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FACTORIZATION FOR BOUNDED ANALYTIC
FUNCTIONS IN THE UNIT DISK AND AN

APPLICATION TO PRIME IDEALS
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(This paper is dedicated to the memory of Professor Gerald Schmieder)

Abstract

We prove several factorization theorems for bounded analytic functions in the open unit disk and
present a very simple new proof of two conjectures of Frank Forelli and the author on the structure
of finitely generated, respectively countably generated prime ideals in H∞.

Introduction

Let T = {z ∈ C : |z| = 1} be the unit circle. For f ∈ H∞, the space of
all bounded analytic functions in the open unit disk D = {z ∈ C : |z| <

1}, let E(f ) = {α ∈ T : limr→1 f (rα) = 0}. It easily follows from an
extension of Hoffman’s factorization theorem due to Izuchi ([6], p. 55) that
any Blaschke product B can be written as B = CD, where B and C are two
Blaschke products such thatE(B) = E(C) = E(D). This type of factorization
theorem plays a fundamental role in the description of the ideal structure of
H∞. Now suppose that f is a bounded analytic function in the unit disk
with ‖f ‖ := sup|z|<1 |f (z)| ≤ 1 such that limr→1 f (r) = 0. Does there exist,
withinH∞, two factors g andh of f such that f = gh and lim supr→1 |h(r)| =
lim supr→1 |g(r)| = 1? The example of the atomic inner function S(z) =
exp

(− 1+z
1−z

)
shows that, in general, the answer is no. In fact, the classical Riesz-

Smirnov factorization theorem [2] tells us that (inside the algebraH∞), the only
factors of S are the roots Sα of S (0 ≤ α ≤ 1) (modulo unimodular constants,
of course); but those all tend to 0 as r → 1. What about, e.g., the Blaschke
product B with zeros rn = 1 − n−2? It is easily seen that limr→1 B(r) = 0.
A result of Øyma [12] shows that every Blaschke product indeed, admits a
factorization of the desired type. For a variant of this, see also [4]. What about
general singular inner functions or outer functions?
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Let f be a function in the unit ball B = {f ∈ H∞ : ‖f ‖ ≤ 1} of
H∞. A sequence (zn) in D with |zn| → 1 is called a spectral sequence for f if
limn f (zn) = 0. Let us say that the function f ∈ B is (zn)-factorizable, if there
exists g, h ∈ B such that f = gh and lim sup |h(zn)| = lim sup |g(zn)| = 1
whenever (zn) is a spectral sequence. It is the aim of this note to give a simple
characterization of all factorizable functions in H∞. Besides the known case
of Blaschke products [4], it will be shown that outer functions as well as
singular inner functions with associated continuous measure are factorizable.
Concerning discrete singular inner functions, the result is more delicate and
depends on the sequence (zn) itself. As an application we present a very simple
new proof of two conjectures of F. Forelli and the author on finitely resp.
countably generated prime ideals in H∞. The known proofs [8], [9], [3] for
the finitely generated case and [4] for the countably generated case all use
Hoffman’s theory on the structure of the maximal ideal space of H∞ and,
in the second case, Suarez’s result that H∞ is a separating algebra. Here we
need only the assertion of the corona theorem that the unit disk is dense in the
spectrum of H∞.

1. Factorizable functions

Let f ∈ B, the unit ball of H∞. According to the canonical factorization
theorem for functions in Hardy spaces, either f ≡ 0 or f can be written as
f = eiθBFµ, where θ ∈ [0, 2π [, B is a Blaschke product and where the
zero-free function Fµ is given by

Fµ(z) = exp

(∫
|ξ |=1

z + ξ

z − ξ
dµ(ξ)

)
.

Here µ = µs + log
(

1
|f (ξ)|

)
dσ for some positive, finite Borel measure µs

singular to normalized Lebesgue measure σ on T . The support of µ is the
smallest compact subset of T for which µ(K) = µ(T ). Note that if f is
not inner, then the support of µ is T . We first give a sufficient condition for
factorizability.

Theorem 1.1. Let f = BFµ ∈ B, f ≡ 0. Suppose that (zn) is a sequence
in D that converges to a point α ∈ T with µs({α}) = 0. Then there exists g

and h ∈ B with f = gh and lim sup |h(zn)| = lim sup |g(zn)| = 1.

Proof. To simplify notation, letα = 1. Choose a nested sequence of closed
arcs Jn centered at 1 with J0 = T and |Jn| → 0, where |J | denotes arclength
of the arc J . Let In = Jn \ Jn+1. Note that In is a union of two arcs. Define the
restriction measure µn := µ|In . Since µ({1}) = 0, we have

∑∞
n=0 µn = µ. It
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is easy to see that due to the relation |1 − ez| ≤ |z| for z ∈ C with Re z ≤ 0,
the functions

Gn(z) = exp

(∫
Jn

z + ξ

z − ξ
dµ(ξ)

)

satisfy

(1.1) |1 − Gn(z)| ≤ 1 + |z|
1 − |z|µ(Jn),

and that outside the support of µ, Fµ is unimodular on T . The proof now
proceeds along the same line as that for Blaschke products (see [4]). Choose
two distinct subsequences (sn) and (rn) of (zn) so that sn → α = 1 and
rn → α = 1. Let (an) denote the zero sequence of B. Write Ln(z) = |an|

an

an−z

1−anz

and
Fn(z) = exp

(∫
In

z + ξ

z − ξ
dµ(ξ)

)
.

Finally, let fn = LnFn. Then BFµ = ∏∞
n=0 fn. Note that by (1.1) the con-

vergence is absolute, hence unconditional, and local uniform in D. Moreover,
‖fn‖ ≤ 1 and

∏
j≥n Fj = Gn.

We shall inductively construct certain subsequences (Sn) of (sn) and (Rn)

of (rn), associated with sequences of integers (mj ) and (nj ) satisfying mj <

nj < mj+1 so that the functions

(1.2) g =
∞∏

j=1

( ∏
k:mj≤k<nj

fk

)

and

(1.3) h =
∞∏

j=1

( ∏
k:nj≤k<mj+1

fk

)

satisfy lim |g(Sj )| = lim |h(Rj )| = 1.
Start withm1 = 0 and let (ηn)be an increasing sequence of positive numbers

with lim ηn = 1. Suppose that mj is given. Choose Rj ∈ {rk : k ∈ N} so that∣∣∣ ∏
k≤mj

fk(Rj )

∣∣∣ > ηj .

This can be done since the functions
∏N

j=0 Fj and the finite Blaschke products∏N
j=0 Lj are unimodular and analytic on a small arc around the cluster point 1

of the rn.
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Then choose nj > mj so that

∣∣∣∏
k≥nj

fk(Rj )

∣∣∣ > ηj .

This can be done since the tails of infinite products converge locally uniformly
to 1. Let Sj ∈ {sk : k ∈ N} be chosen so that

∣∣∣∏
k≤nj

fk(Sj )

∣∣∣ > ηj .

Finally choose mj+1 > nj so that

∣∣∣ ∏
k≥mj+1

fk(Sj )

∣∣∣ > ηj .

Then the functions g and h as defined in (1.2) and (1.3) do the job. Indeed, for
fixed j , we have

|g(Sj )| ≥
∣∣∣ ∏
v:v<nj

fv(Sj )

∣∣∣ ∣∣∣ ∏
v:v≥mj+1

fv(Sj )

∣∣∣ ≥ η2
j

and
|h(Rj )| ≥

∣∣∣ ∏
v:v<mj

fv(Rj )

∣∣∣ ∣∣∣ ∏
v:v≥nj

fv(Rj )

∣∣∣ ≥ η2
j .

Hence lim sup |g(zn)| = lim sup |h(zn)| = 1. Since f = gh, we are done.

As an immediate consequence, we have

Corollary 1.2. a) Let f be an outer function of norm one, or a singular
inner function associated to a continuous measure, or a Blaschke product satis-
fying limr→1 f (reiθ ) = 0 for some θ ∈ [0, 2π [. Then f admits a factorization
f = gh, where

lim sup
r→1

|g(reiθ )| = lim sup
r→1

|h(reiθ )| = 1.

b) The same holds if f = Sν is a discrete singular inner function for which
eiθ is a point of the support of ν with ν({eiθ }) = 0.

We are now able to characterize the functions that are not (zn)-factorizable.
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Theorem 1.3. Let f = BFµ ∈ B, f ≡ 0. Suppose that (zn) is a spec-
tral sequence for f , or more generally, any sequence in D converging to the
boundary of D. Then f is not (zn)-factorizable if and only if (zn) converges
to a point α ∈ T with

(1.4) µs({α}) > 0 and lim inf
1 − |zn|2
|α − zn|2 > 0.

Proof. Suppose that lim zn = α and that (zn) satisfies (1.4). Hence 1−|zn|2
|α−zn|2≥ ε > 0 for all n. Let f = gh be any factorization of f with g, h ∈ B. Since

µs({α}) > 0, at least one of the functions g or h, say g, must have a singular
inner factor of the form Sω(αz) for some ω > 0, where S(z) = exp

(− 1+z
1−z

)
.

But then

|g(zn)| ≤ |Sω(αzn)| = exp

[
−ω

1 − |zn|2
|α − zn|2

]
≤ exp(−ωε) ≤ r < 1.

Thus f is not (zn)-factorizable.
To prove the converse, let f ∈ B, f ≡ 0, be a function that is not (zn)-

factorizable. Theorem 1.1 shows that the sequence (zn) cannot cluster at a point
α for which µs({α}) = 0. Hence we may assume that µs has positive mass at
every cluster point α of (zn). We shall show that the non-factorizability implies
that (zn) has only a single cluster point, hence converges to some α ∈ T , and
that at this point, lim inf 1−|zn|2

|α−zn|2 > 0. To do this, let (ηn) be a subsequence of
(zn) converging to some α ∈ T and suppose that (ξn) is another subsequence
of (zn) that converges to a point β ∈ T , β = α. Obviously f can be written
as f = gh, where g and h are unimodular and analytic on arcs containing
α, respectively β. (One may take, e.g., as g the function g = B1Fµ1 , where
B1 is a Blaschke subproduct of B whose zeros do not cluster at α and where
µ1 is the measure µ restricted to an arc centered at β but not containing α).
Then f = gh is a factorization with lim sup |g(zn)| = lim sup |h(zn)| = 1.
A contradiction. Hence (zn) has only a single cluster point, say α. Again,
since µs({α}) > 0, f (z) = Sω(αz)R(z) for some ω > 0 and a function
R ∈ B that has no singular inner factor with positive point mass at α. If we

assume that lim inf 1−|zn|2
|α−zn|2 = 0, say lim

1−|znk |2
|α−znk |2 = 0 for some subsequence

(znk
) of (zn), then |Sω(αznk

)| → 1. Hence, by Theorem 1.1, we obtain the
factorizationf (z) = (

Sω(αz)R′(z)
)
R′′(z)with lim sup |Sω(αznk

)| |R′(znk
)| =

lim sup |R′′(znk
)| = 1, a contradiction. Thus lim inf 1−|zn|2

|α−zn|2 > 0 and the proof
is complete.
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2. Prime ideals

The following Theorem has recently [4] been proven using Hoffman’s theory
on the structure of the maximal ideal space of H∞. Here I reprove it using
only the elementary factorization theorem Theorem 1.1 above, together with
the simplest version of the Corona Theorem. Recall that S(z) = exp

(− 1+z
1−z

)
and that Sσ (z) = S(σz). For f ∈ H∞, we let f̂ denote the Gelfand transform
of f , defined on the maximal ideal space M(H∞) of H∞.

Theorem 2.1. A nonzero prime ideal I in H∞ is countably generated if
and only if

I = M(z0) := {f ∈ H∞ : f (z0) = 0} for some z0 ∈ D

or
I = I (Sσ , S

1/2
σ , S1/3

σ , . . .) for some σ with |σ | = 1.

Proof. Suppose that I is generated by the functions f1, f2, . . .. We may
assume, without loss of generality, that ‖fn‖ ≤ 2−n. As usual, if the zero set

Z(I) = {m ∈ M(H∞) : f̂ (m) = 0 for every f ∈ I }
of the ideal meets the unit disk, then I coincides with the principal ideal
z − z0 for some z0 ∈ D. Hence I = M(z0). So it remains to study the
case where the functions fn have no common zero in D. For m ∈ M(H∞),
let q(m) = ∑∞

n=1 |f̂n(m)|. By Gelfand-theory, q is a continuous function.
Since I is assumed to be proper, there exists a maximal ideal, hence some
m ∈ M(H∞), such that f̂n(m) = 0 for every n. In particular, q(m) = 0. The
Corona-Theorem now implies that there exists a sequence (zk) in the unit disk
for which q(zk) → 0 (otherwise q would be bounded away from zero in D,
hence on M(H∞)). By taking a subsequence, we may assume that zk → 1.
In particular, for every f ∈ I , we have f (zk) → 0; (note that f ∈ I implies
that |f̂ | ≤ C|q| on M(H∞) for some constant C > 0 depending on f ). If we
suppose that the singular inner factor of f , f ≡ 0, has no atom (at z = 1),
then, by Theorem 1.1, f = gh where lim sup |g(zk)| · lim sup |h(zk)| > 0.
Hence neither g nor h belongs to I . This is a contradiction to the primeness of
I . Thus fj = Sσj Fj , where σj > 0 and where the inner factor of Fj does not
have any atom at z = 1. Since I is prime and Fj ∈ I , we obtain that Sσj ∈ I .
Hence, due to primeness again, we see that I is generated by the functions
S, S1/2, S1/3, . . ..

The proof above also yields the following result, as has been communicated
to the author by T. W. Gamelin:
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Theorem 2.2. The only nonzero prime ideals in H∞ whose hull (=zero set)
are Gδ-sets are the ideals

P = M(z0) := {f ∈ H∞ : f (z0) = 0} for some z0 ∈ D

or
P = I (Sσ , S

1/2
σ , S1/3

σ , . . .) for some σ with |σ | = 1.
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