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FUNCTIONAL COMPOSITION IN B, SPACES
AND APPLICATIONS

DAVID JORNET and ALESSANDRO OLIARO*

Abstract

Let f(x,z2),x € RY, z € CM be a smooth function in the sense that its Fourier transform has
a good behaviour. We study the composition f(x, u(x)), where u is in a generalized Hérmander
B, « space in the sense of Bjorck [1]. As a consequence we obtain results of local solvability and
hypoellipticity of semilinear equations of the type P(D)u + f(x, Q1(D)u, ..., Qu(D)u) = g,
with g € B) «, and fully nonlinear elliptic equations.

0. Introduction

During the last years the attention of several authors has been directed to local
solvability for semilinear equations

P(x, D)u + f(x, Du) = g(x),

where the linear part is assumed to be locally solvable and the nonlinear term
contains derivatives of lower order with respect to P(x, D) (see Gramchev
and Rodino [9], Hounie and Santiago [11], Marcolongo and Oliaro [13], De
Donno and Oliaro [4], etc.). The regularity of the data is usually prescribed
according to the regularity of the coefficients of P(x, D) (see, for example,
Mascarello-Rodino [14]). The functional frame is given in this case by linear
spaces (Sobolev, Hilbert or Banach) that, under suitable assumptions form an
algebra, and then one can apply Functional Analysis results (Inverse Function
Theorem, Fixed Point Theorem, etc.). The algebra property guarantees a pos-
sible analytical dependence of f with respect to u, and consequently, brings a
priori estimates for the nonlinearity f. In this note we prove that the functional
composition f(x, u(x)), where u is in a generalized Hormander B, ; space
in the sense of Bjorck [1] and f belongs to some B, 3 space with respect to
all the variables (see Theorem 2.6 for the details), is also in B, ;. We use the
more modern framework of ultradifferentiable functions and ultradistributions
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as introduced by Braun, Meise and Taylor [3]. In particular, we need a strong
weight w as defined in Meise and Taylor [15] for our purposes. Moreover, we
see that if the weight w is not strong then the algebra property fails in general
(see Theorem 2.2 and Example 2.4). We follow the lines of Bourdaud, Reissig
and Sickel [2], that study composition in B), ; spaces in the simpler case p = 2
and k(t) = €' ]/S; we recapture as a particular case the result proved in Ref. [2].

As an application, we investigate local solvability of the semilinear operator

F(u) = P(D)u+ f(x, Q1(Du, ..., Qu(D)u)

where P, Q1, ..., Qu are linear partial differential operators with constant
coefficients. The problem consists in finding a local solution u in a neighbor-
hood 2 of a point x°, forany f in a given class of data. We prove, continuing the
works of Messina and Rodino [17] and Messina [16], that for every g € B, x
in the sense of Bjorck, where k(§) = e®®) and w is a strong weight, the
equation F(u) = g admits (locally near a point) a solution u € Bp’ «p (cf.
Theorems 3.2 and 3.5). Two different hypotheses on the nonlinearity f will
be considered: the first, to assume that f(x°, z) = 0, for some x° € R and
all z € CM and that Q;(§) < CP(¢) forallé € RV andeachi = 1,..., M
and some constant C > 0; the second, the essentially weaker hypothesis on
the nonlinear term f(x,0) = O for every x € R", and the stronger one on

the differential operators with constant coefficients %T(;)) — Qas [§] > +o0
foreachi = 1, ..., M. We observe that we extend the corresponding results

of [17] and [16], that solve locally the equation F (1) = g when g belongs to
a classical Hormander B, ; and f(x, z) is assumed to be holomorphic in the
z-variable (cf. Example 3.7).

As afurther application of the composition result we then analyze semilinear
operators with hypoelliptic linear part, extending a result proved in [8].

We end this introduction by giving some examples of operators to which
our results apply. Here we just give some hints, referring to Section 3 for the
details. Let us consider a fully nonlinear equation

(1) f(x’ Dau)|a|5m = g(-x)9

where the operator f[u] = f(x, D*u)jy<m 1s supposed to be elliptic and
f(x,0) = 0 for all x; given arbitrarily x° and g € B, ; we can find (locally
near x°) a solution of (1) belonging to some B, » space, where the nonlinear
function f(x, z) is supposed to be sufficiently regular.

The same kind of result holds for the following semilinear version of the
Schrodinger equation for a free particle:

) P(D)u+ f(x,u, Dyu,..., Dy, u, P(D)u) =g,
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where P(D) = — Dy, + Z]N:_ll ij and f(x°, z) = 0: we can solve (2) locally
near the point x° in the space B, .
We consider finally the following simple example in three variables x =
(x1, X2, x3):
0

a
(3) ——uti—u+ f(x,u, dyu, dy,u) = g(x).
axl 8)62

Under similar assumptions as in the previous cases we can prove the local
solvability of (3) in B, spaces at any point x°, assuming f(x° z) = 0 or
f(x,0) = 0; observe that the assumption that the nonlinear term f does not
depend on 9, u is essential, since it was proved by Lewy [12] that the linear
operator

A R
ax; X7 0x3
is not locally solvable at the origin.

The authors are thankful to Carmen Ferndndez and Antonio Galbis for their
helpful suggestions on the properties of the weight function.
1. Notation and preliminaries

First we introduce the spaces of functions and ultradistributions and most of
the notation that will be used in the sequel (see [3], [1]).

1.1. Weight functions

Let o : [0, co[— [0, oo[ be a continuous function which is increasing and
satisfies w (0) > 0. We consider the following conditions on w:

(@) w(2t) < K(1 + w(t)) for some K > 1 and for all .
B) [7 2 dt < occ.

(y) log(t) = o(w(t)) as ¢ tends to oco.
(y) log(l +1) = O(w(t)) ast — o0,

&) ¢ :t — w(e') is convex.

(e) there exists C > 0 with [~ 242 dt < Co(y) + C forall y > 0.

12

If w satisfies (o), (B), (y) and (§) is called weight function (in the sense of
Braun, Meise and Taylor [3]). A weight function that satisfies (¢) is said strong
weight. Bjorck considers in [1] subadditive weights that satisfy (8), (v) to
develop a theory of ultradifferentiable functions and ultradistributions.

For a weight function @ we define @ : C¥ — [0, oo[ by @(z) = @(|z]) and
again call this function w, by abuse of notation. The Young conjugate of ¢ is
defined by ¢*(x) = sup,_o{xy — 9()}.
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1.2. Spaces of functions and ultradistributions

Let o be a weight function and let 2 be an open set in RY. We define the set
of w-ultradifferentiable functions of Beurling type as

Ew)(Q) :={feC™®(Q) : || fllk., <oo,forevery K C 2, and every A > 0},

where

o (@) % |
4) I £l := sup sup | £ (x)|exp [ —2o =)

xekK qeN)
This space is endowed with its natural Fréchet topology. We put
D) (K) == {f € &) () : supp f C K}

and )
D) (RQ) := ljfl()i D) (Kj),

where (K;);en denotes a fundamental sequence of compact sets of €2. The
elements of &, () are called w-ultradistributions of Beurling type.
Following Bjorck [1], we define the spaces B, ; introduced by Hérmander
in the case that k € J,,. We refer to Fieker [7] for a version of the theory which
includes the case of non subadditive weights.
For a given weight function @ we define J7, as the set of all functions
k : RN — [0, +00[ such that,

k(E +n) <e® k@),  n&eRY

for some A > 0.

DErFINITION 1.1. Let w be a weight function, k € %, and 1 < p < oo.
We denote by B, ; the completion of the normed space consisting of those
u € &, (RV) such that

1/p
) lullpx = ((ZH)_N /RN Ik(é)ﬁ(é)l”dé) < 00,

where ||| s« denotes ess sup k(€)|u(&)]; %”(’w) (RM) is the set of all the elements
of I )(RN ) having compact support.

w

If k, k and k, belong to 7, and s € R, then k| + ks, k| - ko, max(ky, k),
min(ky, k2) and k* also belong to Hy. If P #£ 0 is a polynomial in C[z] then

P € J7,, where 12
P& = [Z |D°‘P(s)|2} :
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2. Composition in B, ; spaces

In this section we analyze the composition F (x, u(x)), where both F and u(x)
are in the B, spaces. Let w be a fixed strong weight and k(§) = e*©®); we
prove that the space B, x is an algebra under certain additional condition on w.
Moreover, we observe that the elements of B, ; are actually functions, since
w satisfies (y) (or (y)', if we assume that M,, log(1 +¢) < w, for M,, > 0 big
enough) and, consequently, we give sense to this type of composition. As in
Ref. [15], the function

* w(xt) *® w(t)
X(x):/; 2 dt:x/x t—zdt

is an equivalent concave weight, satisfying x'(x) > 0: for some constant
K >0,

(6) wx) < x(x) < Kokx)+K

for all x > 0. Then, the function k(§) = exp(x (&¢)) is in J,,. In the following
lemma we can suppose that w satisfies the more relaxed condition ()’ instead
of (y) (see [15, 1.3]).

LEMMA 2.1. There exist constants 0 < € < 1 and 0 < § < 1 such that
(7 X +y) = x@) — x(y) £ =€min{x(x), x(y)} +
forall x,y > 0.

PrOOF. We will see that
(8) x(&x+y) = x@) = x(+Exx) <4

if 0 < x < y. We can rewrite the first term of (8) as
® () /°° o(1) f°° (1) /°° w(1)
—=dt — —dt — —dt € —=dt
()H-y)/x+y 2 xx " yy 2 + xx 3

X+y x+y ~

+y

The first integral in (9) is < 0 (we take ¥ < 1). We prove that the last two
integrals sum a number < §, for some 0 < § < 1. In fact,

Y w(t) xty X
—2dt > yo 72dt = w(y)—,
y/y 2 4tz y (y)/y (y)x+y
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and using x (2y) < 2x(y) for each y > 0 (by the definition of ) and (6), we
have for the last integral,

*© w(t) X X X
€ —dt =6¢— +Y)<E—xRy) <€—2
X/Hy 2 x+yx(x y) = x+yx( y) < Xty x()

< L _%0Kw@») +2K) < ——24Kw(y) + 2K€
xX+y xX+Yy

Then, taking € < 1/(2K), we finally obtain

x+y t 00 t
—y/ iz)dt + €x ﬁz)dt < (2¢K — 1)Lw(y) + 24K
y t x+y t xX+y

< 2¥¢K.

Moreover, if the weight x satisfies (8), then it’s a strong weight, that is, it
satisfies (&). From now on, w is supposed to satisfy (7). Proceeding as in the
proof of [2, Theorem 2.1] we have

THEOREM 2.2. Let us take u, v € By, 1 < p < 400, with k(§) = ¢*®.
Thenuv € B, x and there exists a constant Cyg such that the following estimate
holds:

(10) luvlip e < Cagllullpellvllpi-

Moreover, one can see that the constant Cyy = C e~ @) L 1s finite,
since w satisfies (y) (or M, logt < w(t) ast — oo for a constant M, big
enough). We observe that, at least for the case p’ # oo, we can write

v +00 !
(11) Calg = C(/ ef(gl’/w@) d%-) — Cl (/ ef(gp’w(t)thl dt)
RN 0

where in the last integral we apply polar coordinates.

ExamPLE 2.3. Itiseasy to see that the weights w (1) = exp [(log(l + t))“‘],
with0 < o < 1, or w(t) = t*(log(1 + 1))?, with0 < a < 1 and B > 0 are
strong weights that satisfy condition (8).

As in Meise and Taylor [15, 3.11] we can construct more examples of
weights in the following way: Let (M;);cn, be a sequence of positive numbers
which has the following properties:

(M1) M} < M;_1Mjy, forall j € N;
(M2) there exist A, H > 1 with M,, < AH" ming< <, M;M,_; forall j € N;
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(M3) there exists A > 0 with }°°° | Af;,;‘ <Aj Ajﬁl for all j € N; and
define wy; : [0, +00[ — [0, +o00[ by
t) M,
suplog| | 0, for |t| > 0
wm(t) = { jeN, M;
0 fort = 0.

Then there exists a strong weight « (¢) which satisfies (8) and
wy(t) <k(@) <Cwy(t)+ C forsome C >0 andall ¢ > 0.

From the properties of wy; and « it follows that for each open set Q2 of R we
have

sup sup | £ (x)]
aeNy xek 11 Mg

& () =EM(Q) = !f € C*(Q)

foreach h > 0 andeach K C Q2 compact}.

We refer to Examples 2.7 and 2.8 for more details.

In the following example, we will see that B, ; need not be an algebra when
w does not satisfy property (¢).

ExampLE 2.4. We take the weight w(¢) = t(log(1 + 1), B > 0. Then
w is not a strong weight. As in [2, Theorem 2.1], we choose u = v such that

Fu)e”®? = !t , a > E
(I + 1§D 2

We have max(|n|, |€ — n]) < (L + 1/2)|&| in B(£/2, L|&]|), where L > 0 is
a constant that we will fix later. Moreover, if L < 1/2, min(|n|, |§ — n|) >
(1/2 — L)|&]. Then, for |£| large enough, we get

w(E) —wE —n) —w)
= |&|(log(1 + €))7 — |& — nl(og(1 + € — n)# — Inl(og(1 + |n]))~F

& 1(log(1 + €)# — 2(1/2 + L)|&|[log((1/2 + L)(1 + |£])]7*
—1/2.

vV v

Now, proceeding in a similar way to the proof of [2, Theorem 2.1], we easily
obtain that ||u?||,; = oo, where k(£) = ¢®®) and a < 3N /4.

The following remark is essential to prove the composition result.
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REMARK 2.5. Let us suppose, as in Theorem 2.2, that # and v belong to
the space B, x, and moreover that supp i, supp 0 C {§ € RV : |£] > R}. Then
repeating the same proof as in Theorem 2.2 we get the following more refined

estimate:
luvllpr < CR)ullpr lV]1pk,

where the constant C(R) is of the form

+o0 »
(12) C(R) = c(/ e P N-1 dt) )
R

Now we want to state the main result of this section. We consider a function
f(x,2), x € R¥, z € CM, and we represent it as

(13) G(x,Nz,32) =G(x,y), xeRN, yeRM,

_ THEOREM 2.6. Let us fix p € [1, +00] and three weights k(t) = e,
k(t) = e®? and k(t) = ° D, where:

(14) Aw(t) < o(t) as t— +o0o,

Sfor some suitable constant A > 1; there exists v € (0, €) such that

(15) w{ta)_l|: ! 1ogL“:o(a(z)) as 1 — +00,
€ —v w (1)

where € is the constant of (7). We suppose that G(x, y) is B, i inthe x-variable
and B, ¢ in the y-variable, more precisely:

as) fem = [ [ @G ) ande] <o

Let us fix a compact set K C RN. Then:

(1) ifu(x) = wi(x), ..., upm(x)) withsuppu; C K andu; € B, i for every
J=1,...,M, then f(x,u(x)) € B,; more precisely, there exists a
function Wi : [0, +00)M — [0, +00) such that:

a) Wg is bounded on bounded sets, i.e. for every B C [0, +00)Y
bounded in RM there exists Cy such that sup,cp |k )| < Cg;
b) we have

A7) ILf e wClpx = W lurllpis - llumllpi)-

(1) Let us define B, 7 :={u € By : |ull,x < T}, T > 0; then for every
uD(x) = @), .. ul) @) and u®x) = WP ), ..., ul)x)
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with the same properties as u(x) in (1) and satisfying uij)(x) € Byt
for j=1,2andh =1,..., M, there exists a constant Cx r depending
on K and T such that

M
18)  f G uP() = fr. u® @)l < Crr D Ml — 1Pl

j=1

Before giving the proof of Theorem 2.6 we want to analyze in some partic-
ular cases the meaning of the conditions (14) and (15).

ExampPLE 2.7. Let us fix
w@t) =1, s> 1,

which corresponds to the Gevrey case. In this particular case the composition
in B, -spaces has been already studied, in the case p = 2, in [2], [5], proving
results similar to the one of Theorem 2.6. Since w ™! (r) = r* we easily obtain

et wltw! ! log — |} = 1—l ! "5 1og t;
€ —v ga)(t) o s)€—v Bt

we can then rewrite (14)—(15) in the following way:

(14) 5 < Ad@r) as t — 400,
(15") 1 1logt = o(a(t)) as t — +oo.

We notice in particular that conditions (14')—(15") are the same as in [2], [5],
and so we recover known results in the Gevrey frame.

ExaMPLE 2.8. Let us analyze now the case

o@) = (logi)’,  B=1,

for # large enough. This weight satisfies condition (7), since the function x +—
(log(x + y))? — (log(x))? is decreasing (for a fixed y). Moreover, we have

o '(r) = e ; then

oltw! ! logL ~ max 1,; (logt)ﬁ as t — 400,
€ —v w (1) € —v

which implies that the conditions (14)—(15) in this case become

(14") (logr)’ < Aa@)  as t— 4o,
(15") (logr)’ =o(c(®)) as t— 4oc.
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We can fix for example &(t) = o(t) := ¥ (z) with (log t)ﬂ = 0(1‘}(1)) as
t — 4ox.

From the concavity of the weight @ we obtain

LEMMA 2.9. (1) Let o > O; for everyt > 0 we have w(at) < max{l, a}w(t).
(2) The function t +— log ﬁ is increasing, and it tends to infinity for
t — oQ.

The fundamental tool to prove the composition result of Theorem 2.6 is the
following technical proposition.

ProposITION 2.10. Let us fix a compact set K as in Theorem 2.6. Then
for every v € (0,%€) we can find a, > 0 (€ is the constant of (7)), and
moreover there exist positive constants M, C, Cy, b, Ck, GK, where M > 1,
and Cx, Cx depend on K, such that for every real-valued function u € B, ,
p € [1, +oo], with suppu C K the following estimates hold:

19) le™™ — 1,k < Ck.m

for ullpx < M, and
_ Nl 4
(20) ”eiu(x) _ 1||p p < Cea”w(”u‘l”"‘) |:C1 + aKeb(u[HM”p,k(u l[ﬁlog m(”lppf\k>i|}:|

for |ullpx > M.

Estimates of the type of (19)—(20) have been proved in [2] in the simpler
case when p = 2 and the weight function is of the kind w(¢) = t'/* (which
corresponds to Gevrey type spaces); we use the idea developed in [2], but we
need more involved techniques. In particular, in [2] the fact that || u| ;2 = ||i]| 72
is crucial at a certain point of the proof, but here we cannot use a similar tool,
since we admit also p # 2, and this is the reason for the dependence of the
result on the compact set K; on the other hand, this is enough for proving
several results on local solvability (cf. Section 3), where we shall be allowed
to definitely fix K, considering only compactly supported functions.

PROOF OF PROPOSITION 2.10. We define, for R > 0, the following set:
Pr={6ecR":|§| <Rforj=1,...,N}
moreover, for € = (€1, ..., ey) with¢; € {0, 1} we put

Pr(e) = (€ eRY :sgng; = (=1)9,j=1,...,N}\ Pg.
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The proof consists of three steps: we shall analyze at first the case when the
Fourier transform of u is supported in the sets that we have just defined, and
then we shall consider a general function u.

First step. We start by considering u € B, such that suppit C Pg(e).
Since Pr(€) C {€ € RY : |£] > R} we can apply Remark 2.5, obtaining

' = C(R)h 1||u||h
(21) ”elu(X) — 1”p,k Z < ”u”p’keC(R)Hqu_k

h=1
< @ Uullpi) fCR) Nl x

as we can deduce from the property (y) of the weight w(-).
Second step. Let us suppose now thatu € B, ; withsupp it C Pg. Forevery

£ € N we set . (.( )h
ul(x)zz%.
h=1

By the standard properties of the Fourier transform and of the convolution
product we then have that supp ii; (x) C Pyg; since RY = (UE PgR(E)) U Per

we obtain:
iu(x) (&) g . (i”(x))h
e = e = 3 e OF e D
€ h=0+1

(22) + €@ F e (e — 1)

= Z T + 1,
€

where Tl(‘) and T, are the norms in L”(Pyg(€)) and L? (P,g), respectively. We
now analyze separately Tl(e) and 7.
(i) By Theorem 2.2 we have that

LP(Peg(€))

LP(Pr)

0 . h 00 h
10=| % (’”2):)) 2 3 (Calg”:'Hp,k) ;
h=t+1 : pi Cag h=t+1 :
then, taking
(23) 4Calg”u”p,k = 14 = 4Calg”u”p,k + 1,

we easily obtain by Stirling’s formula that

(24) T <,
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C being a constant independent of ||u]|, k.

(i1) Let us analyze now T,. At first we observe that there exists a constant
A such that for every £ € Py we have |£| < ALR; since w is increasing we
then have

(25) Ty < e” | Fe (e = 1)

LP(Per)”

Using that Py is compact and |e! — 1| < C|t| for every t € R, we get
from (25) and the well known mapping property of the Fourier transform
F : L'(RY) — L*(RN)

(26) Ty < AR | || F g (M0 — 1) L% (Peg)
< Ce‘”(MR)|PeR|1/p||M||L'(RN)’

|P;r| being the measure of the set Pyr. Now, writing u(x) = (2n)~V
i e*$[i(£) d& we have by a simple integration by parts that

el 1 gy = (Zn)_N/(l + |x|2)‘N‘/e”f(1 + Ae) V() dg | dx
= C”(l + AS)Nﬁ(§)||L1(RN)’

where Ag is the Laplacian in the &-variables. Since suppit C Pg, the last
norm in (27) is in L'(Pg). Now P is compact, so for every g € L”(Pg)
we have by Holder inequality that ||gll.ipyy < |PrIY”llgllLr(py) Where

| Pr| is the measure of Pr and % + pl = 1; then by (27) we deduce that

lulligey < CLPRIMVP [ Fo (A + 1PV i) |-

this last inequality in (26): since e“®) > 1 for every & € RY, taking into
account that for every T > 0 we have |Pr| = (2T)" we obtain

We can now apply

(28) Ty < C1e” @B Pg |7 | Py |7 e ® F e (1 + 1x V)| Ly i
_ Czew(AZR)EN/PRNH(l + IxIZ)NM(x)”p,k'

We finally have from (22), (24) and (28) that

29) [ =1,k < C1 + Coe? NP RN (1 + xHVu) ],
for every u € B, ; with supp it C Pg, where £ is a positive integer satisfying
(23).

Third step. We consider now a generic u € B, ;. Fix functions xz(§) and
Xxe (&) with the following properties:
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xr(€) € CPRN), 0 < x(§) < 1forevery § € RY, xg(§) = 1 for
every £ € Pg; moreover, we assume that supp xg C Pr+; and g is
real-valued and even.

For every € = (€1, ..., ey) with¢; € {1, 0}, we set
1 — xr(§) for& € Pg(e)
Xe(g) =
0 for& ¢ Pr(e)

Observe that xg(£) + >, xe(§) = 1 forevery & € RY; then we can write

(30) u@) = FLL@E) =D uelx) +uo(x),

€

where ue(x) = F [xe©i()] and uo(x) = F [xr(§)ia(©)]. Since
xe(€) < 1 for every £ € RV, we have that for each € the following estimate
holds:

Gl uellpu = Qo)) @ xe i),
< @m)y NP e @a®)|,, = lullpi:

by definition, supp iz C Pg(€), so we can apply the inequality (21), which
gives, together with (31),

(32)  [le — 1,4 < eUelnd CRMuellrs < geolull,)+C RNl

since w is an increasing function.
Let us recall now the following identity, that was proved in [2, Lemma 4.6]:
for every ay, ..., a, € C we have

33) awacap—l=Y. > (@ =D, — D).

h=1"— j=(j1,...)n)

0<ji<jp<<ji<m

We want to analyze the norm of the quantity e/*) — 1; by (30) we can write
e®—1 =[], e<™]-e™™ —1; then by applying (33) in this last expression
and by using the algebra property (10) we can estimate the norm [/ — 1|,
by a sum of terms whose factors are of the type || e/#<*) —1 Il or [|eiot) —1 Il k-
Regarding [le™<™) — 1]|,x we can apply (32), while for [e™) — 1]|,,  the
estimate (29) holds with R + 1 in place of R, since supp ity C Pgy. Since we
have 2V different choices of € we then obtain

(34) ”eiu(X) _ 1||p,k < Ce2N6w(IIMHp.k)+2NC(R)HM||p,k

o <C1 + Cpe® MR NP (R 4 1)NH(1 + |x|2)Nuo(x)||p k>.
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Let us estimate now the term || (1 + |x]*)Vuo(x) ||p’k. By definition, we have

uo(x) = 97{_1”6 ( xXr(E)u(E )) ; then, easy computations and the basic properties
of the Fourier transform give us

A+ xPDNuox) = D cax®F L (Xr©)i())

la|<2N

= Y e F L (PP xm) ) (x*Pu) (6],

lo|<2N =

where co5 = (Z)(—l)'ﬁ‘ca. Now we observe that we can find a constant B

depending on N but not on R such that ||[D? x||;~ < B for every || < 2N;
so we obtain
(35)

[+ DY uo) |, <€ Y 3 [ O D x) &) (x*Pu) @),

la|<2N B=a

<CB Z Z”x"‘*ﬁu(x)”p!k.

le|<2N B=a

Since by hypothesis u is supported in K, we have that x* P u(x) = ¢ (x)x* P
u(x), where ¢ is a suitable (test) function such that ¢x(x) = 1 on K and
dx(x)x* P € B, i for every B < o, |a| < 2N. We deduce from (35) and
Theorem 2.2 that

36) [+ xP)Nuox)|
<c Z an]g |k (x)x*F ||p’k||u||p,k = Cxllullp-

lo|<2N B=c

Let us observe moreover that we can find a constant D satisfying R+1 < DR
for every R > 1, so w(AL(R + 1)) < w(A’LR) with A’ = AD, w being an
increasing function; we then deduce by (34) and (36) the following estimate:

BN e =1,k

< G el 2 C®Ils (C) 4 Cle® @R NP RN ], 1)

forevery R > 1, where £ satisfies (23). Let us analyze at first the case [ u|, x <
M, M being a positive constant; since (37) holds for all R > 1 we can fix
R =1, and moreover from (23) we get £ < 4Cy,M + 1, 50 (37) gives us (19).

Now let us consider the case |lu|,x > M. At first we want to analyze the
constant C(R), cf. (12); since w is increasing, for every v € (0, €) we can
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write
1
+o0 I
(38) C(R) < Ce Mo ( f e PN dt) = Cye @7,
0
We then get

—1 1 Cv
(39) R<ow [(g—vIOg<C(R)>]'

Since (37) holds for every R > 1, we still have the freedom to choose R; we
fix R in such a way that

w(l[ullp.x)

(40) C(R) =C,
llullp.x

’

and then by (39) we obtain

o il
41 R ! 1 ( P, )]
. =@ [(é—v ol

Since we want to estimate ||¢/*™) — 1 Il p.x through (37) we now consider some of
the terms appearing there, starting from w (A’¢R). Recall that we are supposing
that |lu||, x > M; then, taking M > 1 we have from (23) that £ < (4Cyg +
Dlullp,x. Then by (41) and Lemma 2.9 we get:

42) a)(A/ZR)fAlw{”u”p’kw—l[ 1 log( llull p i >]}
€ —v w(llullpr)

for every v € (0, €), where A| = max{l, A'(4Cy, + 1)} is independent of v.

Let us consider now the term £V/? in (37). By Lemma 2.9 again we have,
for |[ull,x > M with M sufficiently large, w™ ( w(‘m" "k)) > 1; so,
using the condition £ < (4Cyg + 1) |||, x and the fact that logt = o(w(t)) as

t — +o00 we easily obtain the following estimate for every |[u||,x > M:

% = (4Calg 1)%6%171‘“(”'4“1"")
@3) B
< (4Calg 1)* phlw{\lul\pkw 1[%101‘;%]}'

Similarly, from (41) we get the following estimates:

_ 1 lullp k
N Nhlw{llu\l,,,kw 1[—%)7 log —a=—
R S e v laell p, ) ,

(44)

Ileell &
blw[\luH yon [ - log . ]]
||u||p,k <e r ol
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It then follows from (37), (40), (42), (43) and (44) that (20) is satisfied for
every |lull,x > M, with a, = 2V(c + C,), Cx = C}j(4Cqug + 1)» Cg and
b=A+ b (% + N+ 1). The proof of Proposition 2.10 is then complete.

REMARK 2.11. We observe that the estimates (19)-(20) can be obviously
unified in (20). On the other hand, considering the proof of Theorem 2.6 in the
one-dimensional case, we always have f(x, u(x)) € B,y forasingleu € B, .
In fact, it is sufficient that the last expression in formula (26) be finite, but the
Fourier transform of  in (26) has compact support, and therefore u € L!(RV).
In this case we can avoid the requirement that u has support in a fixed compact
set K.

Now we give some lemmas that, together with Proposition 2.10, shall allow
us to prove Theorem 2.6. Using that ¢,, : t — w(e") is convex we obtain

LEMMA 2.12. The weight w satisfies o' (t +5) < o~ (t)w ™' (s), for every
t,s € R+.

LEMMA 2.13. Let G(x, y) satisfy the hypotheses of Theorem 2.6, and let us
denote R(x) = G(x,0). Then R(x) € By .

Proor. First, we observe that

4s) RGx) = (2m) N 2M / G, ) dE dn.

RN+2M
The statement follows then by applying Holder’s inequality, (14) and (16).

LEMMA 2.14. Let E(x) be a function belonging to the space B, . The
following estimate holds for every & € RV :

e Ex)|l,x < Ce”ONE| i,

where C is a positive constant independent of &, and we have set as usual

k() = e®),

PrOOF. By definition of the B, x-norm we have

le™ @y, = o™ /N P O=PalkIZIED groel=E | B (s — £)|” dg.
R

Since, by (7), e?©~*EI=ED < @@+ \ve get immediately the conclusion.

Now we can pass to the proof of the composition result in the spaces B, k.
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PROOF OF THEOREM 2.6. (i) We start by proving (17). We observe at first
that we can write the function G (x, y) in the following way:

46)  G(x,y) = m) "M / ™ (™ — 1)G (&, n) dE dn + R(x),

where R(x) is given by (45). Let us write
(47) v(x) = Muy(x), ..., Rup (x), Sui(x), ..., Sup(x));

since we have represented f(x, z) as in (13), using Lemmas 2.13 and 2.14 we
obtain

48) N f e, uC)lpx = 11Gx, v(x))pk
< [ O - 11, 0G . wIdsdn + C,
where Ci = ||R||,. is a constant depending only on G. So we have just to
estimate ||e"*™" — 1]|, x; by the formula (33) and Theorem 2.2 we get
(49) [l — 1|
oM
<C Z Z llen @M — ||, g e S — 1

h=1 " j=(i,.., jn)
0<ji<...<jn,<2M

By using Proposition 2.10 and taking into account Remark 2.11 we obtain, for
every £ = 1,...,2M, the following estimate:

(50)  [le"™ O — 1,

~ , —1 1 Inelllvellp x ]]
: Ceavw(lm‘”vfupy}() |:C1 + CK €bw[‘mluw . [@*V log o(lngllvgllp 1) .

Now we consider two cases.
If |Juell,x < 1, since w is increasing and |n,| < |n|, we obtain from
Lemma 2.9 that

1

(51) ||€l'Ug(X)7][ _ 1||p,k < Cea‘,a}(n) |:C1 + E;Kebw{mlw_l[%f“ log w(”m)]}]

When |[v¢|l,x > 1, by Lemmas 2.9 and 2.12 we get:

1
(52) whmehwr{%_vmg'mehf}}

o(nelllvellpx)

§®1(|Ive||p,k)w{|n|w_1[ : log u “
¢—v "ol
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where ©1([[vellp.x) = llvellpx max {1, 0~ [ 715 log(1 + [lvell,x)]}. We then

have by (50), (52) and Lemma 2.9 that

”eivz(xm _ ]“p,k

< Ce(az(||w|p,k)w(|n)|:C1 n E’Keb@l(nwHp.k)w[m‘w’l[ﬁlog (VH]]:|’

for every |vell,x > 1, where @x(||vellp, k) = avllvellp k. Observe now that

writing R w = Y2 and Jw = i #5* we easily obtain that for every w € B, x

2

(53) Rwllpe < lwlpx  and  [ISwllpx < lwllps:

then, since v (x) is the real or imaginary part of some u;(x) and ©;(-), j = 1, 2,
is increasing, using (53) we have, for [[v|l, x > 1,

54 e — 1],k

~ © - -1 _1 Inl
< Ce@g(luzlp‘k)w(ln|)|:cl + GOl [ tog w(;ﬂ)“]‘

Now we can complete the estimate of ||e’*™" — 1|,  in (49) through (51) and
(54), and then we can continue the estimate (48), getting that || f (x, u(x)) ||,
is estimated by a sum of integrals where the leading term in 5 (for |n| large) is
of the form

/ew@:)e@(lullp,k ,,,,, "MM"p.k)w{lrl‘a)’l[ﬁlOg ﬁr‘z\)]} ’/G\(S, ’7)| dé dn

eé(é)eﬂ(n)a(é, 1)

=

‘ L17(RN+2M)

co&)-(6) Ol I tosllen Yo Inleo! [ 245 Tog 25 |} = an)

X

Ly (RN+2M)

as we can deduce by Holder inequality. In this last expression the normin L? is
finite by the hypothesis (16); the one in L”’ is finite, too, by the conditions (14)
and (15), since for ¢1, c; > 0 fixed, e *®|, ®vy and [le=c2o(m | Lo Ry
are finite, as we can deduce by the property (y) of w () and o (n). We then
have that f(x, u(x)) € B, and (17) is satisfied; the boundedness of Wk on
bounded sets follows from the fact that the functions ®;, ®, (and then also ®
in the last estimate) have such a property.

(i1) We want now to prove (18). From the Cavalieri-Lagrange formula and
Theorem 2.2 we get

2M
55) If . a®@) = fu®@)llpe <Y Cagllv]” () = v ()i

j=1
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1
x/ [8,,6)(x, v@ () + (v () =P (0))) [, dt,
A :

with notation as in (47). From (53) we then have
(56) i () = v @l < g, () = 2 @)l

for some /; depending on j. Let us analyze now the function (dy, G)(x, y).
Setting 0 () = o (1) —log(1 +1), k1 () = €™ and recalling that k(r) = ¢*®
we have

/ Rk ()@, G)E. )| dndé < / FEORM)|GE. )| dnde.

that is finite by hypothesis (16). Now the property (y) of the weight w(§)
ensures us that

log(1 +1)

oft ™75 log 551}

and so we have that o satisfies

— 0 as t — 400,

w{ta)_l[ ! log L:“ = o(ol(t)) as t — +o0;
€ —v (1) ’

then for every j = 1,...,2M we can apply the point (i) of Theorem 2.6 to
the function (d,,G)(x, y), with o} in place of o, obtaining that

5D 0,6 (x 0P @) + 10V —vP W), =
foreveryt € [0,1] and j = 1,...,2M, since the function Wx is bounded

on bounded sets and by hypothesis H uf) + t(uzl) - uﬁ,z) ) Hp ‘
h=1,..., M. Then (18) follows from (55), (56) and (57).

REMARK 2.15. Observe that the proof above does not depend on the prop-
erty (y) on the weight w. In fact, it is sufficient to take some constant M, > 0
such that M, log(1 +1) < w(¢) as ¢ tends to infinity, to have that the integrals
in formulas (11), (12), and (38) are finite. In this case, we recover the classical
functions k € J7, of polynomial growth defined by Hérmander, and we extend
the work of Messina and Rodino [17]. Compare, for example, the condition
(2.1) in [17] to obtain that B, ; is an algebra. Here, the function

< 3T for every

K& ) = e’® _ eminloE-n.omits
D)= e getn = :

and it is sufficient to take M, > 0 big enough to have that such condition
holds.
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3. Applications to local solvability

Our aim is to give a local solution near a point x° for the following semilinear
operator

(58)  F(u) = PDu+ f(x, Q1(D)u, Q2(Du, ..., Qu(D)u),

where P (D) and Q;(D),i =1, ..., M are linear partial differential operators
with constant coefficients. As mentioned in the introduction, we will study two
types of hypothesis on the nonlinear term f. First, we assume that there exists
a point x° € RY such that f(x°, z) = 0, for every z € CM. Here, we need
that P (D) is stronger than Q;(D) for all 1 <i < M in the classical sense of
Hormander [10] and Treves [19].

We recall some known results regarding B, ; spaces. We observe that if
h € C™ in a neighborhood of x* € RY and 4 (x®) = 0, we can write

N 1
(59) h(x) =Y (xj - x;?)/ dh(x° 4 1(x —x%)dt,
’ 0

j=1
and we have

LEMMA 3.1. Let v € C§° and ¥.(x) = 1/[()‘_8—“”0). Then, for each j =

1,2,..., N, 0
G = x) Ve ()1 = ellxj v ()l

Another important property is the following (see [1, Theorem 2.2.7]): given
a test function ¢ € %, (R"), and k € %, there exists a constant C > 0 such
that

(60) ¢ ullpe < Cligliy - lullpx < Cllullpx
for all u € B, . The first result of local solvability is the following.

THEOREM 3.2. Let g € By, withk(§) = e?® and consider the operator
F defined by (58). We suppose that there exists a point x° € RN such that
f(x°z) = 0forall z € CM and Q;(§) < CP() for all ¢ € RN and
1 <i < M and some constant C > 0. We also assume that f satisfies (16)
of Theorem 2.6. Then one can find a constant ey(P, Q1, ..., Q) > 0 and
ul e Bp’“; such that

(61) Fu®)(x) = g(x)

when ||x — x°|| < &o.



FUNCTIONAL COMPOSITION IN Bp,k SPACES AND APPLICATIONS 195

Proor. Itis well-known that there exists a fundamental solution E € Bl‘;c P

of the linear term P (D) of the semilinear operator F. Set Ex =: L. By Bjérék
[1, Theorem 2.3.8], L is well defined from B, x N &, (RY) to B, 5.
Choose ¥ € Z,y(RY), ¥ = 1in B;(0) and ¢ € PD,,(RY), ¢ = 1 in

B (x"). Define ¥, (x) = w(x;"o) and consider the new operator

F(v) = g — Vepf (x, Q1(D)(@Lov), ..., Qu(D)(pLpv)).

Observe now that, if v € B, ;, then gv € B, ; N %?(’w)(RN). Therefore Lov €
B;l:zﬁ and gLy € B, ;, then

Qi(D)(¢Lyv) € B, 5,5, C Bpk

fori =1,2,..., M. We can apply now the result of composition from The-
orem 2.6 to obtain ﬁ(v) € By .

We will prove that, fixed T > 2||g||,.«, there exists &g > 0 such that the
corresponding operator

Fo(w) = § — Yoy 0f (x, Q1(D)(@Lgv), ..., Qu(D)(pLgv))

is defined from B, 7 = {u € B, : |lullpx < T} into itself and it is a
contraction.

Let v € By r and u := @Lgv, as in the proof of [17, Theorem 3.1],
||u||p’k,3 < CT for some constant C > 0. Set now s := (s1, ..., Sy), Where
s; = Q;(D)u, then s; is compactly supported foralli = 1,2, ..., M, and

lIsillps = 1Qi(DYullpx < Cillull, 5,6, < Cllull, 5 < C/'T.

that is, s; € Bj, . Now, we use that f(x%z) =0forall z € CM, By (59), it
follows that

N 1
fx,z) = Z(xj — x;’)/ d, f (& +1(x —x0), 2) dt,
0

j=1
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and from Lemma 3.1 and (60),
Ve f (x, $)lpk

N 1
<C Z |I<p(X)/O O, f + 10 —x0), ) dtllpi - 1 (x; — X}))ws(x)lll,l

j=1

N 1
=Ce Y llox) f O f (X0 4 1(x —x%), ) dit |l - 159 (X) 111
0

Jj=1

N 1
< Cellgl.i Z/ 18, £+ 10 = 20, $) k- 9 0 1.1 dr.
j=1"0

Now, proceeding in a similar way to the proof of (ii) of Theorem 2.6 it is easy
to see that 9y, f (x% +1(x — x9), z) (or better, the corresponding G with real
variables) satisfies the hypotheses of Theorem 2.6 for ®; = @ — log(1 + 1).
We can conclude from the inequalities above that

[epf (x, $)llpx < eCr.

Then, choosing ¢ sufficiently small, ||F(v)||p,k <eCi+glpx =T.

We now prove that F : By, x. 7 — By 1 is a contraction. Since the function
o, f x% + 1 (x — x9), z) satisfies Theorem 2.6, we can use (ii) of this result.
Using the notation h(x, s) = f(x,s') — f(x, s?), observing that h(x°, s) = 0
and arguing as before

IF ") — F@H)lpx = lloeh(x, s)llpx

N 1
< eClol Y [ 18, hGO 4 1 =309 By @)l di
i=1 70

M
()] )
= SCCsuppw,T Z ||Sj - ”p,k
j=1

where Cgyppy, 7 is the constant that appears in (18). Then the operator F :
B, x, 7 — B,k 1 is a contraction choosing ¢ = g¢ sufficiently small and,
therefore, there exists a fixed point v° for the corresponding operator Fy. As in
[17, Theorem 3.1], we conclude that the equation (61) admits a local solution
u’ € B, 5 for |lx — xoll < eo.
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ExaMmPLE 3.3. Asin [17], we can consider the Schrédinger operator
N-1
P(D) =—Dy, + Y D,
j=1

and the linear partial differential operators Q;(D)u = Dy u, forj=1,...,
N —1,On(D)u = P(D)u, Qn+1(D)u = u.

Let H € C[z] be a polynomial defined in C*¥*!. We consider that the
first N variables are real, and H(x°, z) = 0 for some point x° € R" and all
z € CV*1. Then, by Theorem 3.2, the equation P(D)u + H(x, D)u = g is
locally solvable for g € B, in a neighborhood of x°. To see this, we write
H(x,z) = G(x,y), where y € RZV+2 and we multiply G by a suitable cut-
off function: As in the proof of Theorem 3.2, we fix T > 2||g||, x. Since we
work with functions u € B, ;5 with support in a fixed compact set K, and
|Qi(D)ullp,x < CT,forl <i <N + 1, we also have

(62) [1Qi(D)ull~ < C11|Q;(D)ull,
< C)|e?®@ Q;(D)u(§)||r < C3T =: T.

Then, it is enough to consider H (x, z) on the set Bj x% x P(0; f", e, T),
for some 6 > 0, where P (0; T,..., f’) is a poly-disc in CN*! Therefore, we
can multiply G by a suitable cut-off function in such a way that the product
satisfies (16) of Theorem 2.6.

ExAMPLE 3.4. Let us consider the following nonlinear equation:

(63) Fu) =) caD%+ f(x, D*U)jjzm = g(x),

loe|<m

where ¢, € C, the operator P(D) = Y ¢, D is elliptic, there exists an x°
loe|<m

such that f (x°, z) = Oforevery z € C¥, with M = #{a € N}) : |«| < m}, and
f(x, z) (eventually multiplied by a suitable cut-off function, cf. Example 3.3)
satisfies the hypotheses of Theorem 2.6. We observe that, writing Q,(D) =
D¢, the ellipticity of P(D) implies that there exists a positive constant C
such that Qq (&) < CP(£) for every a with |a| < m. Then we can apply
Theorem 3.2 to the equation (63), obtaining that for every g € B, there
exists (locally near x°) a solution u(x) of (63) belonging to pr WP

We consider now the same operator F but with a weaker hypothesis on the
nonlinearity f. We will need in this case that P (D) is infinitely stronger that
Qi;(D), forall 1 < i < M, in the sense of Hormander [10]. We obtain the
following extension of [16, Theorem 11].
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THEOREM 3.5. Let g € By, withk(§) = e®® and consider the operator
F defined by (58). We suppose that f(x,0) = 0 for all x € RN and that

% — Oas || - +ooforalll <i < M. We also assume that f satisfies
the hypothesis of Theorem 2.6. Then, for every x° € RN, one can find sy > 0
and u® € B, \p such that

Fu®)(x) = g(x)
when ||x — x°|| < &o.

As a further application of the algebra result proved in Section 2 we prove
now the following theorem concerning nonlinear elliptic equations. For such
equations the local solvability is well-known in the frame of Sobolev spaces
and analytic nonlinearities (a proof can be found in [18]); we give here a more
general result in B), ; spaces.

THEOREM 3.6. Let us consider the following equation:

(64) f(x’ 8au)\a|§m = g(x),
where:

(1) f(x,z) is of the form
(65) fx,2) = filx, R2) +ifa(x, J2),

where f| and f, are real-valued (or alternatively pure imaginary valued)
functions;

(i) Fi1(v) := filx, 0%0)g)<m and Fr(w) := fo(x, 0%w)q|<m are elliptic;
(iii) thefunctions fi(x, y) and f>(x, y) satisfy the hypotheses of Theorem 2.6.
(iv) f(x,0) =0 forevery x € RV,

Then for every g € By i s with § sufficiently small we can find (locally near
0 . . .
x") a solution u € Bp’ «p Of the equation (64).

ProoF. We have already observed that a function u belongs to B, ; if and
only if R u and Ju belong to B, x, cf. (53). Then, because of the particular
form of the nonlinearity f(x, z), we have that the equation (64) is equivalent
to
(66)  fi(x,9*(Ru)) =Ngx), fa(x, 9% (Ju)) = Jg(x)

o] <m loe| <m

(an analogous consideration holds for the case of pure imaginary valued f
and f,). We analyze only the first equation (the same procedure applies also to
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the second one). Let us write for simplicity w instead of fu and h(x) instead
of Ng(x); we then have to find a solution of the equation

(67) Fi(w) := fi(x, 0*w)jajzm = h(x),

where both w and / are now real-valued. We consider the linearization of F (1),
defined in the following way:

/ o) Of « df
69 FO D)= Y 2w 0pT= Y 2

o[>0 ¢ loe| >0

(x, 0)0%,

o

where w,, indicates the variable corresponding to 0% w in (67); we fix arbitrarily
x? € RN and we write P;(D) := F{(O)(xo, D). We write

Fi(w) = PI(D)w + Qi (x, D)w + G (w),

where P(D) = Fl’(O)(xO, D), Qi(x, D) = F{(0)(x, D) — Pi(D) and G (w)
= Fi(w) — F{(0)(x, D)w. Observe that G| (0)(x, D) = 0. Now, if E; is a
fundamental solution of P;(D) and L := E* we consider, similarly to [18],
the following equation:

(69) Ri(v) = v+ Kiv + Gy (pR(Lig)) = h,

where Kv := ¥ 01 (x, D)((p?ﬁ(Lﬂpv)) and the real-valued functions ¢, V.
have the same meaning as in the proof of Theorem 3.2. Observe that R (v) =
v+ Y Fy (goER(ngov)) — Y Py (D)(go&)'i(ngov)). We have already proved that
¢Ligv € B, j, which implies that 9N (L pv) = N(eLipv) € B, 5, cf.
(53),and so P; (D) ((pm(ngov)) € B, . Moreover, for every |a| < m, we have
3*(@R(L1gv)) € By and |0 (@R(L1¢v))llpx < Cllvllps; so we obtain
from Theorem 2.6

”Fl ((pm(LIQDU))”p,k = qjsupptp(”””p,k)-

We then have
Rl : prk —> Bp,k-

Now proceeding in the same way as in the proof of Theorem 3.2 we get
IKivlpx < €Cllvllp,

for a fixed positive constant C. Then we get || K[| #(5,,.5,,) — 0ase — 0,
which implies that shrinking € we have that R|(0)(x, D) =1 + K, : B, —
B, is invertible. We can then apply the Inverse Function Theorem in the
Banach space B, ; to get a solution v € B, ; of (69), and then a (local and
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real-valued) solution w = R(L ¢pv) € Bp’ «p of the first equation in (66); in
the same way we can treat the second equation in (66), and so we have found
a local solution of (64).

In the next example, we show that the hypotheses in Theorem 2.6 include
the well-known analytic case.

ExampLE 3.7. Now, we consider a different condition on f(x, z) to have
another application of Theorem 2.6. Let o be a weight function; we denote
by &) (RY, H(CM)) (compare with [17, Def. 2.1]) the set of those functions
F(,2) = Y jg204(x)2%, x € RY, z € C¥, such that a,(x) € &q)((RY)
and, if for each compact set K C RM and every n € N we denote by
Cho =l aq |k, being || - || k., the seminorm defined in (4), then the function
> wj=0 Cn.a2® is entire for eachn € Nand K CC RY.

We write f(x,z) = G(x,y) with y € R?M je., G(x, y) = Zla\>0 ay(x)
(y1 + iyp)* with y = (y1, y2), and Vi, )2 € RM . We fix a compact set K C
RN*2M Then, |y| < M, for (x,y) € K and some constant M, > 0. We put
6= (51,...,52M) (S N2M and8 = (31 +3M+1,82+3M+2,---,5M+82M) (S
NY . For § < a, we have

| DY D (e (x) (31 + iy2)*)|

<C (17N Y50 (@) gyl
< Chaexp|ng; | — ) )d! 5 M,

< Cha exp(w;“ (U )5!(2Mo)'“'

=S CualUp€Xplng, | — (ZMO) €Xp I’l§0 s
n

since 8! < D, exp(ngo (“Sl)) < D, exp(ngo (“S')) for some constant D,, > 0
and all multi-indexes 6. We finally obtain

5
|DYD}G(x, y)| < Cpexp (nfpi <M>) :

n

S

S |R

where C, = Dy )" 420 Cn.a(2M0)'*! is a constant that only depends on K

and n € N. We have proved that G(x, y) € &q)(RV+>M). If necessary we can
modify G multiplying by a cut-off function and take a suitable weight o to
have (16) of Theorem 2.6.

ReEMARK 3.8. Let Q c RY be an open set, and define
Bl"f{(Q) (u e @(’w)(Q) : for every ¢ € P (), up € By i},
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where as usual k() = ¢®"); we consider a function f (x, z) satisfying the hypo-
theses of Theorem 2.6. We then have that forevery u(x) = (u;(x), ..., upy(x))
with u; € B (Q) forall j =1,..., M,

(70) fx,u(x) € BYL(RQ).

In fact, let us fix arbitrarily ¢ € %, (2), and choose a real-valued function
¥ € D)(RQ), ¥ = 1 on supp ¢. From Theorem 2.6 we then obtain

() f(x, u(x)) = o) f(x, ¥y (X)u(x)) € By,

and this gives (70).
Let us fix now an increasing function % : [0, +00) — [0, 4+-00) satisfying

h(t +s) -

d
(71) 0<h(@) <c(l+|t]) and m <

for suitable d, ¢, C > O and every ¢, s € [0, 400). Taking an w satisfying (y),
by the same arguments as in the proof of Theorem 3.2 we have that for every
fixed integer n the weight w(¢) + log(h(z)") satisfies (14) (with a different
constant A; > 1), and so we obtain as before that, for u = (uy, ..., uy) with
uj € By (), f(x,u(x)) € By, (Q).

Now, by specifying the hypothesis % — Oas || — +ooinTheorem 3.5,

we obtain the following extension of [8, Theorem 3.2], giving a result about
regularity of the solutions of semilinear equations with hypoelliptic linear part.

THEOREM 3.9. Let us consider the equation
(72) P(D)u = f(x, Q1(D)u, ..., OQu(D)u),
where P (D) is a hypoelliptic operator, i.e. there exist positive constants C, p
such that N ol
0P &) < CIPE)IIEIT?

for every o € Zf and |&] = C; we suppose moreover that there exists a
function h : [0, +00) — [0, +00) satisfying (71) and such that

P©)
- >
Qi)
let the nonlinearity f satisfy the hypotheses of Theorem 2.6, and f(x,0) = 0.
Letu € B;"Zﬁ(Q) be a solution of (72). Then, for every positive integer n,

(73) h(&) forevery i=1,..., M,

loc
ue B, ().
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PrOOF. Sinceu € Bll:’; P (2) we have that foreveryi = 1, ..., M the condi-
tion (73) implies Q;(D)u € B;; 5 () = B}g;h(sz), and so from Remark 3.8

Q;
we have

P(D)yu = f(x, Q1(D)u, ..., Qu(Du) € B, (Q);

then the hypoellipticity of P implies that u € B;"Zﬁ (52, cf. [10, Theorem
11.1.8]. The conclusion follows by induction on n.
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