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AF-EQUIVALENCE RELATIONS

MATS MOLBERG

Abstract

Let R = lim−→ Rn be the inductive limit of an ascending sequence of étale finite equivalence relations

Rn on the zero-dimensional space X. We prove that R is an AF-equivalence relation.

We start by stating the following theorem, giving the appropriate definitions be-
low. (Recall that an equivalence relation is said to be finite if every equivalence
class consists of finitely many elements.)

Theorem 1. Let R = (R, T ) be an étale (countable) equivalence relation
on the zero-dimensional (second countable, locally compact) space X. The
following are equivalent:

(i) R is an AF-equivalence relation;

(ii) R is isomorphic to the étale equivalence relation R(V,E) associated to a
Bratteli diagram (V , E);

(iii) R is the inductive limit of an ascending sequence of étale finite equival-
ence relations {(Rn, Tn)}, where Rn is open in Rn+1 for every n.

Remark 2. The equivalence between (i) and (ii) is proved in [1]. The im-
plication (i) ⇒ (iii) is immediate. One would certainly expect that the converse
implication is true. However, it is somewhat surprising that a proof of this has
not appeared in the literature. It is the goal of this short paper to provide a proof
of the implication (iii) ⇒ (i). As will be apparent the proof is not completely
straightforward, but requires a careful analysis. Establishing the equivalence
between (i) and (iii) is very satisfactory, since it highlights the analogy between
AF-equivalence relations in the topological setting, with hyperfinite equival-
ence relations in the Borel and measure-theoretic settings. In fact, one may say
that (iii) would be the most “natural” way to define an AF-equivalence relation
R, since it explicitly exhibits the approximation to R by finite equivalence
relations.
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1. Introduction

We start by reminding the reader of the basic definitions concerning étale
equivalence relations. For details, cf. [1].

An étale equivalence relation, R, on the locally compact, second countable
space X is the topological groupoid associated to a countable equivalence rela-
tion R = (R, T ) on X, where the locally compact topology T on R makes the
range map, r : R −→ X defined by r((x, y)) = x, a local homeomorphism,
i.e. for all (x, y) ∈ R there exists an open neighborhood Ũ(x,y) of (x, y) such
that

(1) r(Ũ(x,y)) is open in X;

(2) r : Ũ(x,y) −→ r(Ũ(x,y)) is a homeomorphism. (In particular r is an open
map.)

In groupoid language this is known as an r-discrete groupoid (see [2]).
It follows from the definition that if R′ ⊂ R is an open subequivalence

relation, then R′ is again étale in the relative topology.
We will say that Ũ(x,y) satisfies the étale condition at (x, y) (with respect

to r) if (1) and (2) holds. We also say that Ũ(x,y) is an étale neighborhood of
(x, y). Clearly, if X is zero-dimensional, i.e. X has a basis of clopen sets, then
we may choose Ũ(x,y) to be a compact open set. There is also a source map,
s : R −→ X, where s((x, y)) = y. Since the inverse map, (x, y)−1 = (y, x),
is a homeomorphism, the étale condition could equivalently be stated with
respect to the source map. Note also that the map r × s : R −→ X × X,
defined by r × s((x, y)) = (x, y), is continuous, where X ×X has the product
topology.

For x ∈ X we denote the equivalence class of x assosiated to R by [x]R ,
and the number of elements in its equivalence class is denoted by �[x]R . By
definition �[x]R will be at most countable, and if �[x]R is finite for every x ∈ X,
we say that R is a finite equivalence relation.

Let � = {(x, x) | x ∈ X} be the diagonal in X × X (i.e. the unit space of
R, when regarded as a groupoid). It is a fact (see [1]) that when (R, T ) is an
étale equivalence relation, then � is clopen in R, and the map (x, x) −→ x,
from � to X, is a homeomorphism.

We say that a subset A of X is R-invariant (or R-saturated) if x ∈ A and
(x, y) ∈ R implies y ∈ A.

Definition 1 (Compact étale equivalence relation). An étale equivalence
relation (R, T ) on the locally compact, second countable space X is a compact
étale equivalence relation (abbreviated CEER) if R \� is a compact subset of
R.
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The following result concerning CEERs holds, cf. [1, Proposition 3.2].

Proposition 2. If (R, T ) is a CEER on X, then

(i) T is the relative topology from X × X;

(ii) R is a closed subset of X × X, and the quotient topology of the quotient
space X/R is Hausdorff;

(iii) R is uniformly finite (i.e. ∃N ∈ N such that �[x]R ≤ N for all x ∈ X).

Remark 3. Generally, for an equivalence relation R on X to be étale, the
relative topology from the product topology on X × X is too coarse. Also,
regarding (iii), there are easy examples of uniformly étale finite equivalence
relations not being CEER. (See Example 4 below.)

Example 4. Let X be some Cantor subset of [0, 1] containing the point 1
2

and being symmetric around 1
2 , i.e. 1

2 − ε ∈ X ⇔ 1
2 + ε ∈ X for 0 ≤ ε ≤ 1

2 .
Such a Cantor set can easily be constructed. Define R = �

⋃{(x, 1−x) | x ∈
X}. Observe that

�[x]R =
{

1, if x = 1
2 ;

2, otherwise.

Giving R the relative topology Trel from the product topology on X × X, one
sees immediately that the étale condition fails at the point

(
1
2 , 1

2

)
as there is no

open neighborhood making the range map injective. However, this is the only
point causing problems, and R is easily made into an étale equivalence relation
by making the topology finer. Let T be the topology generated by Trel and �.
In fact, for any open neighborhood B ∈ Trel of

(
1
2 , 1

2

)
, put Ũ( 1

2 , 1
2 )

= B
⋂

�.

Now Ũ( 1
2 , 1

2 )
fulfills the étale condition for

(
1
2 , 1

2

)
. See Figure 1 for illustration.

Definition 5 (AF-equivalence relation). Let {(Rn, Tn)}∞n=1 be an ascend-
ing sequence of CEERs on a zero-dimensional (second countable, locally com-
pact) space X, so that the inclusion map of Rn into Rn+1 is continuous for each
n. Let (R, T ) be the inductive limit of {(Rn, Tn)}∞n=1 with the inductive limit
topology T , i.e. R = ⋃∞

i=1 Rn and Ũ ∈ T if and only if Ũ
⋂

Rn ∈ Tn for
every n. We say that (R, T ) is an AF-equivalence relation on X and we write
(R, T ) = lim−→(Rn, Tn). (In this case one can prove that Rn is open in Rn+1,

i.e. Rn ∈ Tn+1, cf. [1].)

The following proposition, which is proved in [1, Proposition 3.12], will
simplify our proof in the sense that we will be able to focus exclusively on
(étale) finite equivalence relations, and show these are AF, in order to prove
our result.
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Figure 1. “Cantor-cross” equivalence relation.

Proposition 6.
(i) Let R = lim−→ Rn be the inductive limit of an ascending sequence of AF-

equivalence relations Rn = (Rn, Tn) on X, such that Rn is open in
Rn+1 for each n (which one can show implies that the inclusion map is
a homeomorphic embedding of Rn into Rn+1). Then R = (R, T ) is an
AF-equivalence relation on X.

(ii) Let R = (R, T ) be an AF-equivalence relation on X, and let R′ ⊂ R

be a subequivalence relation which is open, i.e. R′ ∈ T . Then (R′, T ′)
is an AF-equivalence relation, where T ′ is the relative topology.

Example 7 (Example 4 revisited). Going back to (R, T ) from Example 4
it is easy to establish that it is not CEER. However, it is an AF-relation. In fact,
let {Un}∞n=1 ⊂ X be a sequence of clopen neighborhoods of 1

2 satisfying the
following

(i) Un is symmetric around 1
2 for all n ∈ N;

(ii) Un+1 ⊂ Un for all n ∈ N;

(iii)
⋂∞

n=1 Un = {
1
2

}
.

Define, for all n ∈ N, Rn = �
⋃{(x, 1 − x)|x ∈ Uc

n}, an let Tn be the relative
topology from the product topology on X × X. Figure 2 gives an illustration
of (Rn, Tn). Observe that the problem concerning the point 1

2 in Example 4
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Figure 2. CEER sub-equivalence relation of the “Cantor-
cross” equivalence relation in Figure 1.

is now eliminated. In fact it is easy to show that (Rn, Tn) is CEER for all n.
Also, it is clear, by the choice of {Un}∞n=1, that Rn+1 ⊂ Rn, and that Rn ∈ Tn+1

for all n ∈ N. Now, (R, T ) = lim−→(Rn, Tn), and hence (R, T ) is an AF-

equivalence relation. This particular example gives one of the clues of how to
prove (iii) ⇒ (i) of Theorem 1.

From this point on (R, T ) denotes an étale finite equivalence relation on
the zero-dimensional (second countable, locally compact) space X. Sometimes
the T will be dropped, and we write R instead of (R, T ).

Before getting on with the proof we need to introduce some notation and
terminology. For Ũ , Ṽ ⊂ R, we let

Ũ Ṽ = {(x, y) | ∃z, (x, z) ∈ Ũ and (z, y) ∈ Ṽ }
Ũ−1 = {(y, x) | (x, y) ∈ Ũ}.

For x ∈ X let r−1({x}) = {(x, x1), (x, x2), . . . , (x, xk)}, where x1, x2, . . . , xk

are distinct elements of X, and we set x1 = x. For each pair (xi, xj ) ∈ R,
choose a compact open neighborhood Ũ(xi ,xj ) of (xi, xj ) satisfying the follow-
ing properties.

(1) Ũ(xi ,xj ) satisfies the étale condition at (xi, xj ), i, j = 1, . . . , k with re-
spect to both r and s;
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(2) r(Ũ(xi ,xj ))
⋂

r(Ũ(xi′ ,xj ′ )) = ∅ whenever i �= i ′ and
s(Ũ(xi ,xj ))

⋂
s(Ũ(xi′ ,xj ′ )) = ∅ whenever j �= j ′;

(3) r(Ũ(xi ,x1)) = . . . = r(Ũ(xi ,xk)) = s(Ũ(x1,xi )) = . . . = s(Ũ(xk,xi )) for all i;

(4) (Ũ(xi ,xj ))
−1 = Ũ(xj ,xi ) for all i and j ;

(5) Ũ(xi ,xj ′ )Ũ(xj ′ ,xj ) = Ũ(xi ,xj ) for all i, j ′ and j .

z

y

X

x

x y
X

z

Figure 3. Étale collection for [x]R = {x, y, z} drawn
as bold line segments.

We call the set {Ũ(xi ,xj )}k
i,j=1 an étale collection (for [x] = [x]R), and denote

it by Ũ[x]. It is easy to see that Ũ[x] is an equivalence relation contained in R.
The existence of an étale collection follows in a straightforward way from the
étaleness of R. We refer to [1] for details. (See Figure 3 for an illustration of
an étale collection where k = 3.) Also, to an étale collection for [x] = [x]R ,
we define the associated étale neighborhood of [x], denoted by U[x], to be the
disjoint union (we use “

⊔
” to denote disjoint union)

k⊔
i=1

r(Ũ(xi ,xj )) =
k⊔

i=1

Uxi
=

⊔
w∈[x]

Uw,

where Uxi
= r(Ũ(xi ,xj )). (Note that by (3), r(Ũ(xi ,xj )) = r(Ũ(xi ,xj ′ )) for j, j ′ ∈

{1, . . . , k}.) We may thus suggestively write U[x] = r(Ũ[x]). For later use we
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note that if z ∈ U[x], then �[z]R ≥ �[x]R , which is an immediate consequence
of the definition of an étale collection. Keep in mind that Ũ[x] is a compact
open subset of R, and Uxi

, i = 1, . . . , k, and U[x] are compact open subsets
of X. Furthermore, Ũ[x], in the relative topology from R, is a compact étale
equivalence relation on U[x], and so by Proposition 2 (i) the topology on Ũ[x]

is the relative topology from U[x] × U[x].

2. Proof of (iii) ⇒ (i) of Theorem 1

We will first assume X to be compact. (The locally compact case will be
dealt with afterwards.) By Proposition 6(i) we may assume that R = (R, T )

is an étale finite equivalence relation on X. We will henceforth denote the
R-equivalence class [x]R of x by [x].

Fix x ∈ X and some étale collection Ũ[x] for [x], and define

R′ = RŨ[x]
= Ũ[x]

⋃ (
R

⋂ (
Uc

[x] × Uc
[x]

))
.

It is easy to see that R′ is a subequivalence relation of R. We note that
R

⋂
(Uc

[x] ×Uc
[x]) is an open subset of R, as it is the inverse image of Uc

[x] ×Uc
[x]

under the continuous map r × s. As a consequence we have that R′ is an open
subequivalence relation of R, and hence étale in the relative topology. By
construction we get that U[x] = r(Ũ[x]) is an R′-invariant subset of X.

Now choose, for all x ∈ X, an étale collection Ũ[x] of [x]. By compactness
of X, there exists a finite set {Ũ[x(1)], . . . , Ũ[x(m)]} such that

⋃m
i=1 U[x(i)] = X.

Define

R̃ =
m⋂

i=1

RŨ[x(i) ]
.

Lemma 1. R̃ = ⋂m
i=1 RŨ[x(i) ]

is a compact and open subequivalence relation
of R.

Proof. Since R̃ is a finite intersection of open sub-equivalence relations of
R, we only need to show that R̃ is compact.

Let {(xn, yn)}∞n=1 ⊂ R̃. Since X is compact we can find a subsequence,
which we again will denote by {(xn, yn)}∞n=1, such that xn −→ x and yn −→ y

in X. We want to show that (xn, yn) −→ (x, y) in R̃, which will prove that R̃

is compact. Choose an i ∈ {1, . . . , m}, such that x ∈ U[x(i)]. Then there exists
N ∈ N such that {xn}∞n=N ⊂ U[x(i)]. Since R̃ ⊂ RŨ[x(i) ]

and since U[x(i)] is RŨ[x(i) ]
-

invariant, we have that {yn}∞n=N ⊂ U[x(i)]. Furthermore, U[x(i)] is compact, so
y ∈ U[xi ]. Since Ũ[x(i)] has the relative topology from U[x(i)]×U[x(i)], this implies
that (xn, yn) −→ (x, y) in RŨ[x(i) ]

, and hence in R.
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We now need to show that (x, y) ∈ R̃, or, equivalently, (x, y) ∈ RŨ[x(j) ]
for

all j = 1, . . . , k. Fix j . Then, since U[x(j)] is RŨ[x(j) ]
-invariant, the only two

possibilities are that x, y ∈ U[x(j)], or x, y ∈ Uc
[x(j)]. If x, y ∈ U[x(j)], then, by

the above argument, (x, y) ∈ RŨ[x(j) ]
. If x, y ∈ Uc

[x(j)], then certainly (x, y) ∈
Uc

[x(j)] ×Uc
[x(j)]. We know already that (x, y) ∈ R, and so (x, y) ∈ RŨ[x(j) ]

. This
finishes the proof of the lemma.

We introduce some terminology. Let d be some metric on X compatible
with the topology of X. Let x ∈ X, with [x] = {x1, . . . , xk}, and let Ũ[x] =
{Ũ(xi ,xj )}k

i,j=1 be some étale collection for [x]. Then we define |U[x]| (called

the diameter of U[x] = ⊔k
i=1 Uxi

) to be the maximum of the diameters of
Uxi

= r(Ũ(xi ,xj )), i = 1, . . . , k, that is

|U[x]| = max{diameter(Uxi
) | i = 1, . . . , k}.

Now let a finite number of étale collections {Ũ[x(i)] | i = 1, . . . , m} be given
such that

⋃m
i=1 U[x(i)] = X. We say that Ũ = {Ũ[x(i)] | i = 1, . . . , m} is a full set

of étale collections and that RŨ = ⋂m
i=1 RŨ[x(i) ]

is the CEER associated to Ũ.

We define the diameter of Ũ, denoted |Ũ|, to be max{|U[x(i)]| | i = 1, . . . , m}.
We want to construct a nested sequence

R1 ⊂ R2 ⊂ R3 ⊂ · · · ⊂ R

of compact and open subequivalence relations of R, such that R = ⋃∞
n=1 Rn.

Then clearly
(R, T ) = lim−→(Rn, Tn)

where Tn denotes the relative topology on Rn, and so R = (R, T ) is an AF-
equivalence relation on X. This will finish the proof for the case where X is
compact.

Assume we have constructed

R1 ⊂ R2 ⊂ · · · ⊂ Rn ⊂ R

where each Rk = RŨk
is a compact and open subequivalence relation of R

associated to some full set Ũk of étale collections, and such that the diameter
of Ũk is less than 1

k
, i.e |Ũk| < 1

k
. Using Lemma 1 we can clearly construct

R1 with these properties. So assume n > 1. We want to construct Rn+1 such
that RŨn

= Rn ⊂ Rn+1 ⊂ R, and Rn+1 to be associated to a full set Ũn+1 of

étale collections, i.e Rn+1 = RŨn+1
, such that |Ũn+1| < 1

n+1 .

Let Ũn = {Ũ[x(i)]|i = 1, . . . , mn}. For every y ∈ X pick an étale collection
Ũ[y] ⊂ R for [y] such that
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(i) |U[y]| < 1
n+1 .

(ii) If z, w ∈ [y] and (z, w) ∈ Ũ
(x

(i)
k ,x

(i)
l )

, where Ũ
(x

(i)
k ,x

(i)
l )

∈ Ũ[x(i)] for some

i = 1, . . . , mn, then Ũ(z,w) ⊂ Ũ
(x

(i)
k ,x

(i)
l )

, where Ũ(z,w) ∈ Ũ[y].

The existence of Ũ[y] satisfying (i) and (ii) follows easily from the étaleness
of R.

Now choose a full set of étale collections Ũn+1 = {Ũ[y(i)]|i = 1, . . . , mn+1}
such that every Ũ[y(i)] satisfies (i) and (ii), and let Rn+1 = RŨn+1

be the com-

pact and open subequivalence relation of R associated to Ũn+1. (In the sequel
we use x’s and y’s when we refer to sets associated to Ũn and Ũn+1, re-
spectively, in order to facilitate the reading.) We claim that Rn ⊂ Rn+1. In
fact, let (x, x ′) ∈ Rn. Suppose x ∈ U[y(i)] for some i ∈ {1, . . . , mn+1}. Now
U[y(i)] = ⊔

ỹ∈[y(i)] Uỹ , and so x ∈ Uỹ for some ỹ ∈ [y(i)]. There exists some
j ∈ {1, . . . , mn} such that

ỹ ∈ U[x(j)] = r(Ũ[x(j)]) =
⊔

x̃∈[x(j)]

Ux̃.

Hence (ỹ, ỹ) ∈ Ũ(̃x,̃x) for some x̃ ∈ [x(j)]. By condition (ii) above we get that
Ũ(ỹ,̃y) ⊂ Ũ(̃x,̃x), and so

Uỹ = r(Ũ(ỹ,̃y)) ⊂ r(Ũ(̃x,̃x)) = Ux̃ ⊂ U[x(j)].

Since x ∈ Uỹ , we get that x ∈ Ux̃ . Hence there exists ˜̃x ∈ [x(j)] such that
(x, x ′) ∈ Ũ(̃x,̃̃x), since (x, x ′) ∈ RŨ[x(j) ]

. Also, since ỹ ∈ Uỹ ⊂ Ux̃ , we get that

(ỹ,˜̃y) ∈ Ũ(̃x,̃̃x) for some ˜̃y ∈ [̃y] = [y(i)]. By condition (ii), Ũ(ỹ,̃̃y) ⊂ Ũ(̃x,̃̃x).
Since x ∈ Uỹ and (x, x ′) ∈ Ũ(̃x,̃̃x), étaleness of Ũ(̃x,̃̃x) implies that (x, x ′) ∈
Ũ(ỹ,̃̃y). So (x, x ′) ∈ Ũ[y(i)] ⊂ RŨ[y(i) ]

.
If we had assumed at the start that x �∈ U[y(i)], then our argument would

yield that also x ′ �∈ U[y(i)], and so (x, x ′) ∈ R
⋂

(Uc
[y(i)] × Uc

[y(i)]) ⊂ RŨ[y(i) ]
. We

conclude that (x, x ′) ∈ Rn+1 = RŨn+1
= ⋂mn+1

i=1 RŨ[y(i) ]
.

We now prove that R = ⋃∞
n=1 Rn. Let (x, y) ∈ R, and let Ṽ[x] ⊂ R be

an étale collection for [x], with V[x] = r(Ṽ[x]). Then x ∈ Vx , where V[x] =⊔
w∈[x] Vw. Let ε = distance(x, V c

x ). Then ε > 0 since x ∈ Vx and Vx is
clopen. Choose N so large that 1

N
< ε. Now assume x ∈ U[x(i)] = r(Ũ[x(i)]) for

some étale collection Ũ[x(i)] ∈ ŨN , i ∈ {1, . . . , mN }, where RN = RŨN
. Then

x ∈ Ux̃ for some x̃ ∈ [x(i)], where U[x(i)] = ⊔
z∈[x(i)] Uz. Since diameter(Ux̃) <

1
N

, we get that Ux̃ ⊂ Vx . In particular, x̃ ∈ V[x]. Since both Ṽ[x] and Ũ[x(i)] are
étale collections, and x, x̃ ∈ V[x]

⋂
U[x(i)], it follows that �[x] = �[̃x] = �[x(i)].
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(Cf. the observation we made when we introduced the definition of an étale
collection.) This, combined with x ∈ Ux̃ ⊂ Vx , implies that r−1({x}) ⊂ Ũ[x(i)],
and so (x, y) ∈ Ũ[x(i)].

If we had assumed that x �∈ U[x(i)], the above argument would yield that
y �∈ U[x(i)]. In both cases we may conclude that (x, y) ∈ RŨ[x(i) ]

. This proves
that (x, y) ∈ RN = RŨN

, and thus the proof is complete for X compact.
If X is locally compact, there exist a sequence of compact and open subsets

{Vn}∞n=1 of X, such that X = ⋃∞
n=1 Vn and Vn ⊂ Vn+1 for every n. Let Rn be

the subequivalence relation of R defined by

Rn =
{
R

⋂
(Vn × Vn)

} ⋃
�

where � is the diagonal of X × X. Since R
⋂

(Vn × Vn) is the inverse image
of Vn × Vn under the continuous map r × s, we get that Rn is open in R, and
so Rn, in the relative topology, is an étale equivalence relation on X. Clearly

R1 ⊂ R2 ⊂ · · · ⊂ Rn ⊂ Rn+1 ⊂ · · · ⊂ R =
∞⋃

n=1

Rn

and so R is the inductive limit of {Rn}∞n=1, i.e. R = lim−→ Rn. Since Vn is compact,

and R
⋂

(Vn × Vn) clearly is an étale finite equivalence relation on Vn, we get
by our result above that R

⋂
(Vn × Vn) is an AF-equivalence relation on Vn.

This implies that Rn is an AF-equivalence relation on X. By Proposition 6 we
conclude that R is an AF-equivalence relation. This completes the proof of
(iii) ⇒ (i) of Theorem 1.
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