x in Ã−1 it follows that

I + Ã−1
q ⊂ (Ã−1

q )=,

whence I ⊂ Ier(A).
The second sentence now follows from [10, 6.3].

Example 2.17. The characterization of Ier(A) as the largest “well-be-
haved” extremally rich ideal in A cannot be improved, since in general there is
no largest extremally rich ideal in a C∗-algebra A. A specific counterexample,
already mentioned in [10, 6.12] and [12, 5.8], is available. Here Ier(A) =
Itsr 1(A); actually Ier is equal to the largest ideal I1,0(A) of stable rank one in A

such that ι1: K1(I1,0(A)) → K1(A) is the zero map, cf. [12, Proposition 5.3].
There are two ideals in A:

I1 =
(

A1 A0

A0 A0

)
and I2 =

(
A0 A0

A0 A2

)
,
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both extensions of the form

0 −→ Ier(A) −→ Ii −→ C(T) −→ 0,

and both extremally rich. However, A = I1 + I2 is not extremally rich.

The ideal Ier(A) can be used to reformulate one of our main results from
[10], Theorem 6.1(iv).

Corollary 2.18. Let I be an ideal in a C∗-algebra A. Then A is extremally
rich if and only if the following conditions hold:

(i) I ⊂ Ier(A), i.e. I + Ã−1
q ⊂ (Ã−1

q )=,

(ii) A/I is extremally rich, i.e. Ã/I = ((Ã/I )−1
q )=,

(iii) Quasi-invertibles lift, i.e. (Ã/I )−1
q = Ã−1

q /I .

Proof. The three conditions are evidently necessary. To prove sufficiency,
take x in Ã. Since I + Ã−1

q ⊂ (Ã−1
q )= we get

αq(x) = inf
∥∥x + Ã−1

q

∥∥ = inf
∥∥x + Ã−1

q + I
∥∥ = inf

∥∥(x + I ) + Ã−1
q /I

∥∥
= inf

∥∥(x + I ) + (Ã/I )−1
q

∥∥ = 0,

as desired.

3. Defect ideals

Definition 3.1. For each C∗-algebra A we define the defect ideal of A to
be the ideal D(A) generated by all defect projections arising from elements in
E (Ã). Evidently the possibilities D(A) = A and D(A) = 0 are not excluded.
Even though the definition of D(A) involves Ã the defect projections all belong
to A. Thus D(Ã) = D(A) ⊂ A. The term “defect ideal” was used in [12,
Definition 5.9] to designate the possibly larger ideal of A obtained from D(A⊗
K), but we shall here prefer the non-stable version. For extremally rich C∗-
algebras there is no difference, cf. 3.3.

We claim that D(A) has the following minimality characterizations:

Proposition 3.2. For every C∗-algebra A the defect ideal D(A) is the
smallest ideal I such that

E (Ã)/I ⊂ U(Ã/I ) .

If moreover A is extremally rich then D(A) is the smallest ideal such that
tsr(A/D(A)) = 1.
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Proof. The first condition is evident from the definition of D(A). If now
A is extremally rich

E (Ã)/I = E (Ã/I )

for every ideal I of A by [10, Theorem 6.1]. The first condition therefore
translates as

E (Ã/I ) = U(Ã/I ) ,

which by Proposition 2.7 is equivalent to tsr(Ã/I ) = 1.

Discussion 3.3. Note that when A is extremally rich we have

D(A/I) = (D(A) + I )/I = D(A)/(D(A) ∩ I )

for every ideal I of A, because E (Ã/I ) = (E (Ã)+I )/I by [10, Theorem 6.1].
Observe also that in the presence of extremal richness the defect ideal is

invariant under Rieffel-Morita equivalence. Thus whenever A and B are ex-
tremally rich C∗-algebras and ∼M denotes Rieffel-Morita equivalence A ∼M

B implies that D(A) ∼M D(B) and A/D(A) ∼M B/D(B). In particular,

D(A) ⊗ K = D(A ⊗ K) and D(B) = D(A) ∩ B

for every full, hereditary C∗-subalgebra B of A.
If I and J are ideals of a C∗-algebra A such that tsr(A/I) = tsr(A/J ) = 1,

then also tsr(A/(I ∩ J )) = 1. This is easy to verify since we may realize the
quotient algebra as a surjective pullback,

A/(I ∩ J ) = A/I ⊕A/(I+J ) A/J ,

cf. [39, Proposition 3.16]. Consequently the set I of ideals I such that
tsr(A/I) = 1 is directed under reverse inclusion. In general I will not contain
a minimal element (the closed unit disk, for example, does not have a maximal
closed subset of dimension one), but when A is extremally rich a minimal ideal
in I exists by Proposition 3.2, viz. the ideal D(A).

It may happen, of course, that D(A) has a non-zero quotient of stable rank
one, so in the general case we obtain a descending chain of ideals {Iα | 0 ≤
α ≤ β}, indexed by a segment of the ordinals, such that

I0 = A.

Iα+1 = D(Iα) for each α < β.

Iα =
⋂
γ<α

Iγ if α is a limit ordinal.

D(Iβ) = Iβ or Iβ = 0.
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Definitions 3.4. (i) We say that a C∗-algebra A has no quotients of stable
rank one if tsr(A/I) > 1 for every proper ideal I of A. In case A is extremally
rich this is equivalent to the demand that D(A) = A. In view of Proposition 3.2
this condition implies (for an extremally rich algebra) that every primitive
quotient of A contains infinite projections. [In the non-unital case a little work
is needed to prove this last statement. The ideas in the proof of Theorem 2.8
are relevant as is the theory of Itsr 1(A).]

(ii) As in [12, 4.1] we shall allow an abbreviated notation for Murray-von
Neumann equivalence of projections in matrix algebras over a C∗-algebra A:
If p and q are projections in A we write np � mq, if for some k ≥ max(n, m)

we have(⊕n
i=1p

) ⊕ (⊕k−n
i=1 0

)
�

(⊕m
i=1q

) ⊕ (⊕k−m
i=1 0

)
in Mk(A).

Lemma 3.5. Let A be an extremally rich, unital C∗-algebra such that
D(A) = A. Then there is a positive integer m such that

(n + m)1 � m1

for all n in N.

Proof. Since the primitive ideal space of A is compact, we can find a finite
set {uj } in E (A) such that A is generated as an ideal by the set of projections
{pj }, where pj = 1 − u∗

j uj . Since A is linearly generated by its unitaries we
can therefore find elements wk in U(A), 1 ≤ k ≤ m, such that

1 ≤
m∑

k=1

wkpkw
∗
k ,

with pk in {pj }, possibly with repetitions. But then 1 �
⊕m

k=1 pk . For each n

set qk = 1 − (u∗
k)

m+num+n
k . Then

qk =
m+n−1∑

i=0

u∗i
k pku

i
k,

so that qk ∼ (m + n)pk for every k. Consequently

(m + n)1 � (m + n)

m⊕
k=1

pk ∼
m⊕

k=1

qk ≤ m1.

Remark 3.6. Taking n = m in the previous lemma shows that in Mm(A)

(where now 21m � 1m) there is a pair of isometries with orthogonal ranges,
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which by definition means that Mm(A) is properly infinite. This prompts the
question whether we can always take m = 1 in Lemma 3.5. Equivalently
formulated: If an extremally rich, unital C∗-algebra A satisfies D(A) = A

(i.e. has no quotients of stable rank one), does it follow that A is properly
infinite (so that 21 � 1)? We shall see in [14] that the answer is yes when
A has weak cancellation; in particular when A is isometrically rich (extreme
partial isometries are either isometries or co-isometries), cf. Theorem 4.7. In
the general case we can at the moment only answer the question when stronger
conditions of infinite behaviour are put on A.

Definition 3.7. Returning to the discussion of extremal richness as a
substitute for stable rank one we wish to fix some notation relating to infinite
projections. Following von Neumann algebra terminology we say that a pro-
jection in a C∗-algebra A is properly infinite if 2p � p, i.e. if pAp contains
two isometries with orthogonal ranges.

Lemma 3.8. In an extremally rich C∗-algebra A the following conditions
are equivalent:

(i) Every non-zero projection in A is properly infinite;

(ii) D(I ) = I for every ideal I of A that contains a full projection;

(iii) D(pAp) = pAp for every projection p in A.

Proof. (i) ⇒ (ii) If p is a full projection in I and properly infinite, then
p � q for some defect projection q, whence D(I ) = I .

(ii) ⇒ (iii) If I denotes the ideal generated by p then as in 3.3

D(pAp) = pAp ∩ D(I ) = pAp ∩ I = pAp.

(iii) ⇒ (i) Let p be a non-zero projection in A. Since D(pAp) = pAp

there is then a finite set {v1, v2, . . . , vn} in E (pAp) such that pAp is ideally
generated by the projections pi = p − v∗

i vi , 1 ≤ i ≤ n. Let Ii denote the ideal
of pAp generated by pi . We shall now recursively construct an increasing
sequence of projections q0, q1, . . . , qn in pAp, with q0 = 0, such that qi

generates the ideal Ji = I1 + · · · + Ii for i > 0, and such that 2qi � qi for
every i.

Assume that qi has been constructed, and put B = (p−qi)A(p−qi). Since

B/B ∩ Ji = (B + Ji)/Ji = pAp/Ji,

the extreme point vi+1 + Ji in pAp/Ji can be lifted to v in E (B). Taking
ei = p − qi − v∗v we see that ei + Ji = pi+1 + Ji , so that ei + qi generates
Ji+1 as an ideal. Since ei ≤ p − qi we have

D(eiBei) = D(eiAei) = eiAei = eiBei.
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By Lemma 3.5 there is therefore an m such that 2mei � mei . Let

e = p − qi − v∗mvm =
m−1∑
k=0

v∗keiv
k,

so that e ∼ mei , and let qi+1 = qi + e. Since 2qi � qi by assumption and
2e � e by construction we have the desired conclusion 2qi+1 � qi+1; and
evidently the ideal generated by qi+1 is Ji+1 since ei + qi � qi+1.

In the end we find a projection qn that generates pAp (= Jn) as an ideal, so
for some k we have p � kqn. Therefore

2p � 2kqn � qn ≤ p.

Theorem 3.9. In an extremally rich C∗-algebra A the following conditions
are equivalent:

(i) Every non-zero hereditary C∗-subalgebra of A is generated as an ideal
by its properly infinite projections;

(i′) Every non-zero hereditary C∗-subalgebra of A is generated hereditarily
by its properly infinite projections.

(ii) D(I ) = I for every ideal I of A;

(iii) tsr(I/J ) > 1 for every pair of distinct ideals of A with J ⊂ I ;

(iv) No non-zero ideal of A has quotients of stable rank one.

(v) No non-zero quotient of A has ideals of stable rank one.

Under these conditions every non-zero projection in A is properly infinite.

Proof. (i) ⇒ (v) If the first condition is satisfied for A, then it also holds
for any non-zero quotient of A. No non-zero quotient of A can therefore con-
tain any non-zero ideal of stable rank one, because each ideal (indeed, each
hereditary C∗-subalgebra) contains a properly infinite projection.

(v) ⇔ (iii) ⇔ (ii) ⇔ (iv) The first equivalence is obvious, and the next two
follow by applying Proposition 3.2 to arbitrary ideals of A.

(ii) ⇒ (i) By Lemma 3.8 every (non-zero) projection in A is properly in-
finite. If now B is a non-zero hereditary C∗-subalgebra of A, let I denote the
ideal of A generated by B. By assumption we have D(J ) = J for every ideal
J of I . Using Rieffel-Morita equivalence the same is therefore true for B. In
particular, B is generated as an ideal by its projections.

(i) ⇔ (i′) If a hereditary C∗-subalgebra is invariant under inner automorph-
isms, it must be an ideal by [30, 5.2.1].

Discussion 3.10. (i) Let us agree to call an arbitrary C∗-algebra A purely
properly infinite if it satisfies condition (i) of Theorem 3.9. Even if A is not
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extremally rich it is still true that every non-zero projection p of such an algebra
is properly infinite. To see this, apply (i) to B = pAp. If q is a properly infinite
projection in B then v∗v = p and q � p − vv∗ for some v in B. Take now
q1, . . . , qn and v1, . . . , vn as above so that B is ideally generated by the qi’s.
Then with v = v1 · · · vn, the defect projection q = p − vv∗ generates B as
an ideal, and 2p � p − vmv∗m for m sufficiently large. It follows from [34,
Proposition 5.6] that tsr(pAp) = ∞ for every non-zero projection p, and thus
tsr(I ) > 1 for every non-zero ideal of A. Also it is easy to see that hereditary
subalgebras, ideals and quotients of a purely properly infinite C∗-algebra A

are again purely properly infinite. In particular, any simple quotient of such an
algebra will be purely infinite. Finally we note that any C∗-algebra which is
Rieffel-Morita equivalent to A is again purely properly infinite. (This follows
from the criterion for Rieffel-Morita equivalence in terms of linking algebras,
[8], and the fact, Cuntz [16], that the hereditary C∗-subalgebras generated by
x∗x and xx∗ are isomorphic.)

(ii) There are several equivalent ways to define purely infinite for simple C∗-
algebras that do not lead to equivalent concepts in the general case. The present
definition is one of them. Another, less fortunate, as we shall see, is to apply
the exact words of Cuntz’s definition in [16] to any non-simple C∗-algebra
A. Under this definition A is “purely infinite” if every non-zero hereditary
C∗-subalgebra contains an infinite projection. The algebra BI constructed in
2.12 is extremally rich and “purely infinite” in this sense, by Theorem 2.8
and the fact that BI is primitive. However, BI has a quotient isomorphic to
C(S1). Thus, although it is infinite, it does not satisfy any intuitive notion of
being purely infinite. Note also that

⋂
Dn(BI ) = {0}, so that BI contains no

properly infinite projections.
Taking this phenomenon further we observe that any C∗-algebra A would

be “purely infinite” provided only that it contained an essential ideal I which
was “purely infinite”. Here A/I could be finite in any conceivable sense.

(iii) Kirchberg and Rørdam, [23], [24], have recently given definitions of
purely infinite – in many cases equivalent to absorption of O∞ under tensoring
– which extend the concept from the simple case and do not have the disad-
vantages of the “purely infinite” concept mentioned above. It can be shown
that the main Kirchberg-Rørdam concept is equivalent to our purely proper
infinite for C∗-algebras having “enough” projections. What is required is that
every hereditary C∗-subalgebra of A is generated as an ideal by its projec-
tions. This is almost a standard abundance-of-projections concept. The ideal
property used in [28] and [40] requires only that every ideal of A should
be (ideally) generated by projections, so the condition we want is that every
hereditary C∗-subalgebra of A should have the ideal property. Rørdam [38,
Theorem 3.2] constructs an AH -algebra of stable rank one which is purely in-
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finite in the Kirchberg-Rørdam sense, but (necessarily) contains no non-trivial
projections. We are grateful to G. A. Elliott and M. Rørdam for discussions
related to these remarks.

Example 3.11. There exists an extremally rich, unital C∗-algebra A which
is not purely properly infinite but satisfies the conditions of Lemma 3.8, and
every non-zero hereditary C∗-subalgebra of A contains a non-zero projection.
(Note that these conditions lead to a fourth concept of purely infinite extending
the simple concept: Every non-zero hereditary C∗-subalgebra contains a non-
zero projection and all non-zero projections are properly infinite.) The algebra
A has a composition series {{0}, I, J, A} such that I is purely infinite simple
and essential, J/I = C0(]0, 1]) ⊗ K and A/J is again purely infinite and
simple. The Jacobson topology of the primitive ideal space A∨ of A is such
that the primitive ideal J is contained in the closure of each point of ]0, 1]
(identified with (J/I)∨). It follows that B ∩ I �= 0 whenever B is a non-zero
hereditary C∗-subalgebra of A, whence B contains non-zero projections. Since
J/I has no non-zero projections, any projection p in A not belonging to I is
not in J . From the topology of A∨ it then follows that p generates A ideally.
Also, D(A) = A since A has no quotients of stable rank one. Thus A satisfies
condition (ii) in Lemma 3.8.

To construct A take any non-unital, purely infinite simple C∗-algebra I0

and let J0 be a split essential extension of I0 by C0(]0, 1]). Thus the Busby
invariant is given by an injective homomorphism τ : C0(]0, 1]) −→ M(I0)/I0,
i.e. by choosing a positive element in M(I0)/I0 with spectrum equal to [0, 1].
Tensoring this extension with K we obtain a short exact sequence:

0 −→ I −→ J −→ C0(]0, 1]) ⊗ K −→ 0.

Now take any unital, purely infinite simple C∗-algebra I1 and define A to be
a trivial homogeneous extension of J by I1 in the sense of Pimsmer-Popa-
Voiculescu, [33]. The Busby invariant now comes from a homomorphism

σ : I1 −→ 1 ⊗ B(H ) ⊂ M(J0 ⊗ K),

where σ is unital and faithful modulo 1 ⊗ K.
The facts that I0 is extremally rich and C0(]0, 1]) has stable rank one and

is projective easily imply that J0 is extremally rich. Consequently also J is
extremally rich. To complete the proof that A is extremally rich we need only
show that pAq is an extremally rich bimodule when q is a minor defect projec-
tion and p a defect projection of an isometry in 1⊗B(H ), cf. [10, Theorem 6.1].
Thus p = 1⊗p0, where p0 has infinite rank. We may assume that q = q0 ⊗e11

for some defect projection q0 in I0, since in any case q is a non-zero projection
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in I whose K0−class is zero in K0(I ), and all such projections are equivalent
by [17]. Thus pAq = pIq ∼= I0q ⊗ 	2, which is extremally rich.

4. Isometrically rich C∗-algebras

4.1. Overview

A unital C∗-algebra A is called isometrically rich if the set A−1
	 ∪A−1

r of left or
right invertible elements is dense in A. As for extremal richness we circumvent
the non-unital case by declaring A to be isometrically rich if Ã is isometrically
rich.

A whole theory parallel to that of extreme richness could be developed for
isometrically rich C∗-algebras. We leave it to the interested reader to check
that the main results in sections 3–6 of [10] remain true when A−1

	 ∪ A−1
r

and the set Ei (A) ∪ Ei (A)∗ of isometries and co-isometries are substituted for
A−1

q and E (A). Actually some statements (and many proofs) become simpler:
Isometries and co-isometries are preserved under unital embeddings, so that
[10, Proposition 5.2] now takes the simple form that any unital, inductive limit
of isometrically rich C∗-algebras is isometrically rich. But inspection of [10,
Example 6.12] reveals that the extension theory does not simplify. We warn
the reader that although Proposition 4.3 involves isometric richness for the
quotient, it only guarantees extremal richness for the extension. The extended
Toeplitz algebra (cf. [31, Propositions 9.3–9.5] and [10, Proposition 6.10]) is
a specific (counter) example because it is not isometrically rich (having no
proper isometries or co-isometries).

Of course, when the C∗-algebra A is prime, then A−1
q = A−1

	 ∪ A−1
r and

E (A) = Ei (A)∪Ei (A)∗, so that the notions of extremal and isometric richness
coalesce. This easier case was considered in [31, §8], and the concept of
isometric richness is also implicit in Rørdam’s paper [36, 3.3].

Proposition 4.2. A unital C∗-algebra A is isometrically rich if and only
if A is extremally rich and

E (A) = Ei (A) ∪ Ei (A)∗ .

Proof. It suffices to assume A = (A−1
l )= ∪ (A−1

r )= and then to show that
E (A) = Ei (A)∪Ei (A)∗. For this, take v in E (A) and assume that v ∈ (A−1

l )=.
By [31, Corollary 7.2] this means that for any continuous function f on R+
vanishing in a neighbourhood of zero there is an isometry w in Ei (A) such that
vf (|v|) = wf (|v|). Since v is a partial isometry f (|v|) = |v|, provided only
that f (0) = 0 and f (1) = 1, so we actually have v = wv∗v. Multiplying
from left and right with w∗ and v∗, respectively, this gives w∗vv∗ = v∗, so
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that also v = vv∗w. However, v ∈ E (A) and thus

0 = (1 − vv∗)w(1 − v∗v) = (w − v)(1 − v∗v) = w − v,

whence v = w ∈ Ei (A) as desired.

Proposition 4.3. Suppose that

0 −→ K −→ A
ρ−→ B −→ 0

is a short exact sequence, where K as usual denotes the algebra of compact
operators. If B is isometrically rich then A is extremally rich.

Proof. Since B(H ) is the multiplier algebra of K with corona algebra
Q = B(H )/K we obtain a commutative diagram

0 −−−→ K −−−→ A
ρ−−−→ B −−−→ 0

↓η ↓τ

0 −−−→ K −−−→ B(H ) π−−−→ Q −−−→ 0

in which the right square is a pullback diagram, cf. [32, Remark 3.2].
Assuming, as we may, that A and B and all the morphisms are unital we

take u in E (B). Since B is isometrically rich, u is either an isometry or a
co-isometry. Assuming the former we see that τ(u) is an isometry in Q. Now
by standard techniques we can choose w in B(H) such that π(w) = τ(u) and
w is an isometry or co-isometry. The co-isometry case occurs only if τ(u) is a
unitary with positive index. Since A = B ⊕Q B(H ) it follows that the element
v = (u, w) is in E (A). (In the case where w is not an isometry, the right defect
projection of v is in K and the left defect projection is in the kernel of η.)

This shows that ρ(A−1
q ) = B−1

q , and since B is extremally rich, whereas K
has stable rank one we conclude from [10, Corollary 6.3] that A is extremally
rich.

The pullback method used above is capable of considerable generalization,
cf. [13, Section 4]. In particular K may be replaced with any dual C∗-algebra.

Example 4.4. If B is a unital C∗-algebra on a (separable) Hilbert space H

such that E (B) contains an extreme partial isometry, neither of whose defect
projections is compact, then the C∗-algebra A = K +B is not extremally rich.
If it were, then

E (A)/K = E (A/K)

by [10, Theorem 6.1]. But elements in E (A) are either isometries or co-
isometries because A is prime; whereas E (A/K) contains an element which is
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neither isometric nor co-isometric. This elementary (counter-)example shows
the necessity of demanding B isometrically rich (not just extremally rich) in
Proposition 4.3.

The following proposition offers one way of reducing questions about iso-
metric richness to extremal richness, cf. 4.1.

Proposition 4.5. A C∗-algebra A is isometrically rich if and only if A is
a quotient of an extremally rich, primitive C∗-algebra B.

Proof. If A = B/I as stated, then A is isometrically rich because B is,
and obviously isometric richness passes to quotients.

Conversely, if A is isometrically rich let ρ: A → B(H ) be a faithful rep-
resentation such that

ρ(A) ∩ K = {0},
where K again denotes the algebra of compact operators on H . One such can
be obtained by choosing a faithful representation (σ, H0), and then letting ρ

be the infinite amplification of σ on H = H0 ⊗ 	2. If B = ρ(A) + K then
Proposition 4.3 applies to show that B is extremally rich, and obviously B is
primitive.

Lemma 4.6. Let A be an isometrically rich C∗-algebra. Then for each finite
set {pi} of defect projections in A there is some defect projection p, such that⊕

pi ∼ p.

Proof. We have isometries ui such that pi = 1 − uiu
∗
i for i = 1, . . . , n.

Define the isometry u = u1u2 . . . un. Then with vi = u1u2 . . . ui (and v0 = 1)
we have

1 − uu∗ =
n∑

i=1

vi−1(1 − uiu
∗
i )v

∗
i−1 ∼

n⊕
i=1

pi,

so we can take p = 1 − uu∗.

Theorem 4.7. Every isometrically rich, unital C∗-algebra A with no quo-
tients of stable rank one is properly infinite. In particular, tsr(A) = ∞.

Proof. As in the proof of Lemma 3.5 we can find defect projections p1, . . . ,

pm such that 1 �
⊕

pk . By Lemma 4.6 there is a defect projection p such
that p ∼ ⊕

2pk . Consequently,

21 �
⊕

2pk ∼ p ≤ 1 .
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Corollary 4.8. Every primitive quotient of an extremally rich, unital C∗-
algebra A with no quotients of stable rank one is properly infinite. In particular,
tsr(A) = ∞.

4.9. Hindsight

Concluding our discussion of isometrically rich C∗-algebras we wish to point
out a detracting element. Being extremally rich for a unital C∗-algebra A with
closed unit ball A1 can be expressed by the condition

A1 = conv(E (A)),

or by demanding that A has the (uniform) λ−property, cf. [11, Theorem 3.7].
Any isometric linear map between unital C∗-algebras will therefore preserve
extremal richness. By contrast, isometric richness (density of A−1

	 ∪ A−1
r ) is

not an isometric invariant, not even invariant under Jordan ∗-isomorphisms.
To be specific let j : T → T denote the Jordan ∗-automorphism of the

Toeplitz algebra T obtained by transposition. In particular, j (s) = s∗, where
s denotes the unilateral shift on 	2 (so that T = C∗〈s〉). If π : T −→ C(T)

denotes the quotient morphism of T with kernel K and θ is the ∗-automorphism
of C(T) given by θ(f )(t) = f (t−1) we see that j is a lift of θ , i.e. π(j (x)) =
θ(π(x)).

We realize the extended Toeplitz algebra as a pullback, cf. [10, 6.10],

Te = {(x, y) ∈ T ⊕ T | π(x) = θ(π(y))}
and obtain a Jordan ∗-isomorphism k of Te onto the double Toeplitz algebra

Td = {(x, y) ∈ T ⊕ T | π(x) = π(y)}
by the formula k(x, y) = (x, j (y)). Since Td is an extension of K ⊕ K by
C(T) it follows from simple index considerations that Td is isometrically
rich. By contrast, Te is our canonical example of an extremally rich, but not
isometrically rich C∗-algebra.

4.10. AW ∗-Algebras

An AW ∗-algebra is a (necessarily unital) C∗-algebra A such that for each
subset S ⊂ A the (left and right) ideals of left and right annihilators of S,
denoted by ⊥S and S⊥, respectively, are principal. Thus for some (unique)
projections p and q in A we have

⊥S = Ap and S⊥ = qA.
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AW ∗-algebras and their purely algebraic counterparts Baer ∗-rings were
introduced by Kaplansky, see [22, pp. 71–86], in order to axiomatize the in-
trinsic (i.e. non-spatial) theory of von Neumann algebras. The program was
quite successful and led to substantial simplification and better insight towards
the original material. (Despite the line in a contemporary Chicago student re-
vue: “We’re at sea; Capt’n Lansky has lost his bearings!”) The monograph [5]
remains the standard reference for AW ∗-algebras.

Every element in an AW ∗-algebra A has a polar decomposition, [5, §21,
Proposition 2]. Moreover, since the projections in A enjoy “generalized com-
parability”, every partial isometry extends to an extremal partial isometry, [5,
§14, Exercise 19A]. Using the formula

z = 1
2 (z + i(1 − z2)

1
2 ) + 1

2 (z − i(1 − z2)
1
2 )

for 0 ≤ z ≤ 1, it follows that every element x in the closed unit ball of A

can be written as x = 1
2 (v + w) with v, w in E (A), cf. [5, §21, Exercise 9A].

The elements v and w can even be taken homotopic to each other. Thus AW ∗-
algebras are extremally rich in the same strong way as von Neumann algebras
are. In particular, they have the uniform λ-property with λ(x) ≥ 1

2 for every
x, cf. [11, Theorem 3.7].

4.11. Rickart Algebras

A Rickart C∗-algebra is a (unital) C∗-algebra A such that the AW ∗-condition
holds only for singleton sets. Thus, for each element x in A there are (unique)
projections p and q in A such that

⊥{x} = Ap and {x}⊥ = qA.

These algebras are sequential analogues of Kaplansky’s AW ∗-algebras, in the
sense that only countably many projections can be added at a time, see [5]
or [22]; but whereas AW ∗-algebras are extremally rich, this is not true for all
Rickart C∗-algebras, cf. Proposition 4.12. However, many of them certainly
are, and in any case their von Neumann algebraic tendencies are so strong that
they will satisfy most of the properties expected for extremally rich C∗-algebras
of real rank zero.

In [1, §1] Ara introduced the ideal I (A) of a Rickart C∗-algebra A as the
closed ideal generated by what we might call the “infinitesimal” projections in
A, i.e. projections p such that p ⊕ 1 � 0 ⊕ 1 in M2(A). He proceeded to show
that I (A) is a Rickart ideal, and the smallest closed ideal such that A/I (A)

is finite, [1, Theorem 1.5]. The ideal was then used in [1] and the subsequent
papers [2], [3], [4] to establish a number of interesting results for Rickart C∗-
algebras by dividing the problem into the finite case (where techniques from
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von Neumann regular rings apply) and the infinite case (where most of the
obstructions for equivalence vanish). Of particular interest in this context is
[2, Theorem 3.5] which states that every quotient C∗-algebra of a Rickart C∗-
algebra has K1-surjectivity, cf. [14]. We are indebted to Ara and Goodearl for
this information as well as for the idea for the example in 4.12. Examples like
this appear in [19, 14.35] and in Section IV of [20].

Evidently our defect ideal must equal Ara’s ideal I (A) for every extremally
rich Rickart C∗-algebra A, cf. Proposition 3.2. However, easy computations
with operator-valued 2 × 2-matrices show that every infinitesimal projection
is sub-equivalent to a defect projection arising from an isometry. Thus, for a
general (unital) C∗-algebra A, the ideal I (A) is generated by defect projections
from the isometries in A, whence I (A) ⊂ D(A). This inclusion may be strict.
For example, if we take the extended Toeplitz algebra Te, which has no non-
unitary isometries by [31, Proposition 9.4], then

I (Te) = 0 whereas D(Te) = K ⊕ K.

On the other hand, if the C∗-algebra A is isometrically rich, then I (A) =
D(A), and all the defect projections are infinitesimal. To some extent this may
explain why the theory of isometrically rich C∗-algebras is easier to handle
than the general extremally rich case.

Proposition 4.12. There exists a primitive Rickart C∗-algebra which is
not extremally rich.

Proof. Let H and Hω denote a separable and a nonseparable Hilbert space,
respectively. With B = B(H )⊕B(H ) we consider a unital embedding ρ: B →
B(Hω) such that ρ(B)∩B1(Hω) = 0, where B1(Hω) denotes the Rickart ideal
of operators on Hω with separable ranges. Specifically, we take ρ(B) = 1⊗B

referring to a decomposition of Hω as Hω ⊗ (H ⊕ H ).
Let A = ρ(B) + B1(Hω). Then it is easy to verify that A is a Rickart

C∗-algebra, evidently primitive. If it were extremally rich then

E (A)/B1(Hω) = E (B)

by [10, Theorem 6.1]. However, each extreme partial isometry of the prime
C∗-algebra A must be either an isometry or a co-isometry, contradicting the
fact that E (B) contains the element s ⊕ s∗, where s denotes the unilateral shift
on H .
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