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REGULARITY BELOW THE CONTINUOUS
THRESHOLD IN A TWO-PHASE PARABOLIC

FREE BOUNDARY PROBLEM

KAJ NYSTRÖM

Abstract

In this paper we study free boundary regularity in a parabolic two-phase problem below the
continuous threshold. We consider unbounded domains � ⊂ Rn+1 assuming that ∂� separates
Rn+1 into two connected components �1 = � and �2 = Rn+1 \ �. We furthermore assume that
both�1 and�2 are parabolic NTA-domains, that ∂� isAhlfors regular and for i ∈ {1, 2} we define
ωi(X̂i , t̂ i , ·) to be the caloric measure at (X̂i , t̂ i ) ∈ �i defined with respect to �i . In the paper
we make the additional assumption that ωi(X̂i , t̂ i , ·), for i ∈ {1, 2}, is absolutely continuous with
respect to an appropriate surface measure σ on ∂� and that the Poisson kernels ki(X̂i , t̂ i , ·) =
dωi(X̂i , t̂ i , ·)/dσ are such that log ki(X̂i , t̂ i , ·) ∈ VMO(dσ ). Our main result (Theorem 1) states
that, under these assumptions, Cr(X, t)∩ ∂� is Reifenberg flat with vanishing constant whenever
(X, t) ∈ ∂� and min{t̂1, t̂2} > t + 4r2. This result has an important consequence (Theorem 3)
stating that if the two-phase condition on the Poisson kernels is fulfilled, �1 and �2 are parabolic
NTA-domains and ∂� is Ahlfors regular then if � is close to being a chord arc domain with
vanishing constant we can in fact conclude that � is a chord arc domain with vanishing constant.

1. Introduction

In this paper we study a free boundary regularity problem for a parabolic
two-phase problem below the continuous threshold. We consider unbounded
domains � ⊂ Rn+1 assuming that ∂� separates Rn+1 into two connected
components �1 = � and �2 = Rn+1 \ � (this is made more precise in
Definition 3 below). We furthermore assume that both �1 and �2 are parabolic
NTA-domains and our notion of parabolic NTA-domains is defined at the
beginning of section 2 below. As is described below the bounded continuous
Dirichlet problem for the heat equation always has a unique solution in this
type of domains. Let (X, t), X = (x0, . . . , xn−1), t ∈ R denote a point in Rn+1

and for given r > 0 set Cr(X, t) = {(Y, s) : |Y − X| < r, |t − s| < r2}.
For fixed (X̂, t̂) ∈ � we let ω(X̂, t̂ , ·) denote the parabolic measure (in this
paper this measure is refered to as the caloric measure) for the heat equation
obtained from the maximum principle and the Riesz representation theorem.
Let �(X, t, r) = Cr(X, t) ∩ ∂� whenever (X, t) ∈ ∂� and r > 0. Given
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(X̂, t̂) ∈ � let (X, t) ∈ ∂� and suppose |X− X̂|2 ≤ A(t̂ − t) for some A ≥ 2.
In [11] it is proven that ω(X̂, t̂ , ·) is, in the setting of parabolic NTA-domains,
a doubling measure in the sense that there exists a1 = a1(n,A) such that if
t̂ − t ≥ 8r2 then

ω
(
X̂, t̂ , �(X, t, 2r)

) ≤ a1ω
(
X̂, t̂ , �(X, t, r)

)
.

For i ∈ {1, 2} we let (X̂i, t̂ i ) ∈ �i and define ω1(X̂1, t̂1, ·) and ω2(X̂2, t̂2, ·) to
be the caloric measures defined w.r.t. �1 and �2 respectively. For a Borel set
F ⊂ Rn+1 we let F̄ , ∂F denote the closure and the boundary of F respectively,
and define σ(F ) = ∫

F
dσt dt where dσt is n − 1 dimensional Hausdorff

measure on the time slice F ∩ (Rn × {t}).
Definition 1. Let � be a connected open set in Rn+1. We say that ∂�

satisfies a (M,R) Ahlfors condition, M ≥ 4, if for all (X, t) ∈ ∂� and
0 < r ≤ R,

σ(∂� ∩ Cr(X, t)) ≤ Mrn+1.

Using the fact that Hausdorff measure does not increase under a projection
we deduce that for 0 < r ≤ R, (X, t) ∈ ∂�,

(1) (r/2)n+1 ≤ σ(∂� ∩ Cr(X, t)) ≤ Mrn+1,

whenever ∂� separates Rn+1 and satisfies a (M,R) Ahlfors condition.
In the following we define a notion of two-sided NTA-domains withAhlfors

regular boundary. For the technical definition of our notion of parabolic NTA-
domains we refer the reader to the beginning of section 2 below.

Definition 2. If � is a connected open set in Rn+1 such that ∂� separates
Rn+1 into two connected components �1 = � and �2 = Rn+1 \� and �1 and
�2 are parabolic NTA-domains then we call � a two-sided NTA-domain. If,
in addition, ∂� satisfies a (M,R) Ahlfors for some R > 0 then � is called a
two-sided NTA-domain with Ahlfors regular boundary.

In the following we will assume that � is a two-sided NTA-domain with
Ahlfors regular boundary and that ωi(X̂i, t̂ i , ·), for i ∈ {1, 2}, is absolutely
continuous with respect to the surface measure σ . We define Poisson ker-
nels as ki(X̂i, t̂ i , ·) = dωi(X̂i, t̂ i , ·)/dσ . The regularity assumption that we
will impose on the Poisson kernels is that log ki(X̂i, t̂ i , ·) ∈ VMO(dσ ) for
i ∈ {1, 2}. VMO(dσ ) is the space of functions of vanishing mean oscil-
lation defined w.r.t. the measure dσ . To properly define this space we let
a = a(�(X, t, ρ), f ) denote the average off = log ki(X̂i, t̂ i , ·) on�(X, t, ρ)



regularity below the continuous threshold in . . . 259

with respect to σ . Then we say that f ∈ VMO(dσ ) provided for each compact
K ⊂ ∂� ∩ {(Y, s) : s < t̂ i},

lim
r→0

sup
(X,t)∈K
0<ρ≤r

σ (�(X, t, ρ))−1
∫
�(X,t,ρ)

|f (Y, s) − a| dσ = 0.

We are interested in understanding the implications of this condition on the
regularity of the ‘free boundary’ ∂�. To formulate our main theorem we need
to properly introduce the notion of δ0-Reifenberg flat domains.

Definition 3. If � is a connected open set in Rn+1 then we say that ∂�
separates Rn+1 and is δ0-Reifenberg flat, 0 < δ0 ≤ 1/10, if given any (X, t) ∈
∂�, R > 0, there exists a n dimensional plane P̂ = P̂ (X, t, R), containing
(X, t) and a line parallel to the t axis, having unit normal n̂ = n̂(X, t, R) such
that

{(Y, s) + rn̂ ∈ CR(X, t) : (Y, s) ∈ P̂ , r > δ0R} ⊂ �,

{(Y, s) − rn̂ ∈ CR(X, t) : (Y, s) ∈ P̂ , r > δ0R} ⊂ Rn+1 \ �.

For short we say that ∂� separates Rn+1 when the last two conditions hold for
some δ0.

Note that if ∂� separates Rn+1 in the sense of Definition 1, then a line
segment drawn parallel to n̂ and with endpoints in each of the sets stated in the
definition, also intersects ∂�. We will often refer to � as being a δ0-Reifenberg
flat domain if ∂� is δ0-Reifenberg flat. We pose one more definition.

Definition 4. Let � be a connected open set in Rn+1, (X, t) ∈ ∂�, and
r > 0. We say that Cr(X, t) ∩ ∂� is Reifenberg flat with vanishing constant
in the parabolic sense, if for each ε > 0, there exists ρ0 = ρ0(ε) > 0 with
the following property. If (X̃, t̃) ∈ Cr(X, t) ∩ ∂� and 0 < ρ ≤ ρ0, then there
exists a plane P ′(X̃, t̃ , ρ) containing a line parallel to the t axis such that the
statement in Definition 3 holds with R, δ0, P̂ replaced by ρ, ε, P ′.

We are now ready to state our main theorem.

Theorem 1. Assume that � is a two-sided NTA-domain with Ahlfors reg-
ular boundary. Let (X̂i, t̂ i ) ∈ �i , for i ∈ {1, 2}, t̂2 < t̂1 and assume that
ωi(X̂i, t̂ i , ·), for i ∈ {1, 2}, is absolutely continuous with respect to σ on
∂� and that the Poisson kernels ki(X̂i, t̂ i , ·) = dωi(X̂i, t̂ i , ·)/dσ are such
that log ki(X̂i, t̂ i , ·) ∈ VMO(dσ ). Then Cr(X, t) ∩ ∂� is Reifenberg flat with
vanishing constant whenever (X, t) ∈ ∂� and t̂2 > t + 4r2.

To formulate an important consequence of Theorem 1, giving a theorem
(Theorem 3) on free boundary regularity beyond the continuous threshold, we
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recall that through the works in [17], [9] it has become clear that from the
perspective of parabolic singular integrals and caloric measure the parabolic
analogue of the notion of Lipschitz domains, explored in elliptic partial differ-
ential equations, is graph domains � = {(X, t) ∈ Rn+1 : x0 > ψ(x, t)} where
ψ = ψ(x, t) : Rn → R has compact support and satisfies

|ψ(x, t) − ψ(y, t)| ≤ b1|x − y|, x, y ∈ Rn−1, t ∈ R,(2)

Dt
1/2ψ ∈ BMO(Rn), ‖Dt

1/2ψ‖∗ ≤ b2 < ∞.(3)

Here Dt
1/2ψ(x, t) denotes the 1/2 derivative in t of ψ(x, ·), x fixed. This half

derivative in time can be defined by way of the Fourier transform or by

Dt
1/2ψ(x, t) ≡ ĉ

∫
R

ψ(x, s) − ψ(x, t)

|s − t |3/2
ds

for properly chosen ĉ. ‖ · ‖∗ denotes the norm in parabolic BMO(Rn) (for a
definition of this space see [11]). One can prove that the conditions in (2) and
(3) imply that ψ(x, t) is parabolically Lipschitz in the following sense,

|ψ(x, t) − ψ(y, s)| ≤ β(|x − y| + |t − s|1/2) x, y ∈ Rn t, s ∈ R.

Under the smoothness assumptions on ψ stated in (2) and (3) it was proven
in [17] that the parabolic Poisson kernel is in a certain Lp reverse Hölder class
for some p > 1. In particular ω(X̂, t̂ , ·) is an A∞ weight (with respect to σ ).
Finally we note that examples of [16] and [18] show that caloric and adjoint
caloric measure need not be absolutely continuous with respect to the surface
measure σ in graph Lip(1, 1/2) domain.

In [11] the parabolic Poisson kernel was analyzed in domains not locally
given by graphs. In this situation the geometry was controlled by a certain
geometric square function, the boundedness of which implied that on every
scale the boundary contained ‘big pieces of graph’, graph with the regularity
stated in (2) and (3) (see [10]). A fundamental assumption in [11] is that ∂�
is δ0-Reifenberg flat and satisfies a (M,R) Ahlfors condition but to properly
formulate the result in [11] we need to introduce some more notation and
concepts.

Let

d(F1, F2) = inf{|X − Y | + |s − t |1/2 : (X, t) ∈ F1, (Y, s) ∈ F2}
denote the parabolic distance between the sets F1, F2 and for � (such that ∂�
separates Rn+1 and satisfies a (M,R) Ahlfors condition) we set

γ (Z, τ, r) = inf
P

[
r−n−3

∫
∂�∩Cr (Z,τ)

d({(Y, s)}, P )2 dσ(Y, s)

]
.
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Here the infimum is taken over all n dimensional planes P containing a line
parallel to the t axis. Let

dν(Z, τ, r) = γ (Z, τ, r) dσ (Z, τ)r−1 dr.

We say that ν is a Carleson measure on [∂�∩CR(Y, s)]× (0, R) if there exists
M1 < ∞ such that whenever (X, t) ∈ ∂� and Cρ(X, t) ⊂ CR(Y, s), we have

(4) ν
(
[Cρ(X, t) ∩ ∂�] × (0, ρ)

) ≤ M1ρ
n+1.

The smallest such M1 is called the Carleson norm of ν on [∂� ∩ CR(Y, s)] ×
(0, R) and we write ‖ν‖+ for the Carleson norm of ν if the inequality in (4)
holds for all ρ > 0. The following two definitions can be found in [10] and
[11].

Definition 5. ∂� is said to be uniformly rectifiable (in the parabolic sense)
if ‖ν‖+ < ∞ and if (4) and (1) hold for all ρ > 0 and R > 0 respectively. If
furthermore ∂� separates Rn+1 and is uniformly rectifiable, then � is called a
parabolic regular domain.

Definition 6. � is called a chord arc domain with vanishing constant if
� is a parabolic regular domain and

(5) sup
(X,t)∈∂�

0<ρ≤r

[
ρ−(n+1)ν([Cρ(X, t) ∩ ∂�] × (0, ρ))

] → 0 as r → 0.

To formulate the result in [11] which is relevant to the discussions in this
paper we for (X, t) ∈ ∂�, and r, ρ > 0 define �(X, t, r, ρ) = {(Y, s) ∈
∂� : |Y − X| < r, |s − t | < ρ2}. In this notation �(X, t, r) = �(X, t, r, r).
We say that ω(X̂, t̂ , ·) is asymptotically optimal doubling if whenever K ⊂
∂� ∩ {(Y, s) : s < t̂} is compact and 0 < τ1, τ2 < 1, we have

lim
r→0

sup
(X,t)∈K

ω(�(X, t, τ1r, τ2r))

ω(�(X, t, r))
= lim

r→0
inf

(X,t)∈K

ω(�(X, t, τ1r, τ2r))

ω(�(X, t, r))

= τn−1
1 τ 2

2 .

In [11] it is proven that if � is a parabolic regular domain with Reifenberg con-
stant δ0 = δ0(M, ‖ν‖+), sufficiently small, thenω is anA∞ weight. Also if� is
a chord arc domain with vanishing constant and k(X̂, t̂ , ·) = dω(X̂, t̂ , ·)/dσ ,
then log k(X̂, t̂ , ·) ∈ VMO(dσ ). Furthermore in [11] the following theorem is
proven.

Theorem 2. Let � be a parabolic regular domain and put k(X̂, t̂ , ·) =
dω(X̂, t̂ , ·)/dσ . If ω(X̂, t̂ , ·) is asymptotically optimal doubling, log k(X̂, t̂ , ·)
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∈ VMO(dσ ) and ‖ν‖+ is small enough then (5) holds with ∂� replaced by
any compact subset, F ⊂ ∂� ∩ {(Y, s) : s < t̂}.

Combining Theorem 1, Theorem 2 and Proposition 5.1 in [11] we can state
the following theorem.

Theorem 3. Assume that � is a two-sided NTA-domain with Ahlfors reg-
ular boundary and that � is a parabolic regular domain. Let (X̂i, t̂ i ) ∈ �i ,
for i ∈ {1, 2}, t̂2 < t̂1 and assume that the Poisson kernels ki(X̂i, t̂ i , ·) =
dωi(X̂i, t̂ i , ·)/dσ are such that log ki(X̂i, t̂ i , ·) ∈ VMO(dσ ) for i ∈ {1, 2}. If
‖ν‖+ is small enough and F is a compact subset of ∂�∩{(Y, s) : s < t̂}, then
(5) holds with ∂� replaced by F .

The theorem states that the conditions log k1(X̂1, t̂1, ·) ∈ VMO(dσ ) and
log k2(X̂2, t̂2, ·) ∈ VMO(dσ ) can serve, from the perspective of Theorem 3,
as a replacement for the condition that ω(X̂, t̂ , ·) is asymptotically optimal
doubling.

Concerning related elliptic free boundary problems a classical result of Alt-
Caffarelli states (for the definition of all the concepts we refer to [1] and [14])
that if � ⊂ Rn is δ-Reifenberg flat with an Ahlfors regular boundary and if
log k ∈ C0,β(∂�) for some β ∈ (0, 1), then � is a C1,α-domain for some
α ∈ (0, 1) which depends on β and n. Similar problems was studied by Kenig
and Toro, in the setting of domains not locally given by graphs, and in [14]
(see also [12] and [13]) the authors prove the following theorem which is the
analogue of the result of [1] assuming vanishing oscillation of the logarithm of
the Poisson kernel in an integral sense (VMO(dσ )) instead of in the classical
pointwise sense.

Theorem 4. Assume that � ⊂ Rn is δ0-Reifenberg flat for some small
enough δ0 > 0 and assume that ∂� is Ahlfors regular. If log k ∈ VMO(dσ )

then � is a chord arc domain with vanishing constant, i.e., the measure the-
oretical normal �n is in VMO(dσ ).

Furthermore in [15], Kenig and Toro consider the elliptic version of the
two-phase problem we consider in Theorem 1 and Theorem 3. In particular
assuming that � ⊂ Rn is a two-sided chord arc domain (meaning that �1 and
�2 are NTA-domains and that ∂� is Ahlfors) they prove ([15, Corollary 5.2])
that if log k1 ∈ VMO(dσ ) and log k2 ∈ VMO(dσ ) then firstly ∂� is Reifen-
berg flat with vanishing constant and secondly � is a chord arc domain with
vanishing constant, i.e., the measure theoretical normal �n is in VMO(dσ ).

Our long term goal is to establish the parabolic version of Theorem 4 (which
can be refered to as a one-phase version of the two-phase problem we consider
in Theorem 1 and Theorem 3) but we note that the proof in [14] uses the import-
ant and deep result of [1] for elliptic partial differential equations. The potential



regularity below the continuous threshold in . . . 263

generalization of these results to the heat equation is currently unknown and
these ‘free boundary’ type problems do in fact appear harder in the caloric
case. By imposing the two-phase condition log k1(X̂1, t̂1, ·) ∈ VMO(dσ ) and
log k2(X̂2, t̂2, ·) ∈ VMO(dσ ) we do not need a caloric version of the result of
[1] and this is one of the main reasons we are able to make progress. Though
similar problems have been considered in [2], [3] under much stronger assump-
tions we want to emphasize that our main results, Theorem 1 and Theorem 3,
are completely new and that we are not aware of any competing results of this
type in the parabolic setting. Finally we note that in [20] a similar but different
problem concerning caloric measure and Reifenberg flatness is studied.

The rest of the paper is organized as follows. In section 2 we in section list
some basic estimates for solutions to the heat – adjoint heat equation in para-
bolic NTA-domains. These estimates are then complemented by an estimate
based on an exploration of the condition log k(X̂, t̂ , ·) ∈ VMO(dσ ). In sec-
tion 2.2 we clarify the notion of Green function with pole at infinity and the
associated caloric measure. In section 3, which is at the heart of the matter,
our regularity assumptions on the kernel ki(X̂i, t̂ i , ·) is explored in a blow-up
argument. In the limit we encounter a problem of classification of what we
refer to as global solutions to a specific two-phase free boundary problem. The
section ends with a theorem giving us the appropriate classification and finally
it is shown that Theorem 1 is a consequence of that classification theorem.

2. Estimates of caloric functions in parabolic NTA-domains

Recall from [17, ch. 3, section 6] that � ⊂ Rn+1 is an unbounded parabolic
nontangentially accessible domain, NTA-domain for short, if ∂� separates
Rn+1 and if the following conditions are satisfied for some λ, γ ≥ 100. Given
(X, t) ∈ ∂� and r > 0 there exist

A1
r (X, t) = (U1(X, t), t1(X, t)) = (U1, t1) ∈ � ∩ Cr(X, t),

A
1
r (X, t) = (U2(X, t), t2(X, t)) = (U2, t2) ∈ � ∩ Cr(X, t),

A2
r (X, t) = (N1(X, t), τ1(X, t)) = (N1, τ1) ∈ (Rn+1 \ �̄) ∩ Cr(X, t),

A
2
r (X, t) = (N2(X, t), τ2(X, t)) = (N2, τ2) ∈ (Rn+1 \ �̄) ∩ Cr(X, t),

such that

λ−1r2 ≤ min(t2 − t, t − t1) ≤ λr2,

λ−1r2 ≤ min(τ2 − t, t − τ1) ≤ λr2,

r/λ ≤ min [d({(Ni, τi)}, ∂�), d({(Ui, ti)}, ∂�)] .
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Here d(·, ·) denotes the parabolic distance defined in the introduction. As in
[JK1] we refer to these conditions as the corkscrew condition. Next suppose
(Ui, si) ∈ �, i = 1, 2, with (s2 − s1)

1
2 > γ−1d({(U1, s1)}, {(U2, s2)}). We

say as in [JK1] that {Cri (Xi, ti)}l1 is a Harnack chain from (U1, s1) to (U2, s2)

with constant γ provided there exists c(γ ) ≥ 1 such that

• (U1, s1) ∈ Cr1(X1, t1), (U2, s2) ∈ Crl (Xl, tl), and Cri+1(Xi+1, ti+1) ∩
Cri (Xi, ti) �= ∅ for i = 1, 2, . . . , l − 1,

• c(γ )−1 d({(Xi, ti)}, ∂�) ≤ ri ≤ c(γ ) d({(Xi, ti)}, ∂�), when i =
1, 2, . . . , l,

• ti+1 − ti ≥ c(γ )−1r2
i , for i = 1, 2, . . . , l,

• l ≤ c(γ ) log

(
2 + d({(U1, s1)}, {(U2, s2)})

min[d({(U1, s1)}, ∂�), d({(U2, s2)}, ∂�)]

)
.

l is refered to as the length of the Harnack chain. For (X, t) ∈ ∂� and r > 0
we define the following points located in �,

Ar(X, t) = A1
r (X, t), Ar(X, t) = A

1
r (X, t).

By Ar(X, t) we will denote a point in � such that if Ar(X, t) = (Ax
r (X, t),

At
r (X, t)) then At

r(X, t) = t and d(Ar(X, t), ∂�) ∼ r ∼ d(Ar(X, t), (X, t)).
The existence of such points is a consequence of the fact that � is a parabolic
NTA-domain and we will make use of these points throughout the section. If
(Y, s) ∈ � then we let δ(Y, s) denote the parabolic distance from (Y, s) to ∂�.

2.1. Basic estimates

In this section we state some basic estimates for certain solutions to the heat and
adjoint heat equation in parabolic NTA-domains. An outline of the proofs of
these lemmas valid in the current situation can be found in [17, ch. 3, section 6]
and [11]. Apart from these references many of the relevant ideas used in the
proofs can also be found in [5], [6] and [19]. In particular, in [19] all relevant
estimates are stated and proved, in Lip(1, 1/2) domains, in the general setting
of second order parabolic equations in divergence form.

Note that the characteristics of a parabolic NTA-domain is described by
the parameters λ and γ and hence basically all constants appearing below will
depend on these two parameters. I.e., below c = c(λ, γ ) but the constants
often also depend on other parameters and we will not always indicate the
dependence on λ and γ .

We start by a lemma on Hölder decay at the boundary of non-negative
solutions vanishing on the boundary. The lemma is proved using standard



regularity below the continuous threshold in . . . 265

comparison arguments and the fact that the complement of � is uniformly
‘fat’.

Lemma 5. Let � ⊂ Rn+1 be a parabolic NTA-domain with parameters
λ and γ . Let (X, t) ∈ ∂� and suppose that u is a non-negative solution to
either the heat or the adjoint heat equation in � ∩ C2r (X, t) which vanishes
continuously on ∂� ∩ C2r (X, t). Then there exists α = α(λ, γ ), 0 < α < 1

2 ,
and c = c(λ, γ ) ≥ 1 such that whenever (Y, s) ∈ � ∩ Cr(X, t)

u(Y, s) ≤ c

[
d({(Y, s)}, {(X, t)})

r

]α

sup
(Z,τ)∈�∩Cr (X,t)

u(Z, τ).

The next lemma is a standard Carleson type lemma.

Lemma 6. Let u, � and (X, t) be as in the previous lemma. If (Y, s) ∈
� ∩ Cr/2(X, t), then

u(Y, s) ≤ cu(Ar(X, t))

when u is a solution to the heat equation while

u(Y, s) ≤ cu(Ar(X, t))

when u is a solution to the adjoint heat equation in C2r (X, t) ∩ �.

Given (Y, s) ∈ �, let G(·, Y, s) denote Green’s function for the heat equa-
tion in � with pole at (Y, s). That is

∂

∂t
G(X, t, Y, s) − �G(X, t, Y, s)

= δ((X, t) − (Y, s)) in � and G ≡ 0 on ∂�.

Here δ denotes the Dirac delta function and � is the Laplacian in X. We note
that G(Y, s, ·) is the Green’s function for the adjoint heat equation with pole at
(Y, s) ∈ � (i.e. − ∂

∂t
G(Y, s, ·) − �G(Y, s, ·) = δ(· − (Y, s)). Let ω, ω̂ be the

corresponding caloric and adjoint caloric measures for the heat – adjoint heat
equation in �. We note that ω(Y, s, ·), ω̂(Y, s, ·) are the Riesz measures asso-
ciated with G(Y, s, ·),G(·, Y, s) by way of the Riesz representation theorem
for sub caloric – adjoint caloric functions in Rn+1 \ {(Y, s)} (see [4]). From
this theorem we have that∫

∂�

φdω(Y, s, ·) =
∫
�

G(Y, s, ·)
(
�φ − ∂φ

∂τ

)
dZ dτ

for all φ ∈ C∞
0 (Rn+1 \ {(Y, s)}). A similar formula holds for ω̂. Estimates for

caloric – adjoint caloric measure in terms of the Green’s function and vice versa
are given by the following lemma. The proof follows by standard arguments.
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Lemma 7. Let � and (X, t) be as in the previous lemma. Let A ≥ 100 and
assume that (Y, s) ∈ � with |Y − X|2 ≤ A|s − t | and |s − t | ≥ 4r2. There
exists c = c(A) ≥ 1 such that if s > t , then

c−1rnG(Y, s, Ar(X, t)) ≤ ω(Y, s,�(X, t, r/2)) ≤ crnG(Y, s, Ar(X, t))

while if s < t ,

c−1rnG(Ar(X, t), Y, s) ≤ ω̂(Y, s,�(X, t, r/2)) ≤ crnG(Ar(X, t), Y, s).

Next we have the following backward Harnack inequality.

Lemma 8. Let � and (X, t) be as in the previous lemma. Let A ≥ 100 and
assume that |Y −X|2 ≤ A|s − t | and |s − t | ≥ 5r2. There exists c = c(A) ≥ 1
such that

G(Y, s, Ar(X, t)) ≤ cG(Y, s, Ar(X, t))

when s > t while if s < t , then

G(Ar(X, t), Y, s) ≤ cG(Ar(X, t), Y, s).

Combining the previous two lemmas the doubling property of caloric –
adjoint caloric measure can be proven.

Lemma 9. Let �, (X, t), (Y, s) and A be as in the previous lemma. Then

ω∗(Y, s,�(X, t, r)) ≤ c(A)ω∗(Y, s,�(X, t, r/2))

where ω∗ = ω when s > t while ω∗ = ω̂ when s < t .

Let (X, t) ∈ ∂�, ρ > 0 and R > 0. u > 0 is said to satisfy a strong
Harnack inequality in CR(X, t) ∩ � provided that u is a solution to either the
heat or adjoint heat equation in CR(X, t) ∩ � and

u(X̂, t̂) ≤ λ̃u(X̃, t̃) whenever (X̂, t̂), (X̃, t̃) ∈ Cρ(Z, τ)

and C2ρ(Z, τ) ⊂ CR(X, t) ∩ �.

Here λ̃, 1 ≤ λ̃ < ∞, is independent of C2ρ(Z, τ) ⊂ CR(X, t)∩�. For (X, t),
ρ as above and A > 0 we define

7+
A(X, t, ρ) = � ∩ {(Y, s) : |Y − X|2 ≤ A|s − t |, |s − t | ≥ 5ρ2, s > t},

7−
A(X, t, ρ) = � ∩ {(Y, s) : |Y − X|2 ≤ A|s − t |, |s − t | ≥ 5ρ2, s < t}.

Using Lemma 7, Lemma 8 and Lemma 9 one can prove that if (Y, s) ∈
7+

A(X, t, R) then G(Y, s, ·) satisfies a strong Harnack inequality in CR(X, t)∩
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� while if (Y, s) ∈ 7−
A(X, t, R) then G(·, Y, s) satisfies a strong Harnack

inequality in CR(X, t) ∩ �. Moreover, λ̃ depends only on A once the NTA-
constants λ and γ have been chosen. Using the notion of strong Harnack
inequality the following two comparison lemmas can be proven.

Lemma 10. Let u, v > 0 be continuous in C̄2r (X, t) ∩ �̄, u = v = 0 on
�(X, t, 2r) and assume that u and v both are solutions either to the heat or
the adjoint heat equation in C2r (X, t) ∩ �. If u, v satisfy a strong Harnack
inequality in C2r (X, t) ∩ � for some λ̃ ≥ 1, then

u(Y, s)

v(Y, s)
≤ c(λ̃)

u(Û)

v(Û)
in Cr/2(X, t) ∩ �̄.

Here Û = Ar(X, t) when u, v are solutions to the heat equation while Û =
Ar(X, t) when u, v are solutions to the adjoint heat equation in �∩C2r (X, t).

Lemma 11. Under the same hypotheses as in Lemma 10 there exists γ̃ =
γ̃ (λ̃), 0 < γ̃ ≤ 1/2, and c = c(λ̃) ≥ 1, such that whenever 0 < ρ ≤ r/2 then

∣∣∣∣u(Z, τ) v(Y, s)

v(Z, τ) u(Y, s)
− 1

∣∣∣∣ ≤ c(ρ/r)γ̃ for (Z, τ), (Y, s) ∈ Cρ(X, t) ∩ �.

In the following we will assume that � ⊂ Rn+1 is a parabolic NTA-domain
with Ahlfors regular boundary. Let (X̂, t̂) ∈ � and define ω(X̂, t̂ , ·) to be the
caloric measure defined w.r.t.�. In the following we will assume thatω(X̂, t̂ , ·)
is absolutely continuous with respect to the surface measure σ . We define
the Poisson kernel as k(X̂, t̂ , ·) = dω(X̂, t̂ , ·)/dσ and we will assume that
log k(X̂, t̂ , ·) ∈ VMO(dσ ). We start by exploring the information contained
in this condition.

Lemma 12. Let � ⊂ Rn+1 be a parabolic NTA-domain with Ahlfors regular
boundary. Assume that ω(X̂, t̂ , ·) is absolutely continuous with respect to the
surface measure σ and that the Poisson kernel k(X̂, t̂ , ·) = dω(X̂, t̂ , ·)/dσ is
such that

log k(X̂, t̂ , ·) ∈ VMO(dσ ).

Then given ε ∈ (0, 1) there exists a constant C = C(ε, n,�,A) such that for
all (X, t) ∈ ∂�, r < r0, |X − X̂|2 ≤ A(t̂ − t) for some A ≥ 2, t̂ − t ≥ 8r2

and E ⊂ �(X, t, r),

C−1

(
σ(E)

σ(�(X, t, r))

)1+ε

≤ ω(X̂, t̂ , E)

ω(X̂, t̂ , �(X, t, r))
≤ C

(
σ(E)

σ(�(X, t, r))

)1−ε

.
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Proof. Let p = ε−1 and let E ⊂ �(X, t, r) and �(X, t, r) be as in the
statement of the lemma. Note that the restrictions on the points (X, t) and (X̂, t̂)

imply control of the doubling constants of the caloric measure. Also note that
the information on � entering into the constant C = C(ε, n,�,A) is simply
the NTA-parameters and the constants appearing in the Ahlfors condition.
In the following we write k(Y, s) = k(X̂, t̂ , Y, s), ω(E) = ω(X̂, t̂ , E). By
Cauchy-Schwarz we have

ω(E) =
∫
E

k(Y, s) dσ (Y, s) ≤
( ∫

�(X,t,r)

[k(Y, s)]p dσ(Y, s)

)1/p

σ (E)1−1/p.

As a consequence of the John-Nirenberg inequality, as ∂� satisfies a condition
ofAhlfors type w.r.t. the surface measure, (see for instance the discussion above
Theorem 2.1 in [14] as well as [7], [8]) the assumption log k ∈ VMO(dσ )

implies that if 1 < p < ∞ the following reverse type Hölder inequalities are
true,
( ∫

�(X,t,r)

[k(Y, s)]p dσ(Y, s)

)1/p

≤ C[σ(�(X, t, r))]1/p−1
∫
�(X,t,r)

k(Y, s) dσ (Y, s),

( ∫
�(X,t,r)

[k(Y, s)]−p dσ(Y, s)

)1/p

≤ C[σ(�(X, t, r))]1/p−1
∫
�(X,t,r)

[k(Y, s)]−1 dσ(Y, s).

Combining we get

ω(E) =
∫
E

k(Y, s) dσ (Y, s) ≤ Cσ(E)1−1/pσ (�(X, t, r))1/p−1ω(�(X, t, r)).

This completes the proof in one direction. The second direction is proved
similarly.

2.2. The Green function and caloric measure at infinity

In this section we will clarify the notion of Green function with pole at infinity
and the associated caloric measure.

Lemma 13. Let � be a parabolic NTA-domain. Then there exists a unique
function u (unique modulo a constant) such that u is a non-negative solution
to the adjoint heat in � and such that u vanishes continuously on ∂�.
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In fact a similar result holds for the heat equation. The function u, in the
statement of the lemma, should be refered to as the Green function with pole
at +infinity. By + we refer to the ‘infinity’ in the positive direction of time.

Proof. There are two steps in the proof, the uniqueness and the existence.
We start by proving the existence. We let (X, t) ∈ ∂� and let R > 0 be a large
positive number. Assume that (X̂, t̂) ∈ 7+

A(X, t, 100R) and let K ⊂ Rn+1 be
a fixed compact set. Assume that R is so large that K ∩ � ⊂ CR(X, t). Using
Lemma 6, the fact that if (X̂, t̂) ∈ 7+

A(X, t, 100R) then G(X̂, t̂, ·) satisfies a
strong Harnack inequality in CR(X, t) ∩ � and Lemma 10 it follows that if
(Z, τ) ∈ K ∩ �, then

G(X̂, t̂, Z, τ ) ≤ CK,n,AG(X̂, t̂ , A1(X, t)).

In particular this implies that if (X̂, t̂) ∈ 7+
A(X, t, 100R) then

sup
(Z,τ)∈K∩�

G(X̂, t̂ , Z, τ )

G(X̂, t̂ , A1(X, t))
≤ CK,n,A.

Let (X̂j , t̂j ) ∈ 7+
A(X, t, 2jR) for j = 1, 2, . . . and define for (Z, τ) ∈

CR(X, t) ∩ �

uj(Z, τ) = G(X̂j , t̂j , Z, τ )

G(X̂j , t̂j , A1(X, t))
.

Then {uj } is a set of positive adjoint caloric functions inCR(X, t)∩� vanishing
on ∂�. Furthermore, we can assume that {uj } is a uniformly bounded set
of functions on � ∩ CR(X, t). By the Arzela-Ascoli theorem there exists a
subsequence {j̃k} such that {uj̃k

} converges to a non-negative solution ũ = ũR to
the adjoint heat equation in �∩CR(X, t). If we choose a sequence of numbers
Ri such that Ri → ∞ and pick a diagonal subsequence we can conclude that
there exists a subsequence {jk} such that {ujk } converges to a non-negative
solution u∞ to the adjoint heat equation in �, uniformly on compact sets of
�. Furthermore, u∞ vanishes continuously on ∂� and u∞(A1(X, t)) = 1.

Left is to prove uniqueness. Let u and v be two function fulfilling the
statement of the lemma and assume that u(A1(X, t)) = v(A1(X, t)) for some
point (X, t) ∈ ∂�. Under these assumptions we want to prove that u ≡ v.
Let ρ and R be fixed numbers such that 0 < ρ ≤ R/2. Using the same
argument as in the proof of Lemma 8 (see the proof of Lemma 3.11 in [11])
one can prove that u and v satisfy a strong Harnack inequality in CR(X, t) ∩
� with a constant λ̃ which only depends on the characteristics of the NTA-
domain and the dimension n. Using Lemma 11 we therefore get that whenever
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(Z, τ), (Y, s) ∈ Cρ(X, t) ∩ � then

∣∣∣∣u(Z, τ) v(Y, s)

v(Z, τ) u(Y, s)
− 1

∣∣∣∣ ≤ c(ρ/R)γ .

Hence if we put (Y, s) = A1(X, t) then

∣∣∣∣u(Z, τ)

v(Z, τ)
− 1

∣∣∣∣ ≤ c(ρ/R)γ

whenever (Z, τ) ∈ Cρ(X, t) ∩ �. Letting R → ∞ completes the proof.

Lemma 14. Let � be a parabolic NTA-domain and let (X, t) ∈ ∂�. Then
there exists a unique doubling Radon measure ω such that ω(�(X, t, 1)) = 1
and a non-negative solution u to the adjoint heat in � vanishing continuously
on ∂� such that for all φ ∈ C∞

0 (Rn+1)

∫
∂�

φ(Y, s) dω(Y, s) =
∫
�

u(Y, s)(� − ∂s)φ(Y, s) dY ds.

ω is refered to as the caloric measure for � at +infinity and normalized at
(X, t).

Proof. Again there are two steps in the proof, the uniqueness and the
existence. In this case we start by proving the uniqueness. I.e., we assume
that there exist two measures ω1 and ω2 as in the statement of the lemma and
such that ω1(�(X, t, 1)) = ω2(�(X, t, 1)) = 1 for a point (X, t) ∈ ∂�. We
want to prove that ω1 ≡ ω2. Let u1 and u2 be related to ω1 respectively ω2

according to the statement of the lemma. Using Lemma 13 we can conclude
that there exist constants α1 and α2 as well as a function u such that ui = αiu.
Here u is a non-negative solution to the adjoint heat in � such that u vanishes
continuously on ∂�. I.e., for all φ ∈ C∞

0 (Rn+1)

∫
∂�

φ(Y, s) dωi(Y, s) = αi

∫
�

u(Y, s)(� − ∂s)φ(Y, s) dY ds.

From this we can we conclude that

α−1
1

∫
∂�

φ(Y, s) dω1(Y, s) = α−1
2

∫
∂�

φ(Y, s) dω2(Y, s).

Choosing φ as the indicator function of �(X, t, 1) and using the normalization
of ω1 and ω2 we get that α1 = α2. Therefore u1 ≡ u2 and ω1 ≡ ω2.
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To prove the existence we argue as in the proof of Lemma 13. We let
(X, t) ∈ ∂� and define R > 0 to be a large positive number. Let (X̂j , t̂j ) ∈
7+

A(X, t, 2jR) for j = 1, 2, . . . and define for (Z, τ) ∈ CR(X, t) ∩ �

uj(Z, τ) = G(X̂j , t̂j , Z, τ )

G(X̂j , t̂j , A1(X, t))
.

Let φ ∈ C∞
0 (CR(X, t)) and let as usual ω(X̂j , t̂j , ·) be the caloric measure

defined with respect to (X̂j , t̂j ). Then

∫
∂�

φ(Z, τ)G(X̂j , t̂j , A1(X, t))−1 dω(X̂j , t̂j , Z, τ )

=
∫
�

uj (Z, τ)(� − ∂τ )φ(Z, τ) dZ dτ.

Defining measures

dµj (Z, τ) = G(X̂j , t̂j , A1(X, t))−1dω(X̂j , t̂j , Z, τ )

we can conclude that∫
∂�

φ(Z, τ) dµj (Z, τ) =
∫
�

uj (Z, τ)(� − ∂τ )φ(Z, τ) dZ dτ

for all φ ∈ C∞
0 (CR(X, t)). Using Lemma 7 and the fact that G(X̂j , t̂j , ·)

satisfies a strong Harnack inequality in CR(X, t) ∩ � we have that

µj(�(X, t, R)) = ω(X̂j , t̂j , �(X, t, R))

G(X̂j , t̂j , A1(X, t))
∼ RnG(X̂j , t̂j , AR(X, t))

G(X̂j , t̂j , A1(X, t))

∼ Rnuj (Z, τ)

for all (Z, τ) ∈ CR(X, t)∩�. {uj } is, as in the proof of Lemma 13, a uniformly
bounded set of functions on � ∩ CR(X, t). Hence the sequence {µj } is a
uniformly bounded set of measures on CR(X, t) ∩ ∂� and therefore there
exists a subsequence {µj̃k

} and a Radon measure µ such that,

∫
∂�

φ(Z, τ) dµj̃k
(Z, τ) →

∫
∂�

φ(Z, τ) dµ(Z, τ),

for all φ ∈ C∞
0 (CR(X, t)) as k → ∞. If we again choose a sequence of num-

bers Ri such that Ri → ∞ and pick a diagonal subsequence we can therefore
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conclude that there exists a subsequence {jk} such that {µjk } converges to a
Radon measure µ such that for all φ ∈ C∞

0 (Rn+1),
∫
∂�

φ(Z, τ) dµjk (Z, τ) →
∫
∂�

φ(Z, τ) dµ(Z, τ),

as k → ∞. Repeating the argument of Lemma 13 we can also conclude that
{ujk } converges, uniformly on compacts subsets, to a non-negative solution u∞
and for all φ ∈ C∞

0 (Rn+1)

∫
∂�

φ(Z, τ) dµ(Z, τ) =
∫
�

u∞(Z, τ)(� − ∂τ )φ dZ dτ.

Define ω∞ = µ/µ(�(X, t, 1)) and u∞ = u∞/µ(�(X, t, 1)). Then for all
φ ∈ C∞

0 (Rn+1)

∫
∂�

φ(Z, τ) dω∞(Z, τ) =
∫
�

u∞(Z, τ)(� − ∂τ )φ dZ dτ.

This completes the existence part of the proof. Left is to prove that ω∞ is a
doubling measure. But if (X̃, t̃) ∈ ∂� and r > 0, then it follows from Lemma 9
that

ω∞(�(X̃, t̃ , 2r)) ≤ lim inf
jk→∞

ω(X̂jk , t̂jk , �(X̃, t̃ , 2r))

µ(�(X, t, 1))G(X̂jk , t̂jk , A1(X, t))

≤ C lim inf
jk→∞

ω(X̂jk , t̂jk , �(X̃, t̃ , r/2))

µ(�(X, t, 1))G(X̂jk , t̂jk , A1(X, t))

≤ Cω∞(�(X̃, t̃ , r)).

This completes the proof.

3. A blow-up argument and the classification of global solutions

In the following we let � be a two-sided NTA-domain with Ahlfors regular
boundary. Let (Xj , tj ) ∈ ∂� → (X̃, t̃) ∈ ∂� and assume that (X̃, t̃) = (0, 0).
For a sequence {rj } of real numbers tending to zero we define,

�j = {(r−1
j (X − Xj), r

−2
j (t − tj )) : (X, t) ∈ �}.

This section is devoted to the analysis of these blow-ups by making use of our
assumption on the caloric Poisson kernels ki(X̂i, t̂ i , ·) and we will therefore
also assume that tj < t̂2 < t̂1 for all j .
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3.1. Blow-ups

Recall that the parabolic distance between the two sets F1, F2 is defined as

d(F1, F2) = inf{|X − Y | + |s − t |1/2 : (X, t) ∈ F1, (Y, s) ∈ F2 }.
Based on this we introduce the parabolic Hausdorff distance between two sets
F1, F2 as

D(F1, F2) = sup{d(x, F2) : x ∈ F1} + sup{d(F1, y) : y ∈ F2}.
In the following we will consider uniform Hausdorff convergence (in the metric
induced by the parabolic Hausdorff distance) on compact sets. To define this
properly we consider a sequence of closed sets {Fj }j , Fj ⊂ Rn+1. We say
that Fj converges to a closed set F ⊂ Rn+1 in the parabolic Hausdorff distance
sense, uniformly on compact subsets of Rn+1, if for any compact set K ⊂ Rn+1

and any ε > 0 there exists j0 ≥ 1 so that if j ≥ j0 then

D(Fj ∩ K,F ∩ K) < ε.

Furthermore a sequence of open sets {Ej }j , Ej ⊂ Rn+1, is said to converge to
an open set E ⊂ Rn+1 in the parabolic Hausdorff distance sense uniformly on
compact subsets of Rn+1 if Rn+1 \ Ej → Rn+1 \ E in the parabolic Hausdorff
distance sense uniformly on compact subsets of Rn+1.

In the following blow-up argument we will explore the information con-
tained in the condition log k(X̂, t̂ , ·) ∈ VMO(dσ ). To do so we define a kernel
kj on ∂�j , related to the Poisson kernel k on ∂�, as

kj (Y, s) = σ(�(Xj , tj , rj ))k(X̂, t̂ , Xj + rjY, tj + r2
j s)

ω(X̂, t̂ , �(Xj , tj , rj ))
.

We will refer to kj as the Poisson kernel on ∂�j . We also define

uj (Z, τ) = σ(�(Xj , tj , rj ))G(X̂, t̂ , Xj + rjZ, tj + r2
j τ )

rjω(X̂, t̂ , �(Xj , tj , rj ))

whenever (Z, τ) ∈ �j . Then uj is adjoint caloric in �j outside of its pole
and it is zero on ∂�j . uj can be refered to as the Green function associated
to the kernel kj . Finally we define the associated caloric measure through
dwj = kj (Y, s) dσj (Y, s) and we note that for arbitrary Borel sets E ⊂ Rn+1

ωj(E) =
∫
E

kj (Y, s) dσj (Y, s) = r−n−1
j σ (�(Xj , tj , rj ))ω̃j (E)
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where

ω̃j (E) = ω
(
X̂, t̂ , {(Z, τ) ∈ ∂� : ((Z − Xj)/rj , (τ − tj )/r

2
j ) ∈ E})

ω(X̂, t̂ , �(Xj , tj , rj ))
.

We will start by proving the following two lemmas.

Lemma 15. Let � be a two-sided NTA-domain with Ahlfors regular bound-
ary. Let (Xj , tj ) ∈ ∂� → (X̃, t̃) ∈ ∂� and assume that (X̃, t̃) = (0, 0). For a
sequence {rj } of real numbers tending to zero we define,

�j = {(r−1
j (X − Xj), r

−2
j (t − tj )) : (X, t) ∈ �}.

Then �j → �∞ and ∂�j → ∂�∞ in the parabolic Hausdorff distance sense,
uniformly on compact subsets of Rn+1, as j → ∞. Furthermore, �∞ is a
two-sided NTA-domain with Ahlfors regular boundary.

Lemma 16. Let �j and �∞ be as in Lemma 15. Then uj → u∞ uniformly
on compact subsets, u∞ is a positive adjoint caloric function in �∞ and
u∞ = 0 on ∂�∞. Moreover ωj → ω∞ weakly as Radon measures and for all
φ ∈ C∞

0 (Rn+1)∫
∂�

φ(Y, s) dω∞(Y, s) =
∫
�

u∞(Y, s)(� − ∂s)φ(Y, s) dY ds.

In particular ω∞ is the caloric measure of �∞ at infinity.

We start by proving Lemma 15.

Proof of Lemma 15. Note that for each j ≥ 1, (0, 0) ∈ ∂�j andC1(0, 0)∩
�j �= ∅. Using this we can conclude that given a compact set K ⊂ Rn+1 there
exists a subsequence {j̃m}m such that K ∩ ∂�j̃m

and K ∩ �j̃m
converge in

the parabolic Hausdorff distance sense. We can therefore exhaust Rn+1 by a
sequence of compact sets in order to ensure that there exists a subsequence
{jm}m such that ∂�jm and �jm converge in the parabolic Hausdorff distance
sense uniformly on compact sets. Hence by an appropriate relabeling we can
conclude that as j → ∞, �j → �∞, ∂�j → >∞ in the parabolic Hausdorff
distance sense uniformly on compact subsets of Rn+1. In analogy with the
proof of Theorem 4.1 in [14] we want to prove that ∂�∞ = >∞ and that �∞
is a two-sided NTA-domain with Ahlfors regular boundary.

Note that since ω is a doubling measure we have that for any compact set
K ⊂ Rn+1, supj≥1 ω̃j (K) ≤ CK . Hence arguing as in the proof of Lemma 14
there exists a subsequence (which we relabel) such that ω̃j → ω̃∞ in the sense
that ∫

φ dω̃j →
∫

φ dω̃∞
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for all φ ∈ C∞
0 (Rn+1). We will start by proving that the support of ω̃∞ equals

>∞. To do this we let (Ẑ, τ̂ ) ∈ >∞. Again by construction there exists a
sequence (Zj , τj ) such that (Zj , τj ) ∈ ∂� and

(Z̃j , τ̃j ) := ((Zj − Xj)/rj , (τj − tj )/r
2
j ) → (Ẑ, τ̂ ).

Furthermore for every r ∈ (0, 1) there exists j0 ≥ 1 such that for j ≥ j0,
d((Z̃j , τ̃j ), (Ẑ, τ̂ )) < r/2 and d((Zj , τj ), (Xj , tj )) < Crj for some large C =
C(Ẑ, τ̂ ). As ω is a doubling measure,

ω̃j (Cr(Ẑ, τ̂ ))

= ω
(
X̂, t̂ , {(Z, τ) ∈ ∂� : ((Z − Xj)/rj , (τ − tj )/r

2
j ) ∈ Cr(Ẑ, τ̂ )})

ω(X̂, t̂ , �(Xj , tj , rj ))

≥ ω(X̂, t̂ , Crrj /2(Zj , τj ))

ω(X̂, t̂ , �(Xj , tj , rj ))
≥ ω(X̂, t̂ , Crj /2(Zj , τj ))

ω(X̂, t̂ , C2Crj (Zj , τj ))
≥ C̃(r, C).

This implies that if (Ẑ, τ̂ ) ∈ >∞ then (Ẑ, τ̂ ) is in the support of ω̃∞. Left is
to prove the other inclusion. I.e., in this case we start by assuming that (Ẑ, τ̂ )

is in the support of ω̃∞. We want to prove that there exists (Zj , τj ) ∈ ∂� such
that

(Z̃j , τ̃j ) := ((Zj − Xj)/rj , (τj − tj )/r
2
j ) → (Ẑ, τ̂ ).

If this is not the case then there exists ε > 0 and j0 such that for any sequence
(Zj , τj ) ∈ ∂� as above d((Z̃j , τ̃j ), (Ẑ, τ̂ )) ≥ ε if j ≥ j0. In particular in this
case Cε/2(Ẑ, τ̂ ) ∩ ∂�j = ∅. If we take φ ∈ C∞

0 (Cε/2(Ẑ, τ̂ )) we then get as
ω̃j → ω̃∞ that

0 =
∫

φ(Y, s) dω̃j (Y, s) →
∫

φ(Y, s) dω̃∞(Y, s).

I.e., ∫
φ(Y, s) dω̃∞(Y, s) = 0

for all φ ∈ C∞
0 (Cε/2(Ẑ, τ̂ )). This contradicts the assumption that (Ẑ, τ̂ ) is in

the support of ω̃∞. I.e., (Ẑ, τ̂ ) ∈ >∞ and we can conclude that the support
of ω̃ coincides with >∞. Also note that trivially ωj → ω∞ and the support of
ω∞ coincides with >∞.

We now prove that ∂�∞ ⊂ >∞. To do this we let (Z, τ) ∈ ∂�∞ =
�∞∩Rn+1 \ �∞ and note that given ε > 0, there exist (Y, s) ∈ �∞∩Cε(Z, τ)
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and (Ŷ , ŝ) ∈ [Rn+1 \ �∞] ∩ Cε(Z, τ). There also exist sequencies of points
(Yj , sj ) ∈ � and (Ŷj , ŝj ) ∈ [Rn+1 \ �] such that

(Y, s) = ((Yj − Xj)/rj , (sj − tj )/r
2
j ),

(Ŷ , ŝ) = ((Ŷj − Xj)/rj , (ŝj − tj )/r
2
j ).

Let lj be the parabolic line connecting (Yj , sj ) and (Ŷj , ŝj ) and pick (Zj , τj ) ∈
lj ∩∂�. As ∂� separates Rn+1 at least one such point exists. As {(Zj −Xj)/rj }j
as well as {(τj − tj )/r

2
j }j are bounded sequences there exist a subsequence

(which we relabel) such that

((Zj − Xj)/rj , (τj − tj )/r
2
j ) → (Ẑ, τ̂ ) ∈ >∞.

Furthermore as

d(((Zj − Xj)/rj , (τj − tj )/r
2
j ), ((Yj − Xj)/rj , (sj − tj )/r

2
j ))

≤ r−1
j d((Yj , sj ), (Ŷj , ŝj ))

we can conclude, by letting j → ∞, that

d((Y, s), (Ẑ, τ̂ )) ≤ d((Y, s), (Ŷ , ŝ)) ≤ Cε

for a universial constant C. By the same line of thought

d((Z, τ), (Ẑ, τ̂ )) ≤ d((Z, τ), (Ŷ , ŝ)) + d((Ẑ, τ̂ ), (Ŷ , ŝ))

≤ d((Z, τ), (Ŷ , ŝ)) + d((Y, s), (Ŷ , ŝ))

≤ C̃ε.

In total we have proved that for any (Z, τ) ∈ ∂�∞ and for any ε > 0 there
exists (Ẑ, τ̂ ) ∈ >∞ such that d((Z, τ), (Ẑ, τ̂ )) ≤ ε. This argument proves that
(Z, τ) is in the closure of the set >∞. But the closure of the set >∞ equals,
as we have proven above, the closure of the support of ω∞. The latter equals
the support of ω∞ as the support is closed. Based on this we can conclude that
(Z, τ) ∈ >∞ and that ∂�∞ ⊂ >∞.

Left is to prove that >∞ ⊂ ∂�∞. We let (Ẑ, τ̂ ) ∈ >∞. By construction
there exists a sequence (Zj , τj ) such that (Zj , τj ) ∈ ∂� and

(Z̃j , τ̃j ) := ((Zj − Xj)/rj , (τj − tj )/r
2
j ) → (Ẑ, τ̂ ).

In order to argue as in the proof of Theorem 4.1 in [14] we start by fixing M

and by considering arbitrary ρ > 0. As � is a two-sided NTA-domain we can
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assume that there exist points Aρrj (Zj , τj ) ∈ � and Ãρrj (Zj , τj ) ∈ Rn+1 \ �

such that if M is large enough then

Cρrj /M(Aρrj (Zj , τj )) ⊂ �, d(Aρrj (Zj , τj ), (Zj , τj )) ≤ ρrj ,

Cρrj /M(Ãρrj (Zj , τj )) ⊂ Rn+1 \ �, d(Ãρrj (Zj , τj ), (Zj , τj )) ≤ ρrj .

By applying the blow up argument we can therefore construct Aj(ρ) ∈ �j and
Ãj (ρ) ∈ Rn+1 \ �j such that

Cρ/M(Aj (ρ)) ⊂ �j, d(Aj (ρ), (Z̃j , τ̃j )) ≤ ρ,

Cρ/M(Ãj (ρ)) ⊂ Rn+1 \ �j, d(Ãj (ρ), (Z̃j , τ̃j )) ≤ ρ.

Going to the limit we can conclude that, for every ρ > 0, there exist points
A∞(ρ) ∈ �∞ and Ã∞(ρ) ∈ Rn+1 \ �∞ such that

Cρ/M(A∞(ρ)) ⊂ �∞, d(A∞(ρ), (Ẑ, τ̂ )) ≤ ρ,

Cρ/M(Ã∞(ρ)) ⊂ Rn+1 \ �∞, d(Ã∞(ρ), (Ẑ, τ̂ )) ≤ ρ.

If we let ρ → 0 we can conclude that (Ẑ, τ̂ ) ∈ ∂�∞ and hence that >∞ ⊂
∂�∞. In total we have proven that >∞ = ∂�∞.

By essentially repeating the argument above for the proof that >∞ ⊂ ∂�∞
we realize that �∞ defines a two-sided NTA-domain. What remains is to
prove that ∂�∞ is Ahlfors regular. Let j ≥ 1 and let F ⊂ Rn+1 be a Borel
set. Also let F̄ , ∂F denote the closure and the boundary of F respectively.
We define σj (F ) = ∫

F∩∂�j
dσj (t) dt where dσj (t) is the n − 1 dimensional

Hausdorff measure on the time slice F ∩∂�j ∩ (Rn ×{t}). Similarly we define
σ∞(F ) = ∫

F∩∂�∞ dσ∞(t) dt where dσ∞(t) is then−1 dimensional Hausdorff

measure on the time slice F ∩ ∂�∞ ∩ (Rn × {t}). Let (Ẑ, τ̂ ) ∈ ∂�∞ and let
r > 0. By construction there exists a sequence (Zj , τj ) such that (Zj , τj ) ∈ ∂�

and
(Z̃j , τ̃j ) := ((Zj − Xj)/rj , (τj − tj )/r

2
j ) → (Ẑ, τ̂ ).

Note that by the Ahlfors regularity of ∂�j we get

σj (Cr(Ẑ, τ̂ )) ≤ σj
(
Cr+d((Z̃j ,τ̃j ),(Ẑ,τ̂ ))(Z̃j , τ̃j )

)
≤ C

(
r + d((Z̃j , τ̃j ), (Ẑ, τ̂ ))

)n+1
.

Hence
lim inf
j→∞ σj (Cr(Ẑ, τ̂ )) ≤ Crn+1.



278 kaj nyström

Therefore as

σ∞(Cr(Ẑ, τ̂ )) ≤ lim inf
j→∞ σj (Cr(Ẑ, τ̂ )) ≤ Crn+1

we have the proof in one direction.
To focus on the proof in the other direction for (Ẑ, τ̂ ) ∈ ∂�∞ we let

A = Ar(Ẑ, τ̂ ) = (Ax
r (Ẑ, τ̂ ), τ̂ ), Ã = Ãr (Ẑ, τ̂ ) = (Ãx

r (Ẑ, τ̂ ), τ̂ ) be points
such that A ∈ �∞, Ã ∈ Rn+1 \ �∞ and d(A, ∂�∞) ∼ r ∼ d(A, (Ẑ, τ̂ )),
d(Ã, ∂�∞) ∼ r ∼ d(Ã, (Ẑ, τ̂ )). Define A∗ = ((Ãx

r (Ẑ, τ̂ )+ Ãx
r (Ẑ, τ̂ ))/2, τ̂ ).

Let M be a large positive number. Let P be the plane, which contains a line
parallel to the time-axis and the point A∗ and which is perpendicular to the
line A − Ã. By π(Z, τ) we denote the orthogonal projection of (Z, τ) to the
plane P . A simple geometric argument gives that π(Cr(Ẑ, τ̂ )∩�) contains at
least the projection of a parabolic cylinder Cr/M̂(X̂, t̂) for some universial M

and for some point (X̂, t̂). An easy consequence of this is that

σ∞(Cr(Ẑ, τ̂ )) ≥ C−1rn+1.

This completes the proof of the lemma.

To continue we proceed with the proof of Lemma 16.

Proof of Lemma 16. Recall that from the argument of proof of Lemma 15
it follows that ωj → ω∞ and that the support of ω∞ coincides with ∂�∞. Let
φ ∈ C∞

0 (Rn+1 \ (X̂, t̂)) and define φj (Y, s) = φ(r−1
j (Y − Xj), r

−2
j (s − tj )).

By the Riesz representation formula we have∫
∂�

φj (Y, s) dω(X̂, t̂ , Y, s) =
∫
�

G(X̂, t̂ , Z, τ )(�φj − ∂τφj ) dZ dτ.

If we let (X̂j , t̂j ) = (r−1
j (X̂ −Xj), r

−2
j (t̂ − tj )), then by a change of variables,

∫
∂�j

φ(Y, s) dωj (X̂j , t̂j , Y, s) =
∫
�j

uj (Z, τ)(�φ − ∂τφ) dZ dτ

where ωj and uj were introduced above the statement of Lemma 15. Defining
uj ≡ 0 on the complement of �j we can conclude, using the same argument
as in the proof of Lemma 13, that {uj } is a uniformly bounded sequence on
compacts. By the Arzela-Ascoli theorem uj → u∞ uniformly on compact
subsets and u∞ is a positive adjoint caloric function in �∞ such that u∞ = 0
on ∂�∞. By weak convergence we can therefore conclude that∫

∂�∞
φ(Y, s) dω∞(Y, s) =

∫
�∞

u∞(Y, s)(� − ∂s)φ(Y, s) dY ds
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for all φ ∈ C∞
0 (Rn+1).

In the following we will assume that � ⊂ Rn+1 is a two-sided NTA-domain
with Ahlfors regular boundary and we define �1 = � ⊂ Rn+1, �2 = Rn+1 \�.
Let (X̂i, t̂ i ) ∈ �i , for i ∈ {1, 2}, t̂2 < t̂1 and define ωi(X̂i, t̂ i , ·) to be the
caloric measures defined w.r.t.�1 and�2 respectively. In the following we will
assume that ωi(X̂i, t̂ i , ·), for i ∈ {1, 2}, is absolutely continuous with respect
to the surface measure σ . We define the Poisson kernels as ki(X̂i, t̂ i , ·) =
dωi(X̂i, t̂ i , ·)/dσ .

Lemma 17. Assume that log ki(X̂i, t̂ i , ·) ∈ VMO(dσ ) for i = 1 and i = 2
and let ωi

j → ωi∞ in the sense of Lemma 16. Then dω1∞ = dω2∞ a.e. on ∂�∞
and there exists a universial constant C such that if (X, t) ∈ ∂�∞ and r > 0,
then

ωi
∞(�(X, t, r)) ≤ Crn+1.

Proof. To prove the lemma we will prove that for all φ ∈ C∞
0 (Rn+1),

φ ≥ 0, we have
∫
∂�∞

φ dω1
∞ = lim

j→∞

∫
∂�j

φ dω1
j = lim

j→∞

∫
∂�j

φ dσj

= lim
j→∞

∫
∂�j

φ dω2
j =

∫
∂�∞

φ dω2
∞.

The second statement of the lemma also follows from this equality and the
argument used in the proof of Lemma 15. To do this we will only consider
i = 1 and we will in the following often instead of ω(X̂, t̂ , ·) = ωi(X̂1, t̂1, ·)
simply write ω(·).

In the following we will assume that Lemma 12 is valid with ε̃ = 1/4, i.e.,
there exists a constant C = C(n,�,A) such that for all (X, t) ∈ ∂�, r < r0,
|X − X̂|2 ≤ A(t̂ − t), t̂ − t ≥ 8r2 and E ⊂ �(X, t, r),

C−1

(
σ(E)

σ(�(X, t, r))

)5/4

≤ ω(X̂, t̂ , E)

ω(X̂, t̂ , �(X, t, r))
≤ C

(
σ(E)

σ(�(X, t, r))

)3/4

.

Let φ ∈ C∞
0 (Rn+1) and recall that in our blow-up argument we considered a

sequence of points (Xj , tj ) ∈ ∂� → (X̃, t̃) ∈ ∂� and a sequence of scales {rj },
rj → 0, and we assumed for simplicity that (X̃, t̃) = (0, 0). In the following
we will assume that supp φ ⊂ CM(0, 0) for some M > 1 and that φ ≥ 0.
Let ε > 0 be given. As log k(X̂, t̂ , ·) ∈ VMO(dσ ) there exists, by the John-
Nirenberg inequality, j0 such that for j ≥ j0, there existsGj ⊂ �(Xj , tj ,Mrj ),
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σ(�(Xj , tj ,Mrj )) ≤ (1 + ε)σ (Gj ) and such that for every (Y, s) ∈ Gj

(1 − ε)
1

σ(�(Xj , tj ,Mrj ))

∫
�(Xj ,tj ,Mrj )

k dσ ≤ k(Y, s)

≤ (1 + ε)
1

σ(�(Xj , tj ,Mrj ))

∫
�(Xj ,tj ,Mrj )

k dσ.

Here k = k(·, ·) = k(X̂, t̂ , ·, ·). We can also assume that (Xj , tj ) ∈ C1(0, 0)
for j ≥ j0. Using the inequality we have,

(1 − ε) ≤ ω(�(Xj , tj , rj ) ∩ Gj)σ(�(Xj , tj ,Mrj ))

ω(�(Xj , tj ,Mrj ))σ (�(Xj , tj , rj ) ∩ Gj)
≤ (1 + ε).

In the following CM will denote constants which depend on M and other para-
meters but are independent of j . Using these inequalities and the consequence
of the VMO condition stated above, the constant A can be chosen uniformly
and independent of j as rj → 0 and as the sequence (Xj , tj ) converges to a
point located below (X̂, t̂), we have

ω(�(Xj , tj , rj ))

σ (�(Xj , tj , rj ))

= ω(�(Xj , tj , rj ) ∩ Gj)

σ(�(Xj , tj , rj ))
+ ω(�(Xj , tj , rj ) \ Gj)

σ(�(Xj , tj , rj ))

≤ (1 + ε)
σ (�(Xj , tj , rj ) ∩ Gj)

σ(�(Xj , tj , rj ))

ω(�(Xj , tj ,Mrj ))

σ (�(Xj , tj ,Mrj ))
+ ω(�(Xj , tj , rj ) \ Gj)

σ(�(Xj , tj , rj ))

≤ (1 + ε)
ω(�(Xj , tj ,Mrj ))

σ (�(Xj , tj ,Mrj ))
+ ω(�(Xj , tj , rj )

σ (�(Xj , tj , rj ))

(
σ(�(Xj , tj , rj ) \ Gj)

σ(�(Xj , tj , rj ))

)3/4

≤ (1 + ε)
ω(�(Xj , tj ,Mrj ))

σ (�(Xj , tj ,Mrj ))
+ Cε3/4M

3
4 (n+1) ω(�(Xj , tj , rj ))

σ (�(Xj , tj , rj ))
.
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By similar deductions

ω(�(Xj , tj , rj ))

σ (�(Xj , tj , rj ))
≥ ω(�(Xj , tj , rj ) ∩ Gj)

σ(�(Xj , tj , rj ))

≥ (1 − ε)
σ (�(Xj , tj , rj ) ∩ Gj)

σ(�(Xj , tj , rj ))

ω(�(Xj , tj ,Mrj ))

σ (�(Xj , tj ,Mrj ))

= (1 − ε)

(
1 − σ(�(Xj , tj , rj ) \ Gj)

σ(�(Xj , tj , rj ))

)
ω(�(Xj , tj ,Mrj ))

σ (�(Xj , tj ,Mrj ))

≥ (1 − ε)(1 − CMn+1ε̃)
ω(�(Xj , tj ,Mrj ))

σ (�(Xj , tj ,Mrj ))
.

To continue we define Ĝj = {(r−1
j (Y − Xj), r

−2
j (s − tj )); (Y, s) ∈ Gj }, F̂j =

�(0, 0,M) \ Ĝj . Using this notation we can conclude that for (Y, s) ∈ Ĝj ,

(1 − ε)Ij ≤ kj (Y, s) ≤ (1 + ε)Ij

where

Ij := σ(�(Xj , tj , rj ))

σ (�(Xj , tj ,Mrj ))

ω(�(Xj , tj ,Mrj ))

ω(�(Xj , tj , rj ))
.

Based on the deductions above we get

I−1
j ≤ σ(�(Xj , tj ,Mrj ))

ω(�(Xj , tj ,Mrj ))

[
(1 + ε)

ω(�(Xj , tj ,Mrj ))

σ (�(Xj , tj ,Mrj ))

+ ε3/4M
3
4 (n+1) ω(�(Xj , tj , rj ))

σ (�(Xj , tj , rj ))

]

≤ (1 + Cε3/4M
3
4 (n+1)).

Furthermore,
Ij ≤ (1 − ε)−1(1 − CMn+1ε)−1.

In total it follows there exist two functions A(ε) and B(ε) such that if j ≥ j0

then
A(ε) ≤ Ij ≤ B(ε).

Furthermore, A(ε) → 1 and B(ε) → 1 as ε → 0. Continuing we have

(1 − ε)Ij

∫
Ĝj

φ dσj ≤
∫
Ĝj

φkj dσj ≤ (1 + ε)Ij

∫
Ĝj

φ dσj .
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Note that ∫
∂�j

φ dωj =
∫
∂�j

φkj dσj =
∫
Ĝj

φkj dσj +
∫
F̂j

φkj dσj

≤ (1 + ε)Ij

∫
Ĝj

φ dσj + ‖φ‖∞ωj(F̂j )

≤ (1 + ε)Ij

∫
∂�j

φ dσj + CMε3/4‖φ‖∞.

Similarly∫
∂�j

φ dωj ≥
∫
Ĝj

φkj dσj ≥ (1 − ε)Ij

∫
Ĝj

φ dσj

= (1 − ε)Ij

∫
∂�j

φ dσj − (1 − ε)Ij

∫
F̂j

φ dσj

≥ (1 − ε)Ij

∫
∂�j

φ dσj − CM(1 − ε)Ij ε‖φ‖∞.

Based on this we can conclude that∫
∂�j

φ dωj ≤ (1 + ε)B(ε)

∫
∂�j

φ dσj + CMε3/4‖φ‖∞,

∫
∂�j

φ dωj ≥ (1 − ε)A(ε)

∫
∂�j

φ dσj − CM(1 − ε)B(ε)ε‖φ‖∞.

Hence ∫
∂�∞

φ dω∞ = lim
j→∞

∫
∂�j

φ dωj = lim
j→∞

∫
∂�j

φ dσj .

Lemma 18. Assume that log ki(X̂i, t̂ i , ·) ∈ VMO(dσ ) for i = 1 and i = 2
and let ωi

j → ωi∞, ui
j → ui∞ in the sense of Lemma 16. There exists a constant

C such that for all (Y, s) ∈ �i∞

ui
∞(Y, s) ≤ Cδi∞(Y, s).

Proof. Let (X, t) ∈ ∂�i∞ and r be such that Ar(X, t) = (Y, s). By
Lemma 13 and 16, ui∞ can be considered as the Green function with pole
at + infinity and ωi∞ as the associated caloric measure. By Lemma 7 and
Lemma 8, combined with Lemma 17, we have

rnui
∞(Ar(X, t)) ∼ ωi

∞(�(X, t, r) ≤ Crn+1.
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As r ∼ δi∞(Y, s) we can therefore conclude that there exists a universial
constant C such that ui∞(Y, s) ≤ Cδi∞(Y, s) for all (Y, s) ∈ �i∞.

3.2. Classification of global solutions and the proof of Theorem 1

Lemma 19. Assume that the assumptions in Lemma 17 are fulfilled and, using
the notation of Lemma 16, ui

j → ui∞ for i ∈ {1, 2}. Define for (Y, s) ∈ Rn+1,
u∞(Y, s) = u1∞(Y, s) − u2∞(Y, s), where u1∞(Y, s) ≡ 0 in �2∞, u2∞(Y, s) ≡ 0
in �1∞. Then u∞ is a linear function in the space variables and �∞ is a half
space containing a line parallel to the time-axis.

Proof. Applying Lemma 17 we can conclude that ω1∞ ≡ ω2∞ and that for
all φ ∈ C∞

0 (Rn+1)∫
∂�i∞

φ(Y, s) dωi
∞(Y, s) =

∫
�i∞

ui
∞(Y, s)(� − ∂s)φ(Y, s) dY ds.

Hence ∫
Rn+1

u∞(Y, s)(� − ∂s)φ(Y, s) dY ds

=
∫
�1∞

u1
∞(Y, s)(� − ∂s)φ(Y, s) dY ds

−
∫
�2∞

u2
∞(Y, s)(� − ∂s)φ(Y, s) dY ds

= 0.

As u∞ is continuous, it is weakly adjoint caloric in Rn+1 and therefore adjoint
caloric in Rn+1. By a change of the time direction we can assume that u∞ is
caloric in Rn+1. We also note that u∞(0, 0) = 0. By standard estimates for the
heat equation we have that

max
Cr/2(0,0)

|Dk
ZD

l
τu∞(Z, τ)| ≤ Ckl

rk+2l
max
Cr (0,0)

|u∞(Z, τ)|.

According to Lemma 15, �∞ defines a two-sided parabolic NTA-domain,
and hence A1

r (X, t) and A2
r (X, t) are well-defined for (X, t) ∈ ∂� and r >

0. Using this points of reference we have by the backward in time Harnack
principle in Lemma 8 that

max
Cr (0,0)

|u∞(Z, τ)| ≤ C max{u1
∞(A1

r (0, 0)), u2
∞(A2

r (0, 0))}.

Using Lemma 7 and Lemma 8 we have

rnu1∞(A1
r (0, 0))

ω1∞(�(0, 0, r))
∼ rnu2∞(A2

r (0, 0))

ω2∞(�(0, 0, r))
∼ 1.
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Hence as ω1∞ ≡ ω2∞ we can conclude that u1∞(A1
r (0, 0)) ∼ u2∞(A2

r (0, 0)). Ac-
cording to Lemma 18, u1∞(A1

r (0, 0)) ≤ Cr . In total we can therefore conclude
that

max
Cr/2(0,0)

|Dk
ZD

l
τu∞(Z, τ)| ≤ Ckl

rk+2l
u1

∞(A1
r (0, 0)) ≤ Ckl

rk+2l−1
.

By letting r → ∞ we get Dk
ZD

l
τu∞(Z, τ) = 0 for all (Z, τ) ∈ Rn+1 and all

(k, l) such that k + 2l − 1 > 0. We can therefore conclude that u∞ is in fact a
linear function in the space variables and �∞ is a half space containing a line
parallel to the time-axis.

We can now prove Theorem 1 using Lemma 19. As ∂� separates Rn+1 there
exists, according to Definition 3, δ0 > 0 such that given any (X̃, t̃) ∈ ∂�,
R > 0, there exists a n dimensional plane P̂ = P̂ (X̃, t̃ , R), containing (X̃, t̃)

and a line parallel to the t axis, having unit normal n̂ = n̂(X̃, t̃ , R) such that

{(Y, s) + rn̂ ∈ CR(X̃, t̃) : (Y, s) ∈ P̂ , r > δ0R} ⊂ �,

{(Y, s) − rn̂ ∈ CR(X̃, t̃) : (Y, s) ∈ P̂ , r > δ0R} ⊂ Rn+1 \ �.

We therefore introduce the quantity

B(X̃, t̃, R) := 1

R
inf
P̂

D[∂� ∩ CR(X̃, t̃), P̂ ∩ CR(X̃, t̃)]

where the infimum is taken over all n dimensional planes P̂ = P̂ (X̃, t̃ , R),
containing (X̃, t̃) and a line parallel to the t axis. For any compact setK ⊂ Rn+1

we also introduce
BK(R) := sup

(X̃,t̃)∈K

B(X̃, t̃ , R).

If (X, t) ∈ ∂�, r > 0, then the statement that Cr(X, t)∩ ∂� is Reifenberg flat
with vanishing constant in the parabolic sense is equivalent to the statement
that

lim
r̂→0

BCr(X,t)∩∂�(r̂) = 0.

To prove Theorem 1 we assume, using the notation of the theorem, that (X, t) ∈
∂�, t̂2 > t + 4r2 and that

lim
r̂→0

BCr(X,t)∩∂�(r̂) = β

for some β > 0. We intend to prove that this is impossible and that β = 0. Let
(Xj , tj ) ∈ Cr(X, t) ∩ ∂�, (Xj , tj ) → (X̂, t̂) ∈ Cr(X, t) ∩ ∂� and let rj be a
sequence of real numbers tending to zero such that

lim
j→∞ B(Xj , tj , rj ) = β.



regularity below the continuous threshold in . . . 285

By a translation argument we can without loss of generality assume that
(X̂, t̂) = (0, 0) and that (0, 0) ∈ Cr(X, t) ∩ ∂�. Define the domains,

�i
j = {(r−1

j (X − Xj), r
−2
j (t − tj )) : (X, t) ∈ �i}.

Then according to Lemma 15 we can assume that �i
j → �i∞, ∂�i

j → ∂�i∞ in
the parabolic Hausdorff distance sense uniformly on compact subsets of Rn+1.
Furthermore, �∞ = �1∞ and �2∞ = Rn+1 \ �∞ are parabolic NTA-domains
and ∂�∞ separates Rn+1. We can furthermore apply Lemma 16, Lemma 17
and Lemma 19 in order to conclude that �∞ is a half space containing a line
parallel to the time-axis. Still our assumption above give at hand that

B∞(0, 0, 1) := β > 0

where B∞(0, 0, 1) is defined w.r.t. ∂�∞. Clearly this is a contradiction and
we can conclude that Cr(X, t)∩∂� is Reifenberg flat with vanishing constant.

REFERENCES

1. Alt, H. W., Caffarelli, L., Existence and regularity for a minimum problem with free boundary,
J. Reine Angew. Math. 325 (1981), 105–144.

2. Athanasopoulos, I., Caffarelli, L., Salsa, S., Regularity of the free boundary in parabolic
phase transition problems, Acta Math. 176 (1996), no. 2, 245–282.

3. Athanasopoulos, I., Caffarelli, L., Salsa, S., Caloric functions in Lipschitz domains and the
regularity of solutions to phase transition problems, Ann. of Math. (1) 143 (1996), no. 3,
463–484.

4. Doob, J. L., Classical Potential Theory and its Probablilistic Counterpart, Grundlehren Math.
Wiss. 262 (1984).

5. Fabes E., and Safonov, M., Behaviour near the boundary of positive solutions of second order
parabolic equations, J. Fourier Anal. Appl. 3 (1997), 871–882.

6. Fabes, E., Safonov, M.,Yuan,Y., Behaviour near the boundary of positive solutions of second
order parabolic equations II, Trans. Amer. Math. Soc. 351 (1999), 4947–4961.

7. Garnett, J. B., Jones, P. W., The distance in BMO to L∞, Ann. of Math. 108 (1978), 373–393.
8. Garcia-Cuerva, J., Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics,

North-Holland Math. Stud. 116 (1985).
9. Hofmann S., and Lewis, J., Solvability and representation by caloric layer potentials in time-

varying domains, Ann. of Math. 144 (1996), 349–420.
10. Hofmann, S., Lewis, J., and Nyström, K., Existence of big pieces of graphs for parabolic

problems, Ann. Acad. Sci. Fenn. Math. 28 (2) (2003), 355–384.
11. Hofmann, S., Lewis, J., and Nyström, K., Caloric measure in parabolic flat domains, Duke

Math. J. 122 (2) (2004), 281–345.
12. Kenig, C., and Toro, T., Harmonic measure on locally flat domains, Duke Math. J. 87 (1997),

501–551.
13. Kenig, C., and Toro, T., Free boundary regularity for harmonic measure and Poisson kernels,

Ann. of Math. 150 (1999), 369–454.
14. Kenig, C., and Toro, T., Poisson kernel characterization of Reifenberg flat chord arc domains,

Ann. Sci. École Norm. Sup. (to appear).



286 kaj nyström

15. Kenig, C., and Toro, T., Free boundary regularity below the continuous threshold: 2-phase
problems, preprint.

16. Kaufmann, R., and Wu, J. M., Parabolic measure on domains of class Lip1/2, Compositio
Math. 65 (1988), 201–207.

17. Lewis, J., and Murray, M., The method of layer potentials for the heat equation in time-varying
domains, Mem. Amer. Math. Soc. 114 (1995), no. 545.

18. Lewis, J., and Silver, J., Parabolic measure and the Dirichlet problem for the heat equation
in two dimensions, Indiana Univ. Math. J. 37 (1988), 801–839.

19. Nyström, K., The Dirichlet problem for second order parabolic operators, Indiana Univ.
Math. J. 46 (1997), 183–245.

20. Nyström, K., Caloric measure and Reifenberg flatness, to appear.

DEPARTMENT OF MATHEMATICS
UMEÅ UNIVERSITY
S-90187 UMEÅ
SWEDEN
E-mail: kaj.nystrom@math.umu.se


