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CHARACTERIZATIONS OF TRIPOTENTS
IN JB*-TRIPLES

REMO V. HÜGLI∗

Abstract

The set U(A) of tripotents in a JB∗-triple A is characterized in various ways. Some of the char-
acterizations use only the norm-structure of A. The partial order on U(A) as well as σ -finiteness
of tripotents are described intrinsically in terms of the facial structure of the unit ball A1 in A, i.e.
without reference to the (pre-)dual ofA. This extends similar results obtained in [6] and simplifies
the metric characterization of partial isometries in C∗-algebras found in [1] (cf. [8]).

1. Introduction

In this article several conditions upon an element a in a JB∗-tripleA, necessary
and sufficient for a to be a tripotent, i.e. that {a a a} = a are established.
The results are based on the intricate connections that persist between the
algebraic orthogonality onA and the M-orthogonality, the former being defined
in JB∗-triples, the later in any normed vectorspace. Thereby we obtain a purely
geometric description of the algebraic concept of tripotents. To be explicit, the
M-complement a� of the element a inA is defined to be the set of all elements
b in A such that ‖a ± b‖ = max{‖a‖, ‖b‖}. We show that an element a of
norm one in a JB∗-triple A is a tripotent if and only if

a� ∩ A1 = ia� ∩ A1,

where A1 denotes the closed unit-ball of A and i the imaginary unit. This as
well as further characterizations of tripotents are provided in Theorem 4.1.

The set U(A) of tripotents in A is endowed with a partial order ≤ which is
defined algebraically. It is shown that (U(A),≤) is anti-order isomorphic to the
partial order (FU(A),⊆) of faces in A1 generated by tripotents in A, ordered
by set inclusion. The mapping u 
→ face(u) is the corresponding anti-order
isomorphism. This is shown in Theorem 4.4 which is a variation of results by
Edwards and Rüttimann in [6] and [7], concerning the case of JBW∗-triples and
their pre-duals. Similar investigations were persued by Friedman and Russo,
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whose concept of facially symmetric spaces represents a geometric description
of the pre-duals of JBW∗-triples [11], [12]. Our description of (U(A),≤) is
completely intrinsic toA1, i.e. it does not use any reference to the (pre-) dual of
A, and it is valid for general JB∗-triples. In Theorem 4.5 the results are applied
to obtain also an intrinsic characterization of σ -finite tripotents.

The category of JB∗-triples is strictly more general than those of some
well known operator algebras, including C∗-algebras and JB∗-algebras. The
tripotents of a C∗-algebra are precisely its partial isometries. A metric char-
acterization of the partial isometries in a C∗-algebra was provided earlier by
Akeman and Weaver in [1]. Theorem 5.3 shows that their result can be seen
as a special case of ours. For another proof of this result in complex as well
as real JB∗-triples we refer to the work by Fernandez-Polo, Martíinez Moreno
and Peralta [8]. However, the explicit description by M-orthogonality has not
been observed earlier.

The techniques used in this article are based on numerous works on JB∗-
triples and JBW∗-triples, in particular on [4], [6], [9], [11], [12], [13], [14],
[16] and [17].

2. Preliminaries

Let C be a convex subset in a vectorspace E. A convex subset F of C is said
to be a face of C if the following implications hold: If for some t ∈ (0, 1)
and a, b ∈ C, the convex combination ta + (1 − t)b lies in F then a and b

themselves lie in F . Since the intersection of a family of faces of C is also a
face ofC, for each subsetH ofC, there exists the smallest face ofC containing
H , denoted faceC(H) and referred to as the face of C generated by H . Hence,
the set F (C) of all faces of C, ordered by set inclusion, is a complete lattice
with least element the empty set ∅ and largest element C. Let τ be a locally
convex Hausdorff topology on E and let C be τ -closed. A face F of C is said
to be τ -exposed if there exists a τ -continuous linear functional f on E and a
real number t such that, for all elements a in C,

Re(f (a))

{ = t if a ∈ F

< t else
.

An arbitrary intersection of τ -exposed faces is said to be a τ -semi-exposed face
of C. Let Fτ (C), Eτ (C) and Sτ (C) denote the sets of τ -closed, τ -exposed
and τ -semi-exposed faces of C respectively. When ordered by set inclusion,
Fτ (C) and Sτ (C) are complete lattices.

When E is a normed vectorspace with dual space E∗ the abbreviations n
and w∗ will be used for the norm topology of E and the weak∗ topology of
E∗. For an element a of E1, define face(a) to be the smallest face of E1 which



characterizations of tripotents in jb*-triples 149

contains a. Let H and G be subsets of the unit ball E1 in E and of the unit ball
E∗

1 of E∗ respectively. The sets H ′ and G′ are defined by

(2.1)
H ′ = {f ∈ E∗

1 : f (a) = 1 ∀a ∈ H };
G′ = {a ∈ E1 : a(f ) = 1 ∀f ∈ G}.

Observe that (H ′)′ is the least element of Sn(E1) containing H , and (G′)′
is the least element of Sw∗(E∗

1 ) containing G. For more details, the reader is
referred to [6], [7].

Two elements a and b of a normed vectorspace E are said to be M-
orthogonal, denoted a � b, if

(2.2) ‖a ± b‖ = max{‖a‖, ‖b‖}.
For a subset H of the normed vectorspace E, the M-orthogonal complement
(briefly the M-complement) H� of H is defined by

(2.3) H� = {a ∈ E : a � b,∀b ∈ H }.
For a singleton set {a} we write a� instead of {a}�. Similarly, we write a′ and
f′ if a ∈ E and f ∈ E∗.

The M-complement is related to the facial structure of the unit-ball E1 of
E, as can be seen from straightforward considerations such as the following.

Proposition 2.1. Let a be an element in the closed unit ballE1 of a normed
vectorspace E. Then,

a + (a� ∩ E1) ⊆ face(a).

Proof. Consider an element b in a+ (a� ∩E1), that is b = a+ c for some
c ∈ (a� ∩E1). Then ‖a± c‖ ≤ 1. Hence both a+ c and a− c lie in E1. Since
a can be written as the convex combination

a = 1

2
(a + c)+ 1

2
(a − c),

it follows that b (and also a − c) lies in face(a), as required.

The definitions of M-orthogonality and the M-complement make sense in
real and complex normed vectorspaces. However, in the sequel we will assume
E to be complex. Denote by S1(C) and S1(E) the unit sphere in the complex
plane C and in E and by C1 the closed unit disc of C. The tangent disc Sa and
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the flat tangent space Ra corresponding to an element a of S1(E) are defined
by

Sa = {b ∈ E : ‖a + sb‖ = 1∀s ∈ C1},(2.4)

Ra = linC Sa
n
.(2.5)

The relations presented in the following lemma will be useful in subsequent
considerations. They were proved in [4] Lemma 2.11.

Lemma 2.2. Let a be an element of norm one in a complex normed vector-
space E. Then:

(i) a� ∩ E1 = {b ∈ E : ‖a + tb‖ = 1,∀t ∈ [−1, 1]},
(ii) ia� ∩ a� ∩ E1 ⊆ √

2 · {b ∈ E : ‖a + zb‖ = 1∀z ∈ C1},
(iii) i(a� ∩ E1) = (ia)� ∩ E1,

(iv) linR(ia
� ∩ a� ∩ E1) = linC(ia

� ∩ a� ∩ E1),

By (iii) the brackets in those expressions can be omitted. From (i) it is
easially seen that Sa ⊆ ia� ∩ a� ∩ E1. It follows from (ii) and (iv) that,

Sa ⊆ ia� ∩ a� ∩ E1 ⊆ √
2Sa,(2.6)

Ra = linC ia� ∩ a� ∩ E1
n
.(2.7)

The case in which E is a JB∗-triple is the subject of the remaining sections.

3. JB∗-triples and JBW∗-triples

A Jordan∗-triple is complex vectorspace A equipped with a triple product
(a, b, c) 
→ {a b c} from A × A × A to A which is symmetric and linear in
the first and third variable, conjugate linear in the second variable and satisfies
the Jordan triple identity

[D(a, b),D(c, d)] = D({a b c}, d)−D(c, {d a b}),
where [ , ] denotes the commutator, and D(a, b) is the linear mapping on A

defined by D(a, b)c = {a b c}. A subspace B of a A is said to be a subtriple
if {B B B} is contained in B.

A JB∗-triple is a complex Banach space, which is a Jordan∗-triple, and the
triple product has the following properties. The mapping (a, a) 
→ D(a, a) is
continuous from A×A to the Banach space B(A) of bounded linear operators
on A, for each element a in A, D(a, a) is hermitian in the sense of [2] Defin-
ition 5.1, with non-negative spectrum and has norm ‖D(a, a)‖ = ‖a‖2. If A
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is also the dual of some Banach space A∗, then A is said to be a JBW∗-triple,
and A∗ is referred to as the predual of A.

An important class of examples of JB∗-triples is given by C∗-algebras. [13].
When A is a C∗-algebra, the triple product is defined for a, b, c ∈ A, by

(3.1) {a b c} = 1

2
(ab∗c + cb∗a).

A JB∗-triple behaves locally like a commutative C∗-algebra, and an analo-
gon of the C∗-condition is valid, as can be seen from the next result. For proofs
see [10] and [16].

Lemma 3.1. LetA be a JB∗-triple and let a, b and c be elements ofA. Then,
the following results hold.

(i) ‖{a b c}‖ ≤ ‖a‖ ‖b‖ ‖c‖.

(ii) ‖{a a a}‖ = ‖a‖3.

(iii) The closed subtriple generated by an element a of A is isometrically
isomorphic as a Jordan∗-triple to a commutative C∗-algebra.

A pair a, b of elements of A is said to be orthogonal, denoted a ⊥ b if
D(a, b) is identically zero onA. It can be shown that this relation is symmetric.
The algebraic annihilator H⊥ of a non-empty subset H of A is defined to be
the set

H⊥ = {a ∈ A : a ⊥ b∀b ∈ H } =
⋂
b∈H

b⊥.

Observe that H⊥ is a norm closed subtriple of A, and H⊥ is weak∗-closed
when A is a JBW∗-triple. As it was observed in [9] the properties described in
Lemma 3.1 imply that the algebraic annihilator and the M-orthocomplement
of H are related by

(3.2) H⊥ ⊆ H�.

For any a ∈ A, define a3 = {a a a}. Higher powers of a can be defined
unambiguously using the Jordan triple identity, by

a2n+1 = {a a a2n−1} = {a a2n−1 a}.
An element u in A is said to be a tripotent if u3 = u. The set of all tripotents
of A is denoted by U(A). If u and v are tripotents of A such that

u ⊥ (v − u),

then, u is said to be less than or equal to v, denoted u ≤ v. This relation
provides a partial order on U(A) [17]. A tripotent u in A is σ -finite, if any
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set of pairwise orthogonal tripotents all of which are less than or equal to u is
of countable cardinality. The set of all σ -finite tripotents of A is denoted by
Uσ (A).

The partial order (U(A),≤) has no largest element, except when A is the
null-vectorspace. Hence we may adjoin to U(A) an abstract largest element
which we denote by ω, and we define U(A)∼ to be the set U(A) ∪ {ω}. The
investigations of the facial structure of A1 carried out in [6] show that when A
is a JBW∗-triple with predualA∗, then the sets Fn(A∗1) and En(A∗1) coincide,
and also Fw∗(A1) and Ew∗(A1) coincide. Let the sets ω′ and (ω′)′ be defined
by

(3.3) ω′ = A∗1, (ω′)′ = ∅.
This extends the mappingsG 
→ G′ andG 
→ (G′)′ to subsets of U(A)∼. The
next Lemma, which was obtained in [6], presents some profound connections
between Fn(A∗1), Fw∗(A1) and U(A)∼.

Lemma 3.2. Let A be a JBW∗-triple with predual A∗. Then, the following
results hold.

(i) The mapping u 
→ u′ is an order isomorphism from the partially ordered
set U(A)∼ of tripotents in A, with a largest element adjoined, onto the
complete lattice Fn(A∗,1) of all norm-closed faces of the closed unit ball
A∗,1 in A∗, and, hence, U(A)∼ is a complete lattice.

(ii) The mapping u 
→ (u′)′ is an anti-order-isomorphism from U(A)∼ onto
the complete lattice Fw∗(A1) of weak∗-closed faces of the closed unit
ball A1 in A and

(u′)′ = u+ (u⊥ ∩ A1).

The final result of this section connects the M-complement and the annihil-
ator of subsets of U(A). A proof can be found in [4] Corollary 4.3.

Lemma 3.3. Let A be a JB∗-triple and let H be a non-empty subset of the
set U(A) of tripotents in A. Then, the sets H� ∩ A1 and H⊥ ∩ A1 coincide.

4. Characterizations of tripotents

With the information presented so far, it is possible to establish the main results.

Theorem 4.1. Let A be a JB∗-triple and let a be an element in A of norm
one. Then, the following conditions are equivalent.

(1) a ∈ U(A),

(2) a� ∩ A1 = a⊥ ∩ A1,
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(3) a� ∩ A1 ⊆ a⊥ ∩ A1,

(4) a� ∩ A1 = ia� ∩ A1,

(5) Sa = a⊥ ∩ A1,

(6) Ra = a⊥.

Proof. If a is a tripotent of A, then (2) and (3) are immediate from Lemma
3.3. Notice that a⊥ is a complex subspace of A, that a⊥ = (ia)⊥, and that, by
Lemma 2.2(iii), the sets i(a� ∩A1) and (ia)� ∩A1 coincide. It follows from
(2) that

ia� ∩ A1 = a⊥ ∩ A1 = a� ∩ A1.

This proves (4). To show (5), combine (2) with the relations (2.6) to obtain

Sa ⊆ a� ∩ ia� ∩ A1 = a⊥ ∩ A1.

For the reverse inclusion, let b be any element of a⊥ ∩ A1. Since a⊥ is a
complex subspace of A, it follows from (2) that, for all s ∈ S1(C),

sb ∈ a⊥ ∩ A1 = a� ∩ A1.

Therefore,
‖a + sb‖ = max{‖a‖, ‖sb‖} = 1,

that is, b lies in Sa . This proves (5). The condition (6) is immediate from (5)
by taking the closed linear span.

Suppose, that a is not a tripotent. In order to disprove (2), (3) and (4), we
need to find an element b which lies in a� ∩A1 but not in a⊥ ∪ ia�. Similarly,
we show hat there exists an element c which lies in Sa but not in a⊥. By (2.6)
and (2.7) this will disprove (5) and (6). The sought after elements b and c can
be obtained from the spectral calculus, described in Lemma 3.1(iii). This is
made explicit in the remainder of the proof.

Denote by B the smallest norm-closed subtriple of A containing a. By
Lemma 3.1(ii), there exists a triple isomorphism ϕ from B onto the commut-
ative C∗-algebra C0(X) of continuous complex-valued functions on a locally
compact subset X of [0, 1] which vanish at zero. Observe that ϕ(a) is equal to
the function ι defined, for t in X, by

ι(t) = t.

A function f in C0(X) is a tripotent if and only if f (X) ⊆ S1(C) ∪ {0}. The
assumption that a is not a tripotent implies that there exists an element t0 in X
such that

0 < t0 < 1.
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Let g be the element of C0(X) defined, for t ∈ X by

g(t) =


i
√

1 − t2

(
1 − |t − t0|

1 − t0

)
, if |t − t0| ≤ 1 − t0

0, if |t − t0| > 1 − t0

.

Clearly, g has norm not greater than one in C0(X), i.e. g lies in C0(X)1.
Moreover, for all elements t in X,

|(ι+ g)(t)| ≤ 1, |(ι− g)(t)| ≤ 1,

and, for t = t0,
|(ι+ g)(t0)| = |(ι− g)(t0)| = 1.

Therefore, ι + g and ι − g have norm one in C0(X), and, setting b = ϕ−1(g)

entails

‖a + b‖ = ‖a − b‖ = ‖ϕ−1(ι+ g)‖ = sup
t∈X

|t + g(t)| = 1.

This shows that a and b are M-orthogonal. On the other hand,

‖a − ib‖ ≥ |(ι− ig)(t0)| = |t0 − ig(t0)| = t0 +
√

1 − t2
0 > 1.

Hence, a and ±ib are not M-orthogonal, and b is not contained in ia�. Fur-
thermore, since ϕ is a triple-isomorphism,

ϕ{b a a}(t0) = {ϕ(b), ϕ(a), ϕ(a)}(t0) = {g ι ι}(t0) = −it2
0

√
1 − t2

0 �= 0.

Therefore, a and b are not triple-orthogonal. We have shown that b has the
required properties.

Define the function h in C0(X) by

h(t) =


(1 − t)

(
1 − |t − t0|

1 − t0

)
, if |t − t0| ≤ 1 − t0

0, if |t − t0| > 1 − t0

.

Also h lies in C0(X)1, and for all z in C1 and all (positive) numbers t with
|t − t0| ≤ 1 − t0,

∣∣∣∣t + z(1 − t)

(
1 − |t − t0|

1 − t0

)∣∣∣∣ ≤ 1.
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The assumption that a has norm one implies that 1 ∈ X. It follows that, for all
z in C1 and t in X,

|(ι+ zh)(t)| ≤ |t + h(t)| ≤ 1,

|(ι+ zh)(1)| = 1.

These relations show that ι + zh has norm one in C0(X), that is h ∈ Sι. Set
c = ϕ−1(h). Then c lies in Sa . On the other hand

(ϕ{c a a})(t0) = (1 − t0)t
2
0 �= 0.

Therefore c is not contained in a⊥. This finishes the proof.

It is well known that two JB∗-triples are triple isomorphic if and only if they
are isometrically isomorphic as Banach spaces. We can use the above theorem
to show that surjective linear isometries are algebraic isomorphisms. The con-
verse can be proved using some arguments which are not directly connected
with the methods considered here, and is therefore omitted. For original proofs
the reader is referred to [14] Proposition 2.4 and [16] Proposition 5.5.

Corollary 4.2. Let A and B be JB∗-triples, and let ϕ : A → B be a
surjective linear isometry between A and B. Then ϕ is a triple isomorphism.

Proof. Let a be an arbitrary element of A. Using polarisation of the triple
product it can be seen that, for a, b, c ∈ A, there exist elements (ak)12

k=1 in A

and (αk)12
k=1 in C, such that

(4.1) {a b c} =
12∑
k=1

αka
3
k .

As next we show that ϕ(a3) = (ϕ(a))3, for all a ∈ A. The bi-adjoint ϕ∗∗ of ϕ is
a weak∗-continuous bijective isometry betweenA∗∗ andB∗∗. Morevoer, by [3],
A∗∗ and B∗∗ are JBW∗-triples, containing A and B as subtriples (even ideals)
via the canonical embeddings. Therefore, a can be regarded as an element of
A∗∗. By [9] there exists an orthogonal family {uj }j∈J of tripotents in A∗∗ and
complex numbers {αj }j∈K such that

(4.2) a =
∑
j∈J

αjuj , ‖a‖ = sup
j∈J

|αj |.

The sum in this expression is weak∗-convergent. Theorem 4.1(2) and Lemma
3.3 imply that {ϕ∗∗(uj )}j∈J is an orthogonal family in U(B∗∗). It follows that

ϕ∗∗(a3) = ϕ∗∗
(∑
j∈J

α3
j uj

)
=

∑
j∈J

α3
j ϕ

∗∗(uj ) = (ϕ∗∗(a))3.
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By Lemma 3.1 and Equation (4.1) ϕ is an injective triple homomorphism. This
completes the proof.

In the remainder of this section we will be investigating the order structure
of U(A). The following observation seems to have escaped notice so far.

Proposition 4.3. Let A be a JBW∗-triple and let u be a tripotent of A.
Then,

face(u) = (u′)′ = u+ (u⊥ ∩ A1) = u+ (u� ∩ A1).

In particular face(u) is a weak∗-closed subset of A1.

Proof. Combine Lemma 3.2, Lemma 3.3 and Proposition 2.1 to obtain

face(u) ⊆ u′
′ = u+ (u⊥ ∩ A1) = u+ (u� ∩ A1) ⊆ face(u).

Hence all of these sets coincide. Clearly (u′)′ is weak∗-closed. This gives the
proof.

Denote by FU(A1) the set of all faces of A1 of the form face(u), for some
element u in U(A). The above proposition and Lemma 3.2(ii) imply that

(4.3) Fw∗(A1) = FU(A1).

As shown in the next theorem, the statement of Proposition 4.3 can be im-
proved. It holds in JB∗-triples and for the norm-semi-exposed face (u′)′ gen-
erated by u. This makes it possible to describe the order structure of U(A) in
terms of the facial structure of A1 without referring to the predual A∗.

Theorem 4.4. Let A be a JB∗-triple with U(A) the set of its tripotents and
FU(A) the set of those faces of A1 which are generated by a tripotent. Then
the map u 
→ face(u) is an anti-order isomorphism between the partial orders
(U(A),≤) and (FU(A1),⊆). Moreover,

face(u) = (u′)′ = u+ (u⊥ ∩ A1) = u+ (u� ∩ A1).

In particular, every face of A1 generated by a tripotent is norm-closed.
When A is a JBW∗-triple, then (FU(A) ∪ ∅,⊆) is a complete lattice and

is anti-order isomorphic to the lattice (U(A)∼,≤).
Proof. When A is a JB∗-triple, let j : A → A∗∗ denote the canonical em-

bedding into its second dual A∗∗, a JBW∗-triple with predual A∗ [3]. Consider
a tripotent u in A. Then j (u) ∈ U(A∗∗). Observe that

(4.4) u ∈ u+ (u⊥ ∩ A1) = u+ (u� ∩ A1) ⊆ faceA1(u) ⊆ (u′)′.
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If b is an element of (u′)′ then by Proposition 4.3,

j (b) ∈ (j (u)′)′ ∩ j (A) = j (u)+ (j (u)� ∩ A∗∗
1 ) ∩ j (A).

Hence b lies in u+ (u� ∩A1) which is therefore a superset of (u′)′. It follows
that

(4.5) u+ (u⊥ ∩ A1) = u+ (u� ∩ A1) = faceA1(u) = (u′)′.

The mapping u 
→ faceA1(u) from U(A) to FU(A) is surjective by definition
of FU(A). To see that it is also injective, let u and v be a tripotents of A such
that faceA1(u) = faceA1(v). Then, by (4.4),

j (u) ∈ j (faceA1(v)) ⊆ j ((v′)′) ⊆ (j (v)′)′.

Hence, (j (u)′)′ ⊆ (j (v)′)′. In a similar way it is shown that (j (v)′)′ ⊆ (j (u)′)′.
Hence the equality (j (u)′)′ = (j (v)′)′ holds. By Lemma 3.2(ii), u equals v.

It remains to show that u 
→ faceA1(u) reverses the order structure. Suppose
that u, v ∈ U(A) are such that u ≤ v. Then there exists an element w in U(A)

with the properties w ⊥ u and v = u+ w. It follows that

v ∈ u+ (u⊥ ∩ A1) = u+ u� ∩ A1 ⊆ faceA1(u).

This implies that
faceA1(v) ⊆ faceA1(u),

as required.
In the case when A is a JBW∗-triple, it can be seen from Proposition 4.3

and the relations (4.5) that

faceA1(u) = (u′)′ = (u′)′.

By Lemma 3.2, u 
→ faceA1 is an anti-order isomorphims from the complete
lattice (U(A)∼,≤) to FU(A). This finishes the proof.

It is now also possible to characterize σ -finiteness of tripotents in such a
way that only the geometry of A1 is used.

Theorem 4.5. Let A be a JB∗-triple. A tripotent u of A is σ -finite if and
only if there are at most countably many elements (ak)k∈K in the unit sphere
S1(A) having the properties

(1) for all k ∈ K , a�
k ∩ A1 = ia�

k ∩ A1,

(2) for j �= k, ak � aj ,

(3) for all k ∈ K , face(u) ⊆ face(ak).
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Proof. By Theorem 4.1, the condition (1) holds if and only if {ak}k∈K ⊆
U(A). In this case, by Lemma 3.3, the relation aj � ak is equivalent to aj ⊥ ak .
The prove is completed using (3) and Theorem 4.4.

5. Applications to C∗-algebras

As it was shown in [13], any C∗-algebra A is a JB∗-triple when equipped with
the triple product given by (3.1).

The next lemma presents a well known fact. We include a proof for com-
pleteness.

Lemma 5.1. Let A be a C∗-algebra, equipped with the triple product (3.1).
Then, the set of tripotents of A coincides with that of the partial isometries.

Proof. Suppose that u is a tripotent, i.e. u = uu∗u, then

(uu∗)2 = (uu∗u)u∗ = uu∗.

Clearly, uu∗ is also self-adjoint. Hence u is a partial isometry. Conversely, for
each partial isometry u, the C∗-condition implies that

‖uu∗u− u‖2 = ‖(uu∗u− u)(uu∗u− u)∗‖
= ‖uu∗uu∗uu∗ − 2(uu∗)2 − uu∗‖ = 0.

Hence, u = uu∗u, as required.

It is now obvious that we can provide a metric description of the partial
isometries in A.

Theorem 5.2. A norm one element a of a C∗-algbera A is a partial iso-
metry if and only if a� ∩ A1 = ia� ∩ A1.

Proof. This is an immediate consequence of Theorem 4.1 and Lemma 5.1.

A metric description of partial isometries of A, different from that in The-
orem 5.2 was found in [1]. Comparing those results with ours, we can show that
the same description remains valid for tripotents of JB∗-triples. For a norm-one
element a of A, consider the sets X1(a) and X2(a), defined by

X1(a) = {b ∈ A : ∃r > 0 : ‖a + rb‖ = ‖a − rb‖ = 1},
X2(a) = {b ∈ A; ∀z ∈ C; ‖a + zb‖ = max{1, ‖zb‖}}. (5.1)

As shown in [1], a is a partial isometry if and only if

X1(a) = X2(a).
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It is worth noting that the conditions a� ∩A1 = ia� ∩A1 and X1(a) = X2(a)

are not equivalent in arbitrary complex normed vectorspaces. The question is
wether this equivalence holds in JB∗-triples. The affirmative answer, presented
in the next theorem, provides yet another metric characterization of tripotents.
An alternative proof and a generalization to real JB∗-triples can be found in
[8].

Theorem 5.3. Let A be a JB∗-triple, and let a be an element of norm one
in A. Let the sets X1(a) and X2(a) be defined as in (5.1). Then a is a tripotent
if and only if X1 and X2 coincide.

Proof. Suppose that a ∈ U(A). Observe that the inclusion X2 ⊆ X1

is immediate from the definition of these sets. Hence we need only to show
that X1 ⊆ X2. Consider an element b in X1, i.e. there exists r > 0 with
‖a ± rb‖ = 1. Then,

2‖rb‖ = ‖a + rb − (a − rb)‖ ≤ ‖a + rb‖ + ‖a − rb‖ = 2.

Hence rb lies in A1. Since 1 = max{‖a‖, ‖rb‖}, rb lies also in a�. From this
and Theorem 4.1(3), it follows that

rb ∈ a� ∩ A1 = a⊥ ∩ A1.

The relation (3.2) implies that, for all z ∈ C,

zb = z

r
rb ∈ C(a⊥ ∩ A1) = a⊥ ⊆ a�.

Therefore, b lies in X2(a), as required.
Suppose that X1(a) = X2(a), and consider an element b in a� ∩A1. From

Lemma 2.2(i) it can be seen that a� ∩A1 ⊆ X1. It follows that b lies in X2(a).
In particular

(5.2) ‖a ± ib‖ = max{1, ‖ib‖} ≤ 1.

This shows that ib and −ib are elements of a� ∩A1. Hence b lies in ia� ∩A1.
We conclude that a� ∩A1 ⊆ ia� ∩A1. The reverse inclusion is obtained from
similar arguments. By Theorem 4.1(4), a is a tripotent. The proof is complete.

Acknowledgements. Part of the main results presented in this article
were obtained in the authors Ph.D. thesis [15]. He wishes to acknowledge the
advise of the late G. T. Rüttimann, University of Berne, and of C. M. Edwards,
University of Oxford, as well as the support received by H. Carnal, University
of Berne.



160 remo v. hügli

REFERENCES

1. Akeman, C., Weaver, N., Geometric characterizations of some classes of operators in C∗-
algebras and von Neumann algebras, Proc. Amer. Math. Soc 130, Nr. 10 (2002), 3033–
3037.

2. Bonsall, F. F., Duncan, J., Numerical Ranges of Operators on Normed Spaces and of Elements
of Normed Algebras, Cambridge Univ. Press, Cambridge 1971.

3. Dineen, S., The second dual of a JB∗-triple, in Complex Analysis, Functional Analysis and
Approximation theory, J. Mujica (ed.), North Holland, Amsterdam (1986), 67–69.

4. Edwards, C. M., Hügli, R. V., M-orthogonality and holomorphic rigidity in complex Banach
spaces, Acta Sci. Math. (Szeged) 70 (2004), 237–264.

5. Edwards, C. M., Hügli, R. V., Order structure of GL-projections on complex Banach spaces,
Preprint (2004).

6. Edwards, C. M., Rüttimann, G. T., On the facial structure of the unit balls in a JBW∗-triple
and its predual, J. London Math. Soc. 38 (1988), 317–332.

7. Edwards, C. M., Rüttimann, G. T. Orthogonal faces of the unit ball in a Banach space, Atti
Sem. Mat. Fis. Univ. Modena 49 (2001), 473–493.

8. Fernández-Polo, F., Martíinez Moreno, J., Peralta, A. M., Geometric characterization of
tripotents in real and complex JB∗-triples, J. Math. AnalȦppl. 295, no. 2 (2004), 435–443.
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