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FUNCTIONAL COMPOSITION IN Bp,k SPACES
AND APPLICATIONS

DAVID JORNET and ALESSANDRO OLIARO∗

Abstract

Let f (x, z), x ∈ RN , z ∈ CM , be a smooth function in the sense that its Fourier transform has
a good behaviour. We study the composition f (x, u(x)), where u is in a generalized Hörmander
Bp,k space in the sense of Björck [1]. As a consequence we obtain results of local solvability and
hypoellipticity of semilinear equations of the type P(D)u + f (x,Q1(D)u, . . . ,QM(D)u) = g,
with g ∈ Bp,k , and fully nonlinear elliptic equations.

0. Introduction

During the last years the attention of several authors has been directed to local
solvability for semilinear equations

P(x,D)u + f (x,Du) = g(x),

where the linear part is assumed to be locally solvable and the nonlinear term
contains derivatives of lower order with respect to P(x,D) (see Gramchev
and Rodino [9], Hounie and Santiago [11], Marcolongo and Oliaro [13], De
Donno and Oliaro [4], etc.). The regularity of the data is usually prescribed
according to the regularity of the coefficients of P(x,D) (see, for example,
Mascarello-Rodino [14]). The functional frame is given in this case by linear
spaces (Sobolev, Hilbert or Banach) that, under suitable assumptions form an
algebra, and then one can apply Functional Analysis results (Inverse Function
Theorem, Fixed Point Theorem, etc.). The algebra property guarantees a pos-
sible analytical dependence of f with respect to u, and consequently, brings a
priori estimates for the nonlinearity f . In this note we prove that the functional
composition f (x, u(x)), where u is in a generalized Hörmander Bp,k space
in the sense of Björck [1] and f belongs to some Bp,k space with respect to
all the variables (see Theorem 2.6 for the details), is also in Bp,k . We use the
more modern framework of ultradifferentiable functions and ultradistributions
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as introduced by Braun, Meise and Taylor [3]. In particular, we need a strong
weight ω as defined in Meise and Taylor [15] for our purposes. Moreover, we
see that if the weight ω is not strong then the algebra property fails in general
(see Theorem 2.2 and Example 2.4). We follow the lines of Bourdaud, Reissig
and Sickel [2], that study composition in Bp,k spaces in the simpler case p = 2
and k(t) = et

1/s
; we recapture as a particular case the result proved in Ref. [2].

As an application, we investigate local solvability of the semilinear operator

F(u) = P(D)u + f (x,Q1(D)u, . . . ,QM(D)u)

where P,Q1, . . . ,QM are linear partial differential operators with constant
coefficients. The problem consists in finding a local solution u in a neighbor-
hood� of a point x0, for anyf in a given class of data. We prove, continuing the
works of Messina and Rodino [17] and Messina [16], that for every g ∈ Bp,k

in the sense of Björck, where k(ξ) = eω(ξ) and ω is a strong weight, the
equation F(u) = g admits (locally near a point) a solution u ∈ Bp,kP̃ (cf.
Theorems 3.2 and 3.5). Two different hypotheses on the nonlinearity f will
be considered: the first, to assume that f (x0, z) = 0, for some x0 ∈ RN and
all z ∈ CM and that Q̃i(ξ) ≤ CP̃ (ξ) for all ξ ∈ RN and each i = 1, . . . ,M
and some constant C > 0; the second, the essentially weaker hypothesis on
the nonlinear term f (x, 0) = 0 for every x ∈ RN , and the stronger one on

the differential operators with constant coefficients Q̃i (ξ)

P̃ (ξ)
→ 0 as |ξ | → +∞

for each i = 1, . . . ,M . We observe that we extend the corresponding results
of [17] and [16], that solve locally the equation F(u) = g when g belongs to
a classical Hörmander Bp,k and f (x, z) is assumed to be holomorphic in the
z-variable (cf. Example 3.7).

As a further application of the composition result we then analyze semilinear
operators with hypoelliptic linear part, extending a result proved in [8].

We end this introduction by giving some examples of operators to which
our results apply. Here we just give some hints, referring to Section 3 for the
details. Let us consider a fully nonlinear equation

(1) f (x,Dαu)|α|≤m = g(x),

where the operator f [u] = f (x,Dαu)|α|≤m is supposed to be elliptic and
f (x, 0) = 0 for all x; given arbitrarily x0 and g ∈ Bp,k we can find (locally
near x0) a solution of (1) belonging to some Bp,h space, where the nonlinear
function f (x, z) is supposed to be sufficiently regular.

The same kind of result holds for the following semilinear version of the
Schrödinger equation for a free particle:

(2) P (D)u + f (x, u,Dx1u, . . . ,DxN−1u, P (D)u) = g,
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where P(D) = −DxN
+∑N−1

j=1 D2
xj

and f (x0, z) = 0: we can solve (2) locally

near the point x0 in the space Bp,k .
We consider finally the following simple example in three variables x =

(x1, x2, x3):

(3)
∂

∂x1
u + i

∂

∂x2
u + f (x, u, ∂x1u, ∂x2u) = g(x).

Under similar assumptions as in the previous cases we can prove the local
solvability of (3) in Bp,k spaces at any point x0, assuming f (x0, z) = 0 or
f (x, 0) = 0; observe that the assumption that the nonlinear term f does not
depend on ∂x3u is essential, since it was proved by Lewy [12] that the linear
operator

∂

∂x1
+ i

∂

∂x2
− 2i(x1 + ix2)

∂

∂x3

is not locally solvable at the origin.

The authors are thankful to Carmen Fernández and Antonio Galbis for their
helpful suggestions on the properties of the weight function.

1. Notation and preliminaries

First we introduce the spaces of functions and ultradistributions and most of
the notation that will be used in the sequel (see [3], [1]).

1.1. Weight functions

Let ω : [0,∞[→ [0,∞[ be a continuous function which is increasing and
satisfies ω(0) > 0. We consider the following conditions on ω:

(α) ω(2t) ≤ K(1 + ω(t)) for some K ≥ 1 and for all t .

(β)
∫ ∞

1
ω(t)

t2 dt < ∞.

(γ ) log(t) = o(ω(t)) as t tends to ∞.

(γ )′ log(1 + t) = O(ω(t)) as t → ∞,

(δ) ϕ : t → ω(et ) is convex.

(ε) there exists C > 0 with
∫ ∞

1
ω(yt)

t2 dt ≤ Cω(y) + C for all y ≥ 0.

If ω satisfies (α), (β), (γ ) and (δ) is called weight function (in the sense of
Braun, Meise and Taylor [3]). A weight function that satisfies (ε) is said strong
weight. Björck considers in [1] subadditive weights that satisfy (β), (γ )′ to
develop a theory of ultradifferentiable functions and ultradistributions.

For a weight function ω we define ω̃ : CN → [0,∞[ by ω̃(z) = ω(|z|) and
again call this function ω, by abuse of notation. The Young conjugate of ϕ is
defined by ϕ∗(x) = supy>0{xy − ϕ(y)}.
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1.2. Spaces of functions and ultradistributions

Let ω be a weight function and let � be an open set in RN . We define the set
of ω-ultradifferentiable functions of Beurling type as

E(ω)(�) := {f ∈C∞(�) : ‖f ‖K,λ <∞, for every K ⊂�, and every λ> 0},
where

(4) ‖f ‖K,λ := sup
x∈K

sup
α∈NN

0

∣∣f (α)(x)
∣∣ exp

(
−λϕ∗

( |α|
λ

))
.

This space is endowed with its natural Fréchet topology. We put

D(ω)(K) := {f ∈ E(ω)(�) : supp f ⊂ K}
and

D(ω)(�) := ind
j→ D(ω)(Kj ),

where (Kj )j∈N denotes a fundamental sequence of compact sets of �. The
elements of D ′

(ω)(�) are called ω-ultradistributions of Beurling type.
Following Björck [1], we define the spaces Bp,k introduced by Hörmander

in the case that k ∈ Kω.We refer to Fieker [7] for a version of the theory which
includes the case of non subadditive weights.

For a given weight function ω we define Kω as the set of all functions
k : RN → [0,+∞[ such that,

k(ξ + η) ≤ eλω(|ξ |)k(η), η, ξ ∈ RN

for some λ > 0.

Definition 1.1. Let ω be a weight function, k ∈ Kω and 1 ≤ p ≤ ∞.
We denote by Bp,k the completion of the normed space consisting of those
u ∈ E ′

(ω)(R
N) such that

(5) ‖u‖p,k =
(
(2π)−N

∫
RN

|k(ξ )̂u(ξ)|p dξ

)1/p

< ∞,

where ‖u‖∞,k denotes ess sup k(ξ)|̂u(ξ)|; E ′
(ω)(R

N) is the set of all the elements
of D ′

(ω)(R
N) having compact support.

If k, k1 and k2 belong to Kω and s ∈ R, then k1 + k2, k1 · k2, max(k1, k2),
min(k1, k2) and ks also belong to Kω. If P �= 0 is a polynomial in C[z] then
P̃ ∈ Kω, where

P̃ (ξ) :=
[∑

α

|DαP (ξ)|2
]1/2

.
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2. Composition in Bp,k spaces

In this section we analyze the composition F(x,u(x)), where both F and u(x)

are in the Bp,k spaces. Let ω be a fixed strong weight and k(ξ) = eω(ξ); we
prove that the space Bp,k is an algebra under certain additional condition on ω.
Moreover, we observe that the elements of Bp,k are actually functions, since
ω satisfies (γ ) (or (γ )′, if we assume that Mγ log(1 + t) ≤ ω, for Mγ > 0 big
enough) and, consequently, we give sense to this type of composition. As in
Ref. [15], the function

χ(x) =
∫ ∞

1

ω(xt)

t2
dt = x

∫ ∞

x

ω(t)

t2
dt

is an equivalent concave weight, satisfying χ ′(x) ≥ 0: for some constant
K > 0,

(6) ω(x) ≤ χ(x) ≤ Kω(x) + K

for all x > 0. Then, the function k(ξ) = exp(χ(ξ)) is in Kω. In the following
lemma we can suppose that ω satisfies the more relaxed condition (γ )′ instead
of (γ ) (see [15, 1.3]).

Lemma 2.1. There exist constants 0 < C < 1 and 0 < δ < 1 such that

(7) χ(x + y) − χ(x) − χ(y) ≤ −C min{χ(x), χ(y)} + δ

for all x, y > 0.

Proof. We will see that

(8) χ(x + y) − χ(x) − χ(y) + Cχ(x) ≤ δ

if 0 < x < y. We can rewrite the first term of (8) as

(x + y)

∫ ∞

x+y

ω(t)

t2
dt − x

∫ ∞

x

ω(t)

t2
dt − y

∫ ∞

y

ω(t)

t2
dt + Cx

∫ ∞

x

ω(t)

t2
dt

(9) = (C − 1)x
∫ x+y

x

ω(t)

t2
dt − y

∫ x+y

y

ω(t)

t2
dt + C x

∫ ∞

x+y

ω(t)

t2
dt.

The first integral in (9) is < 0 (we take C < 1). We prove that the last two
integrals sum a number < δ, for some 0 < δ < 1. In fact,

y

∫ x+y

y

ω(t)

t2
dt ≥ yω(y)

∫ x+y

y

t−2 dt = ω(y)
x

x + y
,
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and using χ(2y) ≤ 2χ(y) for each y > 0 (by the definition of χ ) and (6), we
have for the last integral,

Cx

∫ ∞

x+y

ω(t)

t2
dt = C

x

x + y
χ(x + y) ≤ C

x

x + y
χ(2y) ≤ C

x

x + y
2χ(y)

≤ x

x + y
C (2Kω(y) + 2K) ≤ x

x + y
2CKω(y) + 2KC

Then, taking C < 1/(2K), we finally obtain

−y

∫ x+y

y

ω(t)

t2
dt + Cx

∫ ∞

x+y

ω(t)

t2
dt ≤ (2CK − 1)

x

x + y
ω(y) + 2CK

≤ 2CK.

Moreover, if the weight χ satisfies (8), then it’s a strong weight, that is, it
satisfies (ε). From now on, ω is supposed to satisfy (7). Proceeding as in the
proof of [2, Theorem 2.1] we have

Theorem 2.2. Let us take u, v ∈ Bp,k , 1 ≤ p ≤ +∞, with k(ξ) = eω(ξ).
Thenuv ∈ Bp,k and there exists a constantCalg such that the following estimate
holds:

(10) ‖uv‖p,k ≤ Calg‖u‖p,k‖v‖p,k.

Moreover, one can see that the constant Calg = C‖e−Cω(ξ)‖Lp′ is finite,
since ω satisfies (γ ) (or Mγ log t ≤ ω(t) as t → ∞ for a constant Mγ big
enough). We observe that, at least for the case p′ �= ∞, we can write

(11) Calg = C

(∫
RN

e−Cp′ω(ξ) dξ

) 1
p′

= C1

(∫ +∞

0
e−Cp′ω(t)tN−1 dt

) 1
p′

where in the last integral we apply polar coordinates.

Example 2.3. It is easy to see that the weightsω(t) = exp
[
(log(1 + t))α

]
,

with 0 < α < 1, or ω(t) = tα(log(1 + t))β , with 0 < α < 1 and β > 0 are
strong weights that satisfy condition (8).

As in Meise and Taylor [15, 3.11] we can construct more examples of
weights in the following way: Let (Mj )j∈N0 be a sequence of positive numbers
which has the following properties:

(M1) M2
j ≤ Mj−1Mj+1 for all j ∈ N;

(M2) there exist A,H > 1 with Mn ≤ AHn min0≤j≤n MjMn−j for all j ∈ N;
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(M3) there exists A > 0 with
∑∞

q=j+1
Mq−1

Mq
≤ Aj

Mj

Mj+1
for all j ∈ N; and

define ωM : [0,+∞[ → [0,+∞[ by

ωM(t) =

 sup
j∈N0

log
|t |jM0

Mj

, for |t | > 0

0 for t = 0.

Then there exists a strong weight κ(t) which satisfies (8) and

ωM(t) ≤ κ(t) ≤ CωM(t) + C for some C > 0 and all t > 0.

From the properties of ωM and κ it follows that for each open set � of RN we
have

E(κ)(�) = E (Mj )(�) =
{
f ∈ C∞(�)

∣∣∣∣ sup
α∈NN

0

sup
x∈K

|f (α)(x)|
h|α|M|α|

< ∞

for each h > 0 and each K ⊂ � compact

}
.

We refer to Examples 2.7 and 2.8 for more details.

In the following example, we will see that Bp,k need not be an algebra when
ω does not satisfy property (ε).

Example 2.4. We take the weight ω(t) = t (log(1 + t))−β , β > 0. Then
ω is not a strong weight. As in [2, Theorem 2.1], we choose u ≡ v such that

Fu(ξ)eω(ξ)/2 = 1

(1 + |ξ |)α , α >
N

2
.

We have max(|η|, |ξ − η|) ≤ (L + 1/2)|ξ | in B(ξ/2, L|ξ |), where L > 0 is
a constant that we will fix later. Moreover, if L < 1/2, min(|η|, |ξ − η|) ≥
(1/2 − L)|ξ |. Then, for |ξ | large enough, we get

ω(ξ) − ω(ξ − η) − ω(η)

= |ξ |(log(1 + |ξ |))−β − |ξ − η|(log(1 + |ξ − η|))−β − |η|(log(1 + |η|))−β

≥ |ξ |(log(1 + |ξ |))−β − 2(1/2 + L)|ξ |[log((1/2 + L)(1 + |ξ |))]−β

≥ −1/2.

Now, proceeding in a similar way to the proof of [2, Theorem 2.1], we easily
obtain that ‖u2‖2,k = ∞, where k(ξ) = eω(ξ) and α ≤ 3N/4.

The following remark is essential to prove the composition result.
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Remark 2.5. Let us suppose, as in Theorem 2.2, that u and v belong to
the space Bp,k , and moreover that supp û, supp v̂ ⊂ {ξ ∈ RN : |ξ | ≥ R}. Then
repeating the same proof as in Theorem 2.2 we get the following more refined
estimate: ‖uv‖p,k ≤ C(R)‖u‖p,k ‖v‖p,k,

where the constant C(R) is of the form

(12) C(R) = C

(∫ +∞

R

e−Cp′ω(t)tN−1 dt

) 1
p′
.

Now we want to state the main result of this section. We consider a function
f (x, z), x ∈ RN , z ∈ CM , and we represent it as

(13) G(x,�z,� z) = G(x, y), x ∈ RN, y ∈ R2M.

Theorem 2.6. Let us fix p ∈ [1,+∞] and three weights k(t) = eω(t),
k̃(t) = eω̃(t) and k(t) = eσ(t), where:

(14) Aω(t) ≤ ω̃(t) as t → +∞,

for some suitable constant A > 1; there exists ν ∈ (0,C ) such that

(15) ω

{
tω−1

[
1

C − ν
log

t

ω(t)

]}
= o

(
σ(t)

)
as t → +∞,

where C is the constant of (7). We suppose thatG(x, y) isBp,k̃ in the x-variable
and Bp,k in the y-variable, more precisely:

(16)

[
(2π)−N−2M

∫
RN

∫
R2M

∣∣k̃(ξ)k(η)Ĝ(ξ, η)
∣∣p dη dξ

] 1
p

< ∞.

Let us fix a compact set K ⊂ RN . Then:

(i) if u(x) = (u1(x), . . . , uM(x)) with supp uj ⊂ K and uj ∈ Bp,k for every
j = 1, . . . ,M , then f (x,u(x)) ∈ Bp,k; more precisely, there exists a
function <K : [0,+∞)M → [0,+∞) such that:
a) <K is bounded on bounded sets, i.e. for every B ⊂ [0,+∞)M

bounded in RM there exists CB such that supy∈B |<K(y)| ≤ CB;
b) we have

(17) ‖f (x,u(x))‖p,k ≤ <K(‖u1‖p,k, . . . , ‖uM‖p,k).

(ii) Let us define Bp,k,T := {u ∈ Bp,k : ‖u‖p,k ≤ T }, T > 0; then for every
u(1)(x) = (u

(1)
1 (x), . . . , u

(1)
M (x)) and u(2)(x) = (u

(2)
1 (x), . . . , u

(2)
M (x))
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with the same properties as u(x) in (i) and satisfying u
(j)

h (x) ∈ Bp,k,T

for j = 1, 2 and h = 1, . . . ,M , there exists a constant CK,T depending
on K and T such that

(18) ‖f (x,u(1)(x)) − f (x,u(2)(x))‖p,k ≤ CK,T

M∑
j=1

‖u(1)
j − u

(2)
j ‖p,k.

Before giving the proof of Theorem 2.6 we want to analyze in some partic-
ular cases the meaning of the conditions (14) and (15).

Example 2.7. Let us fix

ω(t) = t1/s, s > 1,

which corresponds to the Gevrey case. In this particular case the composition
in Bp,k-spaces has been already studied, in the case p = 2, in [2], [5], proving
results similar to the one of Theorem 2.6. Since ω−1(r) = rs we easily obtain
that

ω

{
t ω−1

[
1

C − ν
log

t

ω(t)

]}
=

(
1 − 1

s

)
1

C − ν
t1/s log t;

we can then rewrite (14)–(15) in the following way:

t1/s ≤ Ãω̃(t) as t → +∞,(14′)
t1/s log t = o

(
σ(t)

)
as t → +∞.(15′)

We notice in particular that conditions (14′)–(15′) are the same as in [2], [5],
and so we recover known results in the Gevrey frame.

Example 2.8. Let us analyze now the case

ω(t) = (
log t

)β
, β ≥ 1,

for t large enough. This weight satisfies condition (7), since the function x �→
(log(x + y))β − (log(x))β is decreasing (for a fixed y). Moreover, we have
ω−1(r) = er

1/β
; then

ω

{
t ω−1

[
1

C − ν
log

t

ω(t)

]}
∼ max

{
1,

1

C − ν

}(
log t

)β
as t → +∞,

which implies that the conditions (14)–(15) in this case become(
log t

)β ≤ Ã ω̃(t) as t → +∞,(14′′) (
log t

)β = o
(
σ(t)

)
as t → +∞.(15′′)
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We can fix for example ω̃(t) = σ(t) := ϑ(t) with
(
log t

)β = o
(
ϑ(t)

)
as

t → +∞.

From the concavity of the weight ω we obtain

Lemma 2.9. (1) Let α > 0; for every t > 0 we have ω(αt)≤ max{1, α}ω(t).
(2) The function t �→ log t

ω(t)
is increasing, and it tends to infinity for

t → ∞.

The fundamental tool to prove the composition result of Theorem 2.6 is the
following technical proposition.

Proposition 2.10. Let us fix a compact set K as in Theorem 2.6. Then
for every ν ∈ (0,C ) we can find aν > 0 (C is the constant of (7)), and
moreover there exist positive constants M,C,C1, b, CK, C̃K , where M > 1,
and CK, C̃K depend on K , such that for every real-valued function u ∈ Bp,k ,
p ∈ [1,+∞], with supp u ⊂ K the following estimates hold:

(19) ‖eiu(x) − 1‖p,k ≤ CK,M

for ‖u‖p,k ≤ M , and

(20) ‖eiu(x) − 1‖p,k ≤ Ceaνω(‖u‖p,k)

[
C1 + C̃Ke

bω
{
‖u‖p,kω

−1
[

1
C−ν

log
‖u‖p,k

ω(‖u‖p,k )

]}]
for ‖u‖p,k > M .

Estimates of the type of (19)–(20) have been proved in [2] in the simpler
case when p = 2 and the weight function is of the kind ω(t) = t1/s (which
corresponds to Gevrey type spaces); we use the idea developed in [2], but we
need more involved techniques. In particular, in [2] the fact that ‖u‖L2 = ‖û‖L2

is crucial at a certain point of the proof, but here we cannot use a similar tool,
since we admit also p �= 2, and this is the reason for the dependence of the
result on the compact set K; on the other hand, this is enough for proving
several results on local solvability (cf. Section 3), where we shall be allowed
to definitely fix K , considering only compactly supported functions.

Proof of Proposition 2.10. We define, for R > 0, the following set:

PR = {ξ ∈ RN : |ξj | ≤ R for j = 1, . . . , N};
moreover, for ε = (ε1, . . . , εN) with εj ∈ {0, 1} we put

PR(ε) = {ξ ∈ RN : sgn ξj = (−1)εj , j = 1, . . . , N} \ PR.
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The proof consists of three steps: we shall analyze at first the case when the
Fourier transform of u is supported in the sets that we have just defined, and
then we shall consider a general function u.

First step. We start by considering u ∈ Bp,k such that supp û ⊂ PR(ε).
Since PR(ε) ⊂ {ξ ∈ RN : |ξ | ≥ R} we can apply Remark 2.5, obtaining

(21)
‖eiu(x) − 1‖p,k ≤

∞∑
h=1

C(R)h−1‖u‖h
p,k

h!
≤ ‖u‖p,ke

C(R)‖u‖p,k

≤ ecω(‖u‖p,k)eC(R)‖u‖p,k ,

as we can deduce from the property (γ ) of the weight ω(·).
Second step. Let us suppose now that u ∈ Bp,k with supp û ⊂ PR . For every

D ∈ N we set

u1(x) =
D∑

h=1

(
iu(x)

)h
h!

.

By the standard properties of the Fourier transform and of the convolution
product we then have that supp û1(x) ⊂ PDR; since RN = (∪ε PDR(ε)

) ∪ PDR

we obtain:

(22)

‖eiu(x) − 1‖p,k ≤
∑

ε

∥∥∥∥eω(ξ)Fx→ξ

( ∞∑
h=D+1

(
iu(x)

)h
h!

)∥∥∥∥
Lp(PDR(ε))

+ ∥∥eω(ξ)Fx→ξ

(
eiu(x) − 1

)∥∥
Lp(PDR)

=
∑

ε

T
(ε)

1 + T2,

where T
(ε)

1 and T2 are the norms in Lp(PDR(ε)) and Lp(PDR), respectively. We
now analyze separately T

(ε)
1 and T2.

(i) By Theorem 2.2 we have that

T
(ε)

1 =
∥∥∥∥ ∞∑
h=D+1

(
iu(x)

)h
h!

∥∥∥∥
p,k

≤ 1

Calg

∞∑
h=D+1

(
Calg‖u‖p,k

)h
h!

;

then, taking

(23) 4Calg‖u‖p,k ≤ D ≤ 4Calg‖u‖p,k + 1,

we easily obtain by Stirling’s formula that

(24) T
(ε)

1 ≤ C,
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C being a constant independent of ‖u‖p,k .
(ii) Let us analyze now T2. At first we observe that there exists a constant

A such that for every ξ ∈ PDR we have |ξ | ≤ ADR; since ω is increasing we
then have

(25) T2 ≤ eω(ADR)
∥∥Fx→ξ

(
eiu(x) − 1

)∥∥
Lp(PDR)

.

Using that PDR is compact and |eit − 1| ≤ C|t | for every t ∈ R, we get
from (25) and the well known mapping property of the Fourier transform
F : L1(RN) → L∞(RN)

(26)
T2 ≤ eω(ADR)

∣∣PDR

∣∣1/p∥∥Fx→ξ

(
eiu(x) − 1

)∥∥
L∞(PDR)

≤ Ceω(ADR)
∣∣PDR

∣∣1/p‖u‖L1(RN ),

|PDR| being the measure of the set PDR . Now, writing u(x) = (2π)−N∫
eixξ û(ξ) dξ we have by a simple integration by parts that

(27)
‖u‖L1(RN ) = (2π)−N

∫ (
1 + |x|2)−N

∣∣∣∣ ∫ eixξ
(
1 + Eξ

)N
û(ξ) dξ

∣∣∣∣ dx
≤ C

∥∥(1 + Eξ

)N
û(ξ)

∥∥
L1(RN )

,

where Eξ is the Laplacian in the ξ -variables. Since supp û ⊂ PR , the last
norm in (27) is in L1(PR). Now PR is compact, so for every g ∈ Lp(PR)

we have by Hölder inequality that ‖g‖L1(PR) ≤ |PR|1/p′ ‖g‖Lp(PR), where
|PR| is the measure of PR and 1

p
+ 1

p′ = 1; then by (27) we deduce that

‖u‖L1(RN ) ≤ C|PR|1/p′∥∥Fx→ξ

(
(1 + |x|2)Nu(x)

)∥∥
Lp(PR)

. We can now apply

this last inequality in (26): since eω(ξ) ≥ 1 for every ξ ∈ RN , taking into
account that for every T > 0 we have |PT | = (2T )N we obtain

(28)
T2 ≤ C1e

ω(ADR)
∣∣PDR

∣∣1/p∣∣PR

∣∣1/p′∥∥eω(ξ)Fx→ξ

(
(1 + |x|2)Nu(x)

)∥∥
Lp(PR)

= C2e
ω(ADR)DN/pRN

∥∥(1 + |x|2)Nu(x)
∥∥
p,k

.

We finally have from (22), (24) and (28) that

(29) ‖eiu(x) − 1‖p,k ≤ C1 + C2e
ω(ADR)DN/pRN

∥∥(1 + |x|2)Nu(x)
∥∥
p,k

,

for every u ∈ Bp,k with supp û ⊂ PR , where D is a positive integer satisfying
(23).

Third step. We consider now a generic u ∈ Bp,k . Fix functions χR(ξ) and
χε(ξ) with the following properties:
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χR(ξ) ∈ C∞
0 (RN), 0 ≤ χ(ξ) ≤ 1 for every ξ ∈ RN , χR(ξ) ≡ 1 for

every ξ ∈ PR; moreover, we assume that suppχR ⊂ PR+1 and χR is
real-valued and even.
For every ε = (ε1, . . . , εN) with εj ∈ {1, 0}, we set

χε(ξ) =
{

1 − χR(ξ) for ξ ∈ PR(ε)

0 for ξ /∈ PR(ε)

Observe that χR(ξ) + ∑
ε χε(ξ) = 1 for every ξ ∈ RN ; then we can write

(30) u(x) = F −1
ξ→x(û(ξ)) =

∑
ε

uε(x) + u0(x),

where uε(x) = F −1
ξ→x

[
χε(ξ)û(ξ)

]
and u0(x) = F −1

ξ→x

[
χR(ξ)û(ξ)

]
. Since

χε(ξ) ≤ 1 for every ξ ∈ RN , we have that for each ε the following estimate
holds:

(31) ‖uε‖p,k = (2π)−N/p
∥∥eω(ξ)χε(ξ)û(ξ)

∥∥
Lp

≤ (2π)−N/p
∥∥eω(ξ)û(ξ)

∥∥
Lp = ‖u‖p,k;

by definition, supp ûε ⊂ PR(ε), so we can apply the inequality (21), which
gives, together with (31),

(32) ‖eiuε(x) − 1‖p,k ≤ ecω(‖uε‖p,k)eC(R)‖uε‖p,k ≤ ecω(‖u‖p,k)+C(R)‖u‖p,k ,

since ω is an increasing function.
Let us recall now the following identity, that was proved in [2, Lemma 4.6]:

for every a1, . . . , am ∈ C we have

(33) a1a2 · · · am − 1 =
m∑

h=1

∑
j=(j1,...,jh)

0≤j1<j2<···<jh≤m

(aj1 − 1) · · · (ajh − 1).

We want to analyze the norm of the quantity eiu(x) − 1; by (30) we can write
eiu(x)−1 = [∏

ε e
iuε(x)

]·eiu0(x)−1; then by applying (33) in this last expression
and by using the algebra property (10) we can estimate the norm ‖eiu(x)−1‖p,k

by a sum of terms whose factors are of the type ‖eiuε(x)−1‖p,k or‖eiu0(x)−1‖p,k .
Regarding ‖eiuε(x) − 1‖p,k we can apply (32), while for ‖eiu0(x) − 1‖p,k the
estimate (29) holds with R + 1 in place of R, since supp û0 ⊂ PR+1. Since we
have 2N different choices of ε we then obtain

(34) ‖eiu(x) − 1‖p,k ≤ Ce2Ncω(‖u‖p,k)+2NC(R)‖u‖p,k

×
(
C1 + C2e

ω(AD(R+1))DN/p(R + 1)N
∥∥(1 + |x|2)Nu0(x)

∥∥
p,k

)
.
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Let us estimate now the term
∥∥(1 + |x|2)Nu0(x)

∥∥
p,k

. By definition, we have

u0(x) = F −1
ξ→x

(
χR(ξ)û(ξ)

)
; then, easy computations and the basic properties

of the Fourier transform give us

(1 + |x|2)Nu0(x) =
∑

|α|≤2N

cαx
αF −1

ξ→x

(
χR(ξ)û(ξ)

)
=

∑
|α|≤2N

∑
β≤α

cαβF −1
ξ→x

[
(DβχR)(ξ)

( ̂xα−βu
)
(ξ)

]
,

where cαβ = (
α

β

)
(−1)|β|cα . Now we observe that we can find a constant B

depending on N but not on R such that ‖DβχR‖L∞ ≤ B for every |β| ≤ 2N ;
so we obtain
(35)∥∥(1 + |x|2)Nu0(x)

∥∥
p,k

≤ C
∑

|α|≤2N

∑
β≤α

∥∥eω(ξ)(DβχR)(ξ)
( ̂xα−βu

)
(ξ)

∥∥
Lp

≤ CB
∑

|α|≤2N

∑
β≤α

∥∥xα−βu(x)
∥∥
p,k

.

Since by hypothesis u is supported in K , we have that xα−βu(x) ≡ φK(x)xα−β

u(x), where φK is a suitable (test) function such that φK(x) ≡ 1 on K and
φK(x)xα−β ∈ Bp,k for every β ≤ α, |α| ≤ 2N . We deduce from (35) and
Theorem 2.2 that

(36)
∥∥(1 + |x|2)Nu0(x)

∥∥
p,k

≤ C ′ ∑
|α|≤2N

∑
β≤α

Calg

∥∥φK(x)xα−β
∥∥
p,k

‖u‖p,k = CK‖u‖p,k.

Let us observe moreover that we can find a constant D satisfying R+1 ≤ DR

for every R ≥ 1, so ω(AD(R + 1)) ≤ ω(A′DR) with A′ = AD, ω being an
increasing function; we then deduce by (34) and (36) the following estimate:

(37) ‖eiu(x) − 1‖p,k

≤ Ce2Ncω(‖u‖p,k)+2NC(R)‖u‖p,k
(
C1 + C ′

2e
ω(A′DR)DN/pRNCK‖u‖p,k

)
,

for every R ≥ 1, where D satisfies (23). Let us analyze at first the case ‖u‖p,k ≤
M , M being a positive constant; since (37) holds for all R ≥ 1 we can fix
R = 1, and moreover from (23) we get D ≤ 4CalgM + 1, so (37) gives us (19).

Now let us consider the case ‖u‖p,k > M . At first we want to analyze the
constant C(R), cf. (12); since ω is increasing, for every ν ∈ (0,C ) we can
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write

(38) C(R) ≤ Ce−(C−ν)ω(R)

(∫ +∞

0
e−νp′ω(t)tN−1 dt

) 1
p′

= Cνe
−(C−ν)ω(R).

We then get

(39) R ≤ ω−1

[
1

C − ν
log

(
Cν

C(R)

)]
.

Since (37) holds for every R ≥ 1, we still have the freedom to choose R; we
fix R in such a way that

(40) C(R) = Cν

ω(‖u‖p,k)

‖u‖p,k

,

and then by (39) we obtain

(41) R ≤ ω−1

[
1

C − ν
log

( ‖u‖p,k

ω(‖u‖p,k)

)]
.

Since we want to estimate ‖eiu(x)−1‖p,k through (37) we now consider some of
the terms appearing there, starting fromω(A′DR). Recall that we are supposing
that ‖u‖p,k > M; then, taking M ≥ 1 we have from (23) that D ≤ (4Calg +
1)‖u‖p,k . Then by (41) and Lemma 2.9 we get:

(42) ω(A′DR) ≤ A1ω

{
‖u‖p,kω

−1

[
1

C − ν
log

( ‖u‖p,k

ω(‖u‖p,k)

)]}
,

for every ν ∈ (0,C ), where A1 = max
{
1, A′(4Calg + 1)

}
is independent of ν.

Let us consider now the term DN/p in (37). By Lemma 2.9 again we have,
for ‖u‖p,k > M with M sufficiently large, ω−1

(
1

C−ν
log ‖u‖p,k

ω(‖u‖p,k)

) ≥ 1; so,
using the condition D ≤ (4Calg + 1)‖u‖p,k and the fact that log t = o(ω(t)) as
t → +∞ we easily obtain the following estimate for every ‖u‖p,k > M:

(43)
D

N
p ≤ (4Calg + 1)

N
p e

N
p
b1ω(‖u‖p,k)

≤ (4Calg + 1)
N
p e

N
p
b1ω

{
‖u‖p,kω

−1
[

1
C−ν

log
‖u‖p,k

ω(‖u‖p,k )

]}
.

Similarly, from (41) we get the following estimates:

(44)
RN ≤ e

Nb1ω
{
‖u‖p,kω

−1
[

1
C−ν

log
‖u‖p,k

ω(‖u‖p,k )

]}
,

‖u‖p,k ≤ e
b1ω

{
‖u‖p,kω

−1
[

1
C−ν

log
‖u‖p,k

ω(‖u‖p,k )

]}
.
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It then follows from (37), (40), (42), (43) and (44) that (20) is satisfied for
every ‖u‖p,k > M , with aν = 2N(c + Cω), C̃K = C ′

2(4Calg + 1)
N
p CK and

b = A1 + b1
(
N
p

+ N + 1
)
. The proof of Proposition 2.10 is then complete.

Remark 2.11. We observe that the estimates (19)–(20) can be obviously
unified in (20). On the other hand, considering the proof of Theorem 2.6 in the
one-dimensional case, we always havef (x, u(x)) ∈ Bp,k for a singleu ∈ Bp,k .
In fact, it is sufficient that the last expression in formula (26) be finite, but the
Fourier transform of u in (26) has compact support, and therefore u ∈ L1(RN).
In this case we can avoid the requirement that u has support in a fixed compact
set K .

Now we give some lemmas that, together with Proposition 2.10, shall allow
us to prove Theorem 2.6. Using that ϕω : t �→ ω(et ) is convex we obtain

Lemma 2.12. The weight ω satisfies ω−1(t + s) ≤ ω−1(t)ω−1(s), for every
t, s ∈ R+.

Lemma 2.13. Let G(x, y) satisfy the hypotheses of Theorem 2.6, and let us
denote R(x) = G(x, 0). Then R(x) ∈ Bp,k .

Proof. First, we observe that

(45) R(x) = (2π)−N−2M
∫

RN+2M
eixξ Ĝ(ξ, η) dξ dη.

The statement follows then by applying Hölder’s inequality, (14) and (16).

Lemma 2.14. Let E(x) be a function belonging to the space Bp,k . The
following estimate holds for every ξ ∈ RN :

‖eixξE(x)‖p,k ≤ Ceω(ξ)‖E‖p,k,

where C is a positive constant independent of ξ , and we have set as usual
k(ξ) = eω(ξ).

Proof. By definition of the Bp,k-norm we have

‖eixξE(x)‖p

p,k = (2π)−N

∫
RN

epω(ζ )−pω(|ζ |−|ξ |) epω(|ζ |−|ξ |)∣∣Ê(ζ − ξ)
∣∣p dζ.

Since, by (7), eω(ζ )−ω(|ζ |−|ξ |) ≤ eω(ξ)+δ , we get immediately the conclusion.

Now we can pass to the proof of the composition result in the spaces Bp,k .
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Proof of Theorem 2.6. (i) We start by proving (17). We observe at first
that we can write the function G(x, y) in the following way:

(46) G(x, y) = (2π)−N−2M
∫

eixξ
(
eiyη − 1

)
Ĝ(ξ, η) dξ dη + R(x),

where R(x) is given by (45). Let us write

(47) v(x) = (�u1(x), . . . ,�uM(x),�u1(x), . . . ,�uM(x));
since we have represented f (x, z) as in (13), using Lemmas 2.13 and 2.14 we
obtain

(48) ‖f (x,u(x))‖p,k = ‖G(x, v(x))‖p,k

≤ C

∫
eω(ξ)‖eiv(x)η − 1‖p,k|Ĝ(ξ, η)| dξ dη + C1,

where C1 = ‖R‖p,k is a constant depending only on G. So we have just to
estimate ‖eiv(x)η − 1‖p,k; by the formula (33) and Theorem 2.2 we get

(49) ‖eiv(x)η − 1‖p,k

≤ C

2M∑
h=1

∑
j=(j1,...,jh)

0≤j1<...<jh≤2M

‖eivj1 (x)ηj1 − 1‖p,k · · · ‖eivjh (x)ηjh − 1‖p,k.

By using Proposition 2.10 and taking into account Remark 2.11 we obtain, for
every D = 1, . . . , 2M , the following estimate:

(50) ‖eivD(x)ηD − 1‖p,k

≤ Ceaνω(|ηD|‖vD‖p,k)

[
C1 + C̃Ke

bω
{
|ηD|‖vD‖p,k ω

−1
[

1
C−ν

log
|ηD |‖vD‖p,k

ω(|ηD |‖vD‖p,k )

]}]
.

Now we consider two cases.
If ‖vD‖p,k ≤ 1, since ω is increasing and |ηD| ≤ |η|, we obtain from

Lemma 2.9 that

(51) ‖eivD(x)ηD − 1‖p,k ≤ Ceaνω(η)

[
C1 + C̃Ke

bω
{
|η|ω−1

[
1

C−ν
log |η|

ω(|η|)
]}]

.

When ‖vD‖p,k > 1, by Lemmas 2.9 and 2.12 we get:

(52) ω

{
|ηD|‖vD‖p,kω

−1

[
1

C − ν
log

|ηD|‖vD‖p,k

ω(|ηD|‖vD‖p,k)

]}
≤ I1(‖vD‖p,k)ω

{
|η|ω−1

[
1

C − ν
log

|η|
ω(|η|)

]}
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where I1(‖vD‖p,k) = ‖vD‖p,k max
{
1, ω−1

[
1

C−ν
log(1 + ‖vD‖p,k)

]}
. We then

have by (50), (52) and Lemma 2.9 that

‖eivD(x)ηD − 1‖p,k

≤ CeI2(‖vD‖p,k)ω(|η|)
[
C1 + C̃Ke

bI1(‖vD‖p,k)ω
{
|η|ω−1

[
1

C−ν
log |η|

ω(|η|)
]}]

,

for every ‖vD‖p,k > 1, where I2(‖vD‖p,k) = aν‖vD‖p,k . Observe now that
writing �w = w+w

2 and �w = i w−w
2 we easily obtain that for every w ∈ Bp,k

(53) ‖�w‖p,k ≤ ‖w‖p,k and ‖�w‖p,k ≤ ‖w‖p,k;
then, since vD(x) is the real or imaginary part of someuD̃(x) andIj(·), j = 1, 2,
is increasing, using (53) we have, for ‖vD‖p,k > 1,

(54) ‖eivD(x)ηD − 1‖p,k

≤ CeI2(‖uD̃‖p,k)ω(|η|)
[
C1 + C̃Ke

bI1(‖uD̃‖p,k)ω
{
|η|ω−1

[
1

C−ν
log |η|

ω(|η|)
]}]

.

Now we can complete the estimate of ‖eiv(x)η − 1‖p,k in (49) through (51) and
(54), and then we can continue the estimate (48), getting that ‖f (x,u(x))‖p,k

is estimated by a sum of integrals where the leading term in η (for |η| large) is
of the form∫

eω(ξ)e
I(‖u1‖p,k ,...,‖uM‖p,k)ω

{
|η|ω−1

[
1

C−ν
log |η|

ω(|η|)
]}∣∣Ĝ(ξ, η)

∣∣ dξ dη

≤
∥∥∥eω̃(ξ)eσ(η)Ĝ(ξ, η)

∥∥∥
Lp(RN+2M)

×
∥∥∥∥eω(ξ)−ω̃(ξ)e

I(‖u1‖p,k ,...,‖uM‖p,k)ω
{
|η|ω−1

[
1

C−ν
log |η|

ω(|η|)
]}

−σ(η)

∥∥∥∥
Lp′

(RN+2M)

as we can deduce by Hölder inequality. In this last expression the norm in Lp is
finite by the hypothesis (16); the one in Lp′

is finite, too, by the conditions (14)
and (15), since for c1, c2 > 0 fixed, ‖e−c1ω(ξ)‖Lp′

(RN ) and ‖e−c2σ(η)‖Lp′
(R2M)

are finite, as we can deduce by the property (γ ) of ω(ξ) and σ(η). We then
have that f (x,u(x)) ∈ Bp,k and (17) is satisfied; the boundedness of <K on
bounded sets follows from the fact that the functions I1, I2 (and then also I

in the last estimate) have such a property.
(ii) We want now to prove (18). From the Cavalieri-Lagrange formula and

Theorem 2.2 we get

(55) ‖f (x,u(1)(x)) − f (x,u(2)(x))‖p,k ≤
2M∑
j=1

Calg‖v(1)
j (x) − v

(2)
j (x)‖p,k
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×
∫ 1

0

∥∥(∂yjG)
(
x, v(2)(x) + t

(
v(1)(x) − v(2)(x)

))∥∥
p,k

dt,

with notation as in (47). From (53) we then have

(56) ‖v(1)
j (x) − v

(2)
j (x)‖p,k ≤ ‖u(1)

hj
(x) − u

(2)
hj

(x)‖p,k

for some hj depending on j . Let us analyze now the function (∂yjG)(x, y).
Setting σ1(t) = σ(t)− log(1+ t), k1(t) = eσ1(t) and recalling that k(t) = eσ(t)

we have∫ ∣∣k̃(ξ)k1(η) ̂(∂yjG)(ξ, η)
∣∣p dη dξ ≤

∫
k̃(ξ)k(η)

∣∣Ĝ(ξ, η)
∣∣p dη dξ,

that is finite by hypothesis (16). Now the property (γ ) of the weight ω(ξ)

ensures us that

log(1 + t)

ω
{
t ω−1

[
1

C−ν
log t

ω(t)

]} → 0 as t → +∞,

and so we have that σ1 satisfies

ω

{
t ω−1

[
1

C − ν
log

t

ω(t)

]}
= o

(
σ1(t)

)
as t → +∞;

then for every j = 1, . . . , 2M we can apply the point (i) of Theorem 2.6 to
the function (∂yjG)(x, y), with σ1 in place of σ , obtaining that

(57)
∥∥(∂yjG)

(
x, v(2)(x) + t

(
v(1)(x) − v(2)(x)

))∥∥
p,k

≤ C
(j)

K,T ,

for every t ∈ [0, 1] and j = 1, . . . , 2M , since the function <K is bounded
on bounded sets and by hypothesis

∥∥u(2)
h + t

(
u
(1)
h − u

(2)
h

)∥∥
p,k

≤ 3T for every
h = 1, . . . ,M . Then (18) follows from (55), (56) and (57).

Remark 2.15. Observe that the proof above does not depend on the prop-
erty (γ ) on the weight ω. In fact, it is sufficient to take some constant Mγ > 0
such that Mγ log(1 + t) ≤ ω(t) as t tends to infinity, to have that the integrals
in formulas (11), (12), and (38) are finite. In this case, we recover the classical
functions k ∈ Kω of polynomial growth defined by Hörmander, and we extend
the work of Messina and Rodino [17]. Compare, for example, the condition
(2.1) in [17] to obtain that Bp,k is an algebra. Here, the function

K(ξ, η) = eω(ξ)

eω(ξ−η)eω(η)
≤ e−C min{ω(ξ−η),ω(η)}+δ,

and it is sufficient to take Mγ > 0 big enough to have that such condition
holds.
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3. Applications to local solvability

Our aim is to give a local solution near a point x0 for the following semilinear
operator

(58) F (u) = P(D)u + f (x,Q1(D)u,Q2(D)u, . . . ,QM(D)u),

where P(D) and Qi(D), i = 1, . . . ,M are linear partial differential operators
with constant coefficients. As mentioned in the introduction, we will study two
types of hypothesis on the nonlinear term f . First, we assume that there exists
a point x0 ∈ RN such that f (x0, z) = 0, for every z ∈ CM . Here, we need
that P(D) is stronger than Qi(D) for all 1 ≤ i ≤ M in the classical sense of
Hörmander [10] and Trèves [19].

We recall some known results regarding Bp,k spaces. We observe that if
h ∈ C∞ in a neighborhood of x0 ∈ RN and h(x0) = 0, we can write

(59) h(x) =
N∑

j=1

(xj − x0
j )

∫ 1

0
∂jh(x

0 + t (x − x0)) dt,

and we have

Lemma 3.1. Let ψ ∈ C∞
0 and ψε(x) = ψ(x−x0

ε
). Then, for each j =

1, 2, . . . , N , ‖(xj − x0
j )ψε(x)‖1,1 = ε‖xjψ(x)‖1,1.

Another important property is the following (see [1, Theorem 2.2.7]): given
a test function φ ∈ D(ω)(RN), and k ∈ Kω, there exists a constant C > 0 such
that

(60) ‖φ u‖p,k ≤ C‖φ‖1,1 · ‖u‖p,k ≤ C ′‖u‖p,k

for all u ∈ Bp,k . The first result of local solvability is the following.

Theorem 3.2. Let g ∈ Bp,k , with k(ξ) = eω(ξ), and consider the operator
F defined by (58). We suppose that there exists a point x0 ∈ RN such that
f (x0, z) = 0 for all z ∈ CM and Q̃i(ξ) ≤ CP̃ (ξ) for all ξ ∈ RN and
1 ≤ i ≤ M and some constant C > 0. We also assume that f satisfies (16)
of Theorem 2.6. Then one can find a constant ε0(P,Q1, . . . ,QM) > 0 and
u0 ∈ Bp,kP̃ such that

(61) F (u0)(x) = g(x)

when ‖x − x0‖ < ε0.
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Proof. It is well-known that there exists a fundamental solution E ∈ B loc
∞,P̃

of the linear term P(D) of the semilinear operator F . Set E∗ =: L. By Björck
[1, Theorem 2.3.8], L is well defined from Bp,k ∩ E ′

(ω)(R
N) to Bp,kP̃ .

Choose ψ ∈ D(ω)(RN), ψ ≡ 1 in B1(0) and ϕ ∈ D(ω)(RN), ϕ ≡ 1 in
B1(x

0). Define ψε(x) = ψ(x−x0

ε
) and consider the new operator

F̃ (v) = g − ψεϕf (x,Q1(D)(ϕLϕv), . . . ,QM(D)(ϕLϕv)).

Observe now that, if v ∈ Bp,k , then ϕv ∈ Bp,k ∩ E ′
(ω)(R

N). Therefore Lϕv ∈
B loc

p,kP̃
and ϕLϕ ∈ Bp,kP̃ , then

Qi(D)(ϕLϕv) ∈ Bp,kP̃ /Q̃i
⊂ Bp,k

for i = 1, 2, . . . ,M . We can apply now the result of composition from The-
orem 2.6 to obtain F̃ (v) ∈ Bp,k.

We will prove that, fixed T ≥ 2‖g‖p,k , there exists ε0 > 0 such that the
corresponding operator

F̃0(v) = g − ψε0ϕf (x,Q1(D)(ϕLϕv), . . . ,QM(D)(ϕLϕv))

is defined from Bp,k,T = {u ∈ Bp,k : ‖u‖p,k ≤ T } into itself and it is a
contraction.

Let v ∈ Bp,k,T and u := ϕLϕv, as in the proof of [17, Theorem 3.1],
‖u‖p,kP̃ ≤ CT for some constant C > 0. Set now s := (s1, . . . , sM), where
si = Qi(D)u, then si is compactly supported for all i = 1, 2, . . . ,M , and

‖si‖p,k = ‖Qi(D)u‖p,k ≤ Ci‖u‖p,kP̃ /Q̃i
≤ C ′

i‖u‖p,kP̃ ≤ C ′′
i T ,

that is, si ∈ Bp,k . Now, we use that f (x0, z) = 0 for all z ∈ CM . By (59), it
follows that

f (x, z) =
N∑

j=1

(xj − x0
j )

∫ 1

0
∂xj f (x0 + t (x − x0), z) dt,
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and from Lemma 3.1 and (60),

‖ψεϕf (x, s)‖p,k

≤ C

N∑
j=1

‖ϕ(x)
∫ 1

0
∂xj f (x0 + t (x − x0), s) dt‖p,k · ‖(xj − x0

j )ψε(x)‖1,1

= Cε

N∑
j=1

‖ϕ(x)
∫ 1

0
∂xj f (x0 + t (x − x0), s) dt‖p,k · ‖xjψ(x)‖1,1

≤ C̃ε‖ϕ‖1,1

N∑
j=1

∫ 1

0
‖∂xj f (x0 + t (x − x0), s)‖p,k · ‖xjψ(x)‖1,1 dt.

Now, proceeding in a similar way to the proof of (ii) of Theorem 2.6 it is easy
to see that ∂xj f (x0 + t (x − x0), z) (or better, the corresponding G with real
variables) satisfies the hypotheses of Theorem 2.6 for ω̃1 = ω̃ − log(1 + t).
We can conclude from the inequalities above that

‖ψεϕf (x, s)‖p,k ≤ εC1.

Then, choosing ε sufficiently small, ‖F̃ (v)‖p,k ≤ εC1 + ‖g‖p,k ≤ T .

We now prove that F̃ : Bp,k,T → Bp,k,T is a contraction. Since the function
∂xj f (x0 + t (x − x0), z) satisfies Theorem 2.6, we can use (ii) of this result.
Using the notation h(x, s) = f (x, s1)−f (x, s2), observing that h(x0, s) = 0
and arguing as before

‖F̃ (v1) − F̃ (v2)‖p,k = ‖ϕψεh(x, s)‖p,k

≤ εC‖ϕ‖1,1

N∑
i=1

∫ 1

0
‖∂xj h(x0 + t (x − x0), s)‖p,k · ‖xjψ(x)‖1,1 dt

≤ εCCsuppϕ,T

M∑
j=1

‖s(1)j − s
(2)
j ‖p,k

where Csuppϕ,T is the constant that appears in (18). Then the operator F̃ :
Bp,k,T → Bp,k,T is a contraction choosing ε = ε0 sufficiently small and,
therefore, there exists a fixed point v0 for the corresponding operator F̃0. As in
[17, Theorem 3.1], we conclude that the equation (61) admits a local solution
u0 ∈ Bp,kP̃ for ‖x − x0‖ < ε0.
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Example 3.3. As in [17], we can consider the Schrödinger operator

P(D) = −DxN
+

N−1∑
j=1

D2
xj
,

and the linear partial differential operators Qj(D)u = Dxj u, for j = 1, . . . ,
N − 1, QN(D)u = P(D)u, QN+1(D)u = u.

Let H ∈ C[z] be a polynomial defined in C2N+1. We consider that the
first N variables are real, and H(x0, z) = 0 for some point x0 ∈ RN and all
z ∈ CN+1. Then, by Theorem 3.2, the equation P(D)u + H(x,D)u = g is
locally solvable for g ∈ Bp,k in a neighborhood of x0. To see this, we write
H(x, z) = G(x, y), where y ∈ R2N+2, and we multiply G by a suitable cut-
off function: As in the proof of Theorem 3.2, we fix T ≥ 2‖g‖p,k . Since we
work with functions u ∈ Bp,kP̃ with support in a fixed compact set K , and
‖Qi(D)u‖p,k ≤ CT , for 1 ≤ i ≤ N + 1, we also have

(62) ‖Qi(D)u‖L∞ ≤ C1‖ ̂Qi(D)u‖L1

≤ C2‖eω(ξ) ̂Qi(D)u(ξ)‖Lp ≤ C3T =: T̃ .

Then, it is enough to consider H(x, z) on the set Bδ(x
0) × P(0; T̃ , . . . , T̃ ),

for some δ > 0, where P(0; T̃ , . . . , T̃ ) is a poly-disc in CN+1. Therefore, we
can multiply G by a suitable cut-off function in such a way that the product
satisfies (16) of Theorem 2.6.

Example 3.4. Let us consider the following nonlinear equation:

(63) F (u) =
∑

|α|≤m

cαD
αu + f (x,Dαu)|α|≤m = g(x),

where cα ∈ C, the operator P(D) = ∑
|α|≤m

cαD
α is elliptic, there exists an x0

such that f (x0, z) = 0 for every z ∈ CM , withM = #{α ∈ NN
0 : |α| ≤ m}, and

f (x, z) (eventually multiplied by a suitable cut-off function, cf. Example 3.3)
satisfies the hypotheses of Theorem 2.6. We observe that, writing Qα(D) =
Dα , the ellipticity of P(D) implies that there exists a positive constant C

such that Q̃α(ξ) ≤ CP̃ (ξ) for every α with |α| ≤ m. Then we can apply
Theorem 3.2 to the equation (63), obtaining that for every g ∈ Bp,k there
exists (locally near x0) a solution u(x) of (63) belonging to Bp,kP̃ .

We consider now the same operator F but with a weaker hypothesis on the
nonlinearity f . We will need in this case that P(D) is infinitely stronger that
Qi(D), for all 1 ≤ i ≤ M , in the sense of Hörmander [10]. We obtain the
following extension of [16, Theorem 11].



198 david jornet and alessandro oliaro

Theorem 3.5. Let g ∈ Bp,k , with k(ξ) = eω(ξ), and consider the operator
F defined by (58). We suppose that f (x, 0) = 0 for all x ∈ RN and that
Q̃i (ξ)

P̃ (ξ)
→ 0 as |ξ | → +∞ for all 1 ≤ i ≤ M . We also assume that f satisfies

the hypothesis of Theorem 2.6. Then, for every x0 ∈ RN , one can find ε0 > 0
and u0 ∈ Bp,kP̃ such that

F(u0)(x) = g(x)

when ‖x − x0‖ < ε0.

As a further application of the algebra result proved in Section 2 we prove
now the following theorem concerning nonlinear elliptic equations. For such
equations the local solvability is well-known in the frame of Sobolev spaces
and analytic nonlinearities (a proof can be found in [18]); we give here a more
general result in Bp,k spaces.

Theorem 3.6. Let us consider the following equation:

(64) f (x, ∂αu)|α|≤m = g(x),

where:

(i) f (x, z) is of the form

(65) f (x, z) = f1(x,�z) + if2(x,�z),

where f1 and f2 are real-valued (or alternatively pure imaginary valued)
functions;

(ii) F1(v) := f1(x, ∂
αv)|α|≤m and F2(w) := f2(x, ∂

αw)|α|≤m are elliptic;

(iii) the functionsf1(x, y) andf2(x, y) satisfy the hypotheses of Theorem 2.6.

(iv) f (x, 0) = 0 for every x ∈ RN .

Then for every g ∈ Bp,k,δ with δ sufficiently small we can find (locally near
x0) a solution u ∈ Bp,kP̃ of the equation (64).

Proof. We have already observed that a function u belongs to Bp,k if and
only if � u and � u belong to Bp,k , cf. (53). Then, because of the particular
form of the nonlinearity f (x, z), we have that the equation (64) is equivalent
to

(66) f1
(
x, ∂α(�u)

)
|α|≤m

= � g(x), f2
(
x, ∂α(�u)

)
|α|≤m

= �g(x)

(an analogous consideration holds for the case of pure imaginary valued f1

and f2). We analyze only the first equation (the same procedure applies also to



functional composition in Bp,k spaces and applications 199

the second one). Let us write for simplicity w instead of �u and h(x) instead
of �g(x); we then have to find a solution of the equation

(67) F1(w) := f1(x, ∂
αw)|α|≤m = h(x),

where bothw andh are now real-valued. We consider the linearization ofF(u),
defined in the following way:

(68) F ′
1(0)(x,D) :=

∑
|α|≥0

i|α| ∂f1

∂wα

(x, 0)Dα =
∑
|α|≥0

∂f1

∂wα

(x, 0)∂α,

wherewα indicates the variable corresponding to ∂αw in (67); we fix arbitrarily
x0 ∈ RN and we write P1(D) := F ′

1(0)(x
0,D). We write

F1(w) = P1(D)w + Q1(x,D)w + G1(w),

where P1(D) = F ′
1(0)(x

0,D), Q1(x,D) = F ′
1(0)(x,D)−P1(D) and G1(w)

= F1(w) − F ′
1(0)(x,D)w. Observe that G′

1(0)(x,D) = 0. Now, if E1 is a
fundamental solution of P1(D) and L1 := E1∗ we consider, similarly to [18],
the following equation:

(69) R1(v) = v + K1v + ψεG1
(
ϕ�(L1ϕv)

) = h,

where K1v := ψεQ1(x,D)
(
ϕ�(L1ϕv)

)
and the real-valued functions ϕ, ψε

have the same meaning as in the proof of Theorem 3.2. Observe that R1(v) =
v + ψεF1

(
ϕ�(L1ϕv)

) − ψεP1(D)
(
ϕ�(L1ϕv)

)
. We have already proved that

ϕL1ϕv ∈ Bp,kP̃ , which implies that ϕ�(L1ϕv) = �(ϕL1ϕv) ∈ Bp,kP̃ , cf.
(53), and so P1(D)

(
ϕ�(L1ϕv)

) ∈ Bp,k . Moreover, for every |α| ≤ m, we have
∂α

(
ϕ�(L1ϕv)

) ∈ Bp,k and ‖∂α
(
ϕ�(L1ϕv)

)‖p,k ≤ C‖v‖p,k; so we obtain
from Theorem 2.6

‖F1
(
ϕ�(L1ϕv)

)‖p,k ≤ <̃suppϕ

(‖v‖p,k

)
.

We then have
R1 : Bp,k → Bp,k.

Now proceeding in the same way as in the proof of Theorem 3.2 we get

‖K1v‖p,k ≤ εC‖v‖p,k,

for a fixed positive constant C. Then we get ‖K1‖L (Bp,k,Bp,k) → 0 as ε → 0,
which implies that shrinking ε we have that R′

1(0)(x,D) = I + K1 : Bp,k →
Bp,k is invertible. We can then apply the Inverse Function Theorem in the
Banach space Bp,k to get a solution v ∈ Bp,k of (69), and then a (local and



200 david jornet and alessandro oliaro

real-valued) solution w = �(L1ϕv) ∈ Bp,kP̃ of the first equation in (66); in
the same way we can treat the second equation in (66), and so we have found
a local solution of (64).

In the next example, we show that the hypotheses in Theorem 2.6 include
the well-known analytic case.

Example 3.7. Now, we consider a different condition on f (x, z) to have
another application of Theorem 2.6. Let σ be a weight function; we denote
by E(σ )(RN

x ,H(CM)) (compare with [17, Def. 2.1]) the set of those functions
f (x, z) = ∑

|α|≥0 aα(x)z
α , x ∈ RN , z ∈ CM , such that aα(x) ∈ E(σ )(RN)

and, if for each compact set K ⊂ RN and every n ∈ N we denote by
Cn,α =‖ aα ‖K,n, being ‖ · ‖K,n the seminorm defined in (4), then the function∑

|α|≥0 Cn,αz
α is entire for each n ∈ N and K ⊂⊂ RN .

We write f (x, z) = G(x, y) with y ∈ R2M , i.e., G(x, y) = ∑
|α|≥0 aα(x)

(y1 + iy2)
α with y = (y1, y2), and y1, y2 ∈ RM. We fix a compact set K ⊂

RN+2M . Then, |y| ≤ M0 for (x, y) ∈ K and some constant M0 > 0. We put
δ = (δ1, . . . , δ2M) ∈ N2M

0 and δ̃ = (δ1 + δM+1, δ2 + δM+2, . . . , δM + δ2M) ∈
NM

0 . For δ̃ ≤ α, we have∣∣Dγ
x D

δ
y

(
aα(x)(y1 + iy2)

α
)∣∣

≤ Cn,α exp

(
nϕ∗

σ

( |γ |
n

))
δ̃!

(
α

δ̃

)
M

|α|−|δ̃|
0

≤ Cn,α exp

(
nϕ∗

σ

( |γ |
n

))
δ̃!(2M0)

|α|

≤ Cn,αDn exp

(
nϕ∗

σ

( |γ |
n

))
(2M0)

|α| exp

(
nϕ∗

σ

( |δ̃|
n

))
,

since δ̃! ≤ Dn exp
(
nϕ∗

σ

( |δ̃|
n

)) ≤ Dn exp
(
nϕ∗

σ

( |δ|
n

))
for some constant Dn > 0

and all multi-indexes δ. We finally obtain∣∣Dγ
x D

δ
yG(x, y)

∣∣ ≤ Cn exp

(
nϕ∗

σ

( |γ + δ|
n

))
,

where Cn = Dn

∑
|α|≥0 Cn,α(2M0)

|α| is a constant that only depends on K

and n ∈ N. We have proved that G(x, y) ∈ E(σ )(RN+2M). If necessary we can
modify G multiplying by a cut-off function and take a suitable weight σ to
have (16) of Theorem 2.6.

Remark 3.8. Let � ⊂ RN be an open set, and define

B loc
p,k(�) = {u ∈ D ′

(ω)(�) : for every ϕ ∈ D(ω)(�), uϕ ∈ Bp,k},
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where as usual k(·) = eω(·); we consider a function f (x, z) satisfying the hypo-
theses of Theorem 2.6. We then have that for every u(x) = (u1(x), . . . , uM(x))

with uj ∈ B loc
p,k(�) for all j = 1, . . . ,M ,

(70) f (x,u(x)) ∈ B loc
p,k(�).

In fact, let us fix arbitrarily ϕ ∈ D(ω)(�), and choose a real-valued function
ψ ∈ D(ω)(�), ψ ≡ 1 on suppϕ. From Theorem 2.6 we then obtain

ϕ(x)f (x,u(x)) = ϕ(x)f (x, ψ(x)u(x)) ∈ Bp,k,

and this gives (70).
Let us fix now an increasing function h : [0,+∞) → [0,+∞) satisfying

(71) 0 ≤ h(t) ≤ c(1 + |t |)d and
h(t + s)

h(t)h(s)
≤ C

for suitable d, c, C > 0 and every t, s ∈ [0,+∞). Taking an ω satisfying (γ ),
by the same arguments as in the proof of Theorem 3.2 we have that for every
fixed integer n the weight ω(t) + log(h(t)n) satisfies (14) (with a different
constant A1 > 1), and so we obtain as before that, for u = (u1, . . . , uM) with
uj ∈ B loc

p,khn(�), f (x,u(x)) ∈ B loc
p,khn(�).

Now, by specifying the hypothesis Q̃i (ξ)

P̃ (ξ)
→ 0 as |ξ | → +∞ in Theorem 3.5,

we obtain the following extension of [8, Theorem 3.2], giving a result about
regularity of the solutions of semilinear equations with hypoelliptic linear part.

Theorem 3.9. Let us consider the equation

(72) P (D)u = f (x,Q1(D)u, . . . ,QM(D)u),

where P(D) is a hypoelliptic operator, i.e. there exist positive constants C, ρ

such that |∂αP (ξ)| ≤ C|P(ξ)| |ξ |−ρ|α|

for every α ∈ ZN+ and |ξ | ≥ C; we suppose moreover that there exists a
function h : [0,+∞) → [0,+∞) satisfying (71) and such that

(73)
P̃ (ξ)

Q̃i(ξ)
> h(ξ) for every i = 1, . . . ,M;

let the nonlinearity f satisfy the hypotheses of Theorem 2.6, and f (x, 0) = 0.
Let u ∈ B loc

p,kP̃
(�) be a solution of (72). Then, for every positive integer n,

u ∈ B loc
p,kP̃ hn(�).
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Proof. Sinceu ∈ B loc
p,kP̃

(�)we have that for every i = 1, . . . ,M the condi-

tion (73) implies Qi(D)u ∈ B loc
p,k P̃

Q̃i

(�) ↪→ B loc
p,kh(�), and so from Remark 3.8

we have

P(D)u = f (x,Q1(D)u, . . . ,QM(D)u) ∈ B loc
p,kh(�);

then the hypoellipticity of P implies that u ∈ B loc
p,kP̃ h

(�), cf. [10, Theorem
11.1.8]. The conclusion follows by induction on n.
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