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ON THE FRACTIONAL PARTS OF
LACUNARY SEQUENCES

ARTŪRAS DUBICKAS

Abstract

In this paper, we prove that if t0, t1, t2, . . . is a lacunary sequence, namely, tn+1/tn ≥ 1 + r−1

for each n ≥ 0, where r is a fixed positive number, then there are two positive constants c(r) =
max(1− r, 2(3r+6)−2) and ξ = ξ(t0, t1, . . .) such that the fractional parts {ξ tn}, n = 0, 1, 2, . . .,
all belong to a subinterval of [0, 1) of length 1 − c(r). Some applications of this theorem to the
chromatic numbers of certain graphs and to some fast growing sequences are discussed. We prove,
for instance, that the number

√
10 can be written as a quotient of two positive numbers whose

decimal expansions contain the digits 0, 1, 2, 3 and 4 only.

1. Introduction

Sequences of real numbers with ‘large gaps’ between their consecutive ele-
ments are usually called lacunary. In this paper, the sequence of positive real
numbers t0 < t1 < t2 < · · · is called lacunary if there is a real number a > 1
such that tn+1/tn ≥ a for every integer n ≥ 0. We begin with the following
theorem:

Theorem 1. Let ν be a fixed real number, and let r be a fixed positive
number. If t0 < t1 < t2 < · · · is a sequence of positive real numbers satisfying
tn+1 ≥ (1 + r−1)tn for n = 0, 1, 2, . . . then there is a positive number ξ such
that

{ξ tn + ν} ≤ min(r, 1 − 2(3r + 6)−2)

for each integer n ≥ 0.

Throughout, for a real number x, we denote by [x], {x} and ‖x‖ the integer
part of x, the fractional part of x and the distance from x to the nearest integer,
respectively. In particular, x = [x] + {x} and ‖x‖ = min

({x}, 1 − {x}) =
1/2 − |1/2 − {x}|.

The study of fractional and integer parts of lacunary sequences is an old
and interesting subject. The first metrical results for the sequences {ξan},
n = 0, 1, 2, . . ., where a > 1 were obtained by Weyl [25] and Koksma [17].
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Erdős [14] raised an interesting question in this direction which was answered
independently by Pollington [20] and de Mathan [9]. It was also noticed by
Erdős that there is a direct connection between the distribution of fractional
parts and the chromatic number of the Cayley graph. This problem was studied
by Katznelson [16] and by Ruzsa, Tuza, Voigt [22].

Let T = {t0 = 1, t1, t2, . . .} be a lacunary sequence satisfying tn+1/tn ≥
1 + r−1, and let G be an infinite graph, whose vertices are real numbers.
The vertices x and y are connected by an edge if and only if |x − y| ∈ T . The
chromatic number ofG, χ(G), is the smallest number of colors needed to color
R such that vertices connected by an edge have different colors. In [22] it was
proved that χ(G) ≥ r and an upper bound for χ(G) in terms of r was obtained.
Recently, Akhunzhanov and Moshchevitin [3] improved the upper bound to
χ(G) ≤ 27r2 for r ≥ 3. As shown in [22], the estimate χ(G) ≤ q follows
directly from the existence of ξ satisfying ‖ξ tn‖ ≥ q−1 for n = 0, 1, 2, . . ..
By Theorem 1, there is a positive number ξ such that ‖ξ tn‖ ≥ 1/9(r + 2)2;
this further improves the upper bound to

χ(G) ≤ 9(r + 2)2

for each r ≥ 1.
Another application of the theorem concerns the sequence tn = nλan, n =

0, 1, 2, . . ., where a > 1 is a real number. Setting r := 1/(a − 1) and ν :=
1 − s − max(1 − r, 2(3r + 6)−2) we obtain the following corollary:

Corollary 2. If a > 1 and λ ≥ 0 are two real numbers, I = (s, s +
max(1 − r, 2(3r + 6)−2)) is a subinterval of [0, 1), where r = 1/(a − 1),
then there is a positive number ξ such that the fractional parts {ξnλan}, n =
0, 1, 2, . . ., all lie outside I .

For a rational number a > 1, the fractional parts {ξan}, n ≥ 0, were studied
in [15], [19], [21], [24] and, more recently, in [5]–[8], [10]–[13]. The case of
arbitrary a > 1 was considered by Tijdeman [23] who showed that there is a
positive ξ for which the inequality {ξan} ≤ 1/(a − 1), n = 0, 1, 2, . . ., holds.
(Note that 1 − r = (a − 2)/(a − 1), so this result is a part of Corollary 2.)
Likewise, the next statement is a corollary of the theorem.

Corollary 3. If a > 1 is a real number and r = 1/(a − 1), then there is
a positive number ξ such that ‖ξan‖ ≥ max((1 − r)/2, (3r + 6)−2) for every
n = 0, 1, 2, . . ..

Some special cases of this corollary with sharper bounds (in particular, for
a = 3/2) have been treated in [21] and [12]. In [11] the best possible version
of such inequality was obtained for rational integers a, See also [8] for another
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best possible result for integer a > 1, where the answer is given in terms of
combinatorics on words [18].

The first inequality of Theorem 1, namely, {ξ tn + ν} ≤ r follows from the
next theorem.

Theorem 4. Let ν be a fixed real number, and let t0 < t1 < t2 < · · · be a
sequence of positive real numbers. Then there is a positive number ξ such that
{ξ tn + ν} ≤ tn

∑∞
j=n+1 t

−1
j for each integer n ≥ 0.

Indeed, in case tn+1/tn ≥ 1 + r−1, where n = 0, 1, 2, . . ., we get

tn

∞∑

j=n+1

t−1
j ≤

∞∑

j=1

(1 + r−1)−j = r,

so Theorem 4 implies the first inequality of Theorem 1.
Note that the only real solution of r = 1−2(3r+6)−2 is r0 = 0.9748 . . ., so

r < 1−2(3r+6)−2 for r < r0 and r ≥ 1−2(3r+6)−2 for r ≥ r0 > 0.97. As
shown above, for r < r0 < 1, the inequality {ξ tn+ν} ≤ r of Theorem 1 follows
from Theorem 4 whose proof will be given in Section 3. In order to complete
the proof of Theorem 1 we will prove in Section 4 that, for r ≥ r0 > 0.97,
there is a ξ > 0 such that {ξ tn + ν} ≤ 1 − 2(3r + 6)−2 for n = 0, 1, 2, . . ..
(In the proof of this part, we use the same method of nested intervals as that
of Akhunzhanov and Moshchevitin [3] which goes back to [9], [16], [20]; see
also [4].)

In the next section, we consider some applications and improvements of
the corollaries for the number a = √

10. Finally, in Section 6 we will apply
Theorem 4 to tn = n!.

2. Decimal expansions of numbers related to
√

10

The expansions of algebraic numbers in integer bases (in particular, decimal
expansions) is another old subject of interest which is related to the distribution
of fractional parts of powers. See, for instance, [1], [2] for a recent progress
on complexity of such expansions.

It is well-known that each real number ζ can be written in the form g +
0.g1g2g3 . . . = g + ∑∞

j=1 gj/10j , where g = [ζ ] ∈ Z and g1, g2, g3, . . . ∈
{0, 1, . . . , 9}. (If we ban an infinite string of 9, then such a decimal expansion
of ζ is unique.) We say that the decimal expansion g + 0.g1g2g3 . . . ∈ R has
digits in the set D if {g1, g2, g3, . . .} ⊆ D.

Let u be a fixed integer in the set {0, 1, . . . , 9} and let Du be the set of
five consecutive integers u, . . . , u+ 3, u+ 4 modulo 10. For instance, D0 =
{0, 1, 2, 3, 4} and D8 = {0, 1, 2, 8, 9}.
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Theorem 5. Let u be a fixed integer satisfying 0 ≤ u ≤ 9. The number
√

10
can be written as a quotient of two positive numbers whose decimal expansions
have digits in Du.

Note that Corollary 2 implies that there is a positive number ξ such that
{ξ10n/2} ≤ (

√
10 + 1)/9 = 0.462475 . . .. The next corollary improves this

bound to 4/9 = 0.444444 . . ..

Corollary 6. Let u be a fixed integer satisfying 0 ≤ u ≤ 5. Then there is
a positive number ξ such that u/9 ≤ {ξ10n/2} ≤ (u + 4)/9 for each integer
n ≥ 0.

As for the distance the nearest integer, Corollary 3 implies that there is a
positive ξ such that ‖ξ10n/2‖ ≥ (

√
10 − 2)/2(

√
10 − 1) = 0.268762 . . .. We

improve this constant to 3/11 = 0.272727 . . ..

Corollary 7. There is a positive integer ξ such that ‖ξ10n/2‖ ≥ 3/11 for
each integer n ≥ 0. Moreover, with the same ξ we have ‖ξ10n/2‖ ≥ 1/3 for
each integer n ≥ 0, unless there exists an integer h ≥ 0 such that the decimal
expansion of the number (h+ 3/11)

√
10 contains no digits 0, 1, 8, 9.

Apparently, there is noh ∈ N for which the decimal expansion of the number
(h+3/11)

√
10 does not contain the digits 0, 1, 8, 9. This would follow from a

natural (but out of reach) conjecture which claims that every irrational algebraic
number is normal in every integer base. If so, then the decimal expansion of
an algebraic irrational number (in particular, (h + 3/11)

√
10) has infinitely

many digits equal to 0.
Naturally, Theorem 5 and Corollaries 6 and 7 can be stated for the number√
b in base b, where b ≥ 5 is an integer (see Section 5). However, we will

conclude with one more statement in base 10, where the cubic root of 10 is
considered instead of the square root.

Theorem 8. Let u be a fixed number in {0, 1, . . . , 9}. There is positive
number ξ such that the digit u does not appear in the decimal expansions of
the numbers ξ, ξ101/3 and ξ102/3.

All results stated in this section will be proved in Section 5.

3. Proof of Theorem 4

Let k0 > ν be an integer. Set Tn := tn
∑∞
j=n+1 t

−1
j for n = 0, 1, 2, . . . and

I0 = [(k0 − ν)/t0, (k0 − ν + T0)/t0]. It is clear that {ζ t0 + ν} ≤ T0 for each
ζ ∈ I0. Suppose we have n closed intervals In−1 ⊆ In−2 ⊆ · · · ⊆ I0, where
Ij = [(kj − ν)/tj , (kj − ν + Tj )/tj ], kj ∈ Z, such that for each ζ ∈ In−1 the
inequality {ζ tj + ν} ≤ Tj holds for every j = 0, 1, . . . , n− 1. We claim that
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there is an interval In = [(kn − ν)/tn, (kn − ν + Tn)/tn] ⊆ In−1 with kn ∈ Z,
such that {ζ tn + ν} ≤ Tn for each ζ ∈ In.

Note that {ζ tn + ν} ≤ Tn if and only if there is an integer kn such that
kn ≤ ζ tn + ν ≤ kn + Tn, that is, ζ ∈ [(kn − ν)/tn, (kn − ν + Tn)/tn] =
In. Clearly, In ⊆ In−1 if and only if (kn − ν)/tn ≥ (kn−1 − ν)/tn−1 and
(kn−ν+Tn)/tn ≤ (kn−1−ν+Tn−1)/tn−1. Setting sn := (kn−1−ν)tn/tn−1+ν,
we see that these inequalities hold if

sn ≤ kn ≤ (kn−1 − ν + Tn−1)tn/tn−1 + ν − Tn = sn + 1.

Here, we used the equality tnTn−1/tn−1 − Tn = 1. The interval [sn, sn + 1] is
of length 1, so it indeed contains an integer kn, as claimed.

This proves that, for every ζ ∈ In, we have {ζ tj + ν} ≤ Tj for each
j = 0, 1, . . . , n. The number ξ = ∩∞

n=0In satisfies the required condition:
{ξ tn + ν} ≤ Tn for n = 0, 1, 2, . . .. Clearly, ξ is positive, because so is the left
endpoint of I0.

4. Proof of Theorem 1

In the sequel, let

g := [(7/2)(r + 1) log(r + 2)] + 1,

w := (2/9)(r + 2)−2,

δ := √
w(w + 1)r(r + 1) =

√
2r(r + 1)(1 + (2/9)(r + 2)−2)

3(r + 2)
.

Note that w < 0.03 and δ <
√

2/3 < 1/2 for r ≥ 0.97.
We will construct the sequence of closed nested intervals I0, I1, I2, . . .,

where |Im| = δ/rtgm (|I | stands for the length of I ), Im+1 ⊂ Im for eachm ≥ 0,
and {ζ tn + ν} ≤ 1 − w for every ζ ∈ Im and n = −1, 0, 1, . . . , gm− 1. (For
convenience, an additional term t−1 := t0/(1+ r−1) is added to the sequence.)
The proof is by induction on m.

We begin withm = 0. Note that δ/r < 1/2r < 0.52 < 1−w for r ≥ 0.97.
Hence we can take any subinterval of length δ/rt0 < δ/rt−1 of the interval
[(k−1 − ν)/t−1, (k−1 − ν+ 1 −w)/t−1] of length (1 −w)/t−1, where k−1 > ν

is an arbitrary integer.
For the induction step m → m+ 1, let us suppose that there exist intervals

Im ⊂ Im−1 ⊂ . . . ⊂ I0 such that {ζ tn + ν} ≤ 1 − w for every ζ ∈ Im
and n = −1, 0, 1, . . . , gm − 1. It remains to show that there is an interval
Im+1 ⊂ Im of length δ/rtg(m+1) such that {ζ tn + ν} ≤ 1 − w for each ζ ∈
Im+1 and n = gm, gm + 1, . . . , g(m + 1) − 1. Write Im = [v, v′]. For each
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n ∈ {gm, gm + 1, . . . , g(m + 1) − 1}, let Sn be the set of points of the form
(k − ν −w)/tn, where k ∈ Z, in the interval [v −w/tn, v′]. There are at most
1 + w + tn|Im| such points; at most 1 + tn|Im| of them belong to the interval
Im.

Let Jn be the union of all intervals (s, s + w/tn), where s ∈ Sn. For each
point ζ of Im which is outside the union of intervals ∪g(m+1)−1

n=gm Jn we clearly
have {ζ tn+ ν} ≤ 1 −w. So it remains to show that Im−∪g(m+1)−1

n=gm Jn contains
a closed interval of length δ/rtg(m+1). The sum of lengths of all intervals in
∪g(m+1)−1
n=gm Jn does not exceed

g(m+1)−1∑

n=gm
(1 + w + tn|Im|)w/tn = gw|Im| + w(1 + w)

g(m+1)−1∑

n=gm
t−1
n

< gw|Im| + w(1 + w)

tgm

∞∑

j=0

(1 + r−1)−j

= gw|Im| + w(1 + w)(r + 1)/tgm

= (gw + w(1 + w)r(1 + r)/δ)|Im|
= (gw + δ)|Im|.

The length of the remaining part in Im (which is a union of closed intervals,
possibly degenerate intervals [v, v] of length zero) is greater than

|Im| − (gw + δ)|Im| = (1 − gw − δ)|Im| = (1 − gw − δ)δ/rtgm.

The number of intervals in ∪g(m+1)−1
n=gm Jn that have non-empty intersection

with Im can be bounded above by

g(m+1)−1∑

n=gm
(1 + tn|Im|) = g + |Im|

g(m+1)−1∑

n=gm
tn

< g + |Im|tg(m+1)

∞∑

j=1

(1 + r−1)−j

= g + rtg(m+1)|Im|.

Hence the set Im − ∪g(m+1)−1
n=gm Jn is an interval from which at most g +

rtg(m+1)|Im| open intervals are removed. Thus it consists of at most 1 + g +
rtg(m+1)|Im| = 1 + g + δtg(m+1)/tgm closed intervals.

We claim that at least one of them is of length ≥ δ/rtg(m+1). Clearly, this is
the case if ((1 − gw− δ)δ/rtgm)/(1 + g+ δtg(m+1)/tgm) ≥ δ/rtg(m+1), that is,



142 artūras dubickas

tg(m+1)(1 − gw − 2δ) ≥ tgm(1 + g). Using tg(m+1)/tgm ≥ (1 + r−1)g we see
that the required inequality holds if

gw + 2δ + (g + 1)(1 + r−1)−g < 1.

Estimating (1+r−1)g ≥ (1+r−1)(7/2)(r+1) log(r+2) > e(7/2) log(r+2) = (r+2)7/2

and g + 1 ≤ (7/2)(r + 1) log(r + 2) + 2, we obtain (g + 1)(1 + r−1)−g <
((7/2)(r+1) log(r+2)+2)(r+2)−7/2. Next, using g ≤ (7/2)(r+1) log(r+
2)+1 and expressingw, δ in terms of r , we deduce that the required inequality
holds if

7(r + 1) log(r + 2)+ 2

9(r + 2)2
+ 7(r + 1) log(r + 2)+ 4

2(r + 2)7/2

+ 2
√
(2 + (4/9)(r + 2)−2)(r2 + r)

3(r + 2)
< 1.

By an easy computation we see that this inequality holds for every r ≥ 0.97;
in fact, the maximum of the left hand side in the interval [0.97,∞) occurs at
approximately r = 12.2 . . . and is equal to 0.9907 . . ..

5. Fractional parts of powers of
√

10

Proof of Theorem 5. Fix u in {0, 1, . . . , 9} and set tn = 10n/2, ν = −u/10
in Theorem 1. Note that 0.4625 > 1/(

√
10 − 1). It follows from Theorem 1

that there is a positive ξ such that {ξ10n/2 − u/10} < 0.4625 for each integer
n ≥ 0. Hence {ξ10k − u/10} < 1/2 and {(ξ√10)10k − u/10} < 1/2 for each
integer k ≥ 0. Thus the only digits that can appear in the decimal expansions
of ξ and ξ

√
10 are u and u+ 1, . . . , u+ 4 modulo 10, that is, those belonging

to Du. This proves Theorem 5.

Proof of Corollary 6. Fixu in {0, 1, 2, 3, 4, 5}. By Theorem 5, there is a
positive number ξ such that both ξ and ξ

√
10 have the digits u, u+1, . . . , u+4

in their decimal expansions only. Thus the smallest possible value for {ξ10k}
and {(ξ√10)10k}, k ≥ 0, is 0.uuu . . . = u/9 and the largest value is (u +
4)/9 (The largest value (u + 4)/9 = 1 is not attained for u = 5, because
a decimal expansion cannot end by an infinite string of 9.) It follows that
u/9 ≤ {ξ10n/2} ≤ (u+ 4)/9 for each integer n ≥ 0.

By considering the integer base b ≥ 5, we will combine a part of Theorem 5
and a part of Corollary 6 into the following statement:

Theorem 9. Let b ≥ 5 be an integer which is not a square, and let u ≤
b− [b/(

√
b−1)]−1 be a fixed non-negative integer. Then the number

√
b can

be written as a quotient of two positive numbers whose expansions in base b
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have digits in {u, u+ 1, . . . , u+ [b/(
√
b− 1)]} only. Furthermore, there is a

positive number ξ such that {ξbn/2} ≤ [b/(
√
b− 1)]/(b− 1) for each integer

n ≥ 0.

The last inequality improves the upper bound {ξbn/2} ≤ (1 + √
b)/(b− 1)

which comes from Corollary 2 in case [b/(
√
b−1)] < 1+√

b. (This inequality
can be false; b = 10 is the smallest integer which for which this inequality
holds.) The proofs of both statements of Theorem 9 are exactly the same as
those of Theorem 5 and Corollary 6. By Theorem 1, observing that there is
a positive number ξ such that {ξbn/2 − u/(b − 1)} ≤ 1/(

√
b − 1) for each

integer n ≥ 0, one can derive easily that the b-adic expansions of ξ and ξ
√
b

cannot have digits other than u, u+ 1, . . . , u+ [b/(
√
b− 1)]. The details are

left to the reader.

Proof of Corollary 7. By Theorem 1 again, there is a positive number ξ
such that 0.2687 < {ξ10n/2} < 0.7313 for each integer n ≥ 0. Thus 0.2687 <
{ξ10k} < 0.7313 and 0.2687 < {(ξ√10)10k} < 0.7313 for each integer
k ≥ 0. It follows that the numbers ξ and ξ

√
10 have only digits 2, 3, 4, 5, 6, 7

in their decimal expansions. Furthermore, each digit 2 in such an expansion
should be followed by the digit 7. Indeed the next digit cannot be smaller than
6; but if it is 6, then the next digit must be either 8 or 9, a contradiction. So
each 2 must be followed by 7. Similarly, upper bounds show that each digit 7
must be followed by 2.

We thus arrive to the following two alternatives. Either the numbers ξ and
ξ
√

10 have only digits 3, 4, 5, 6 in their decimal expansions or those digits are
2, 3, 4, 5, 6, 7 and at least one of the numbers ξ, ξ

√
10 is equal to

g+0.g1 . . . gm272727 . . . = g+ g1

10
+· · ·+ gm

10m
+ 3

11 · 10m
= (h+3/11)10−m,

where h and m are non-negative integers. In the first case, there is a positive
integer ξ such that 0.3333 . . . = 1/3 ≤ {ξ10n/2} ≤ 2/3 = 0.6666 . . ., so that
‖ξ10n/2‖ ≥ 1/3 for each integer n ≥ 0.

In the second case, suppose, for instance, that ξ
√

10 = (h + 3/11)10−m.
(The case when ξ = (h + 3/11)10−m can be treated similarly.) Then ξ is
irrational, so its decimal expansion does not contain the digits 2 and 7, because
otherwise ξ should be of the form (h′ + 3/11)10−m′

too. Hence, on replacing
ξ by ξ ′ = ξ10m, we obtain that {ξ ′10k} ∈ [1/3, 2/3] for each integer k ≥ 0
and that {(ξ ′√10)10k} takes only two values, namely, 0.2727 . . . = 3/11 and
0.7272 . . . = 8/11 for each integer k ≥ 0. Hence

‖ξ ′10n/2‖ ∈ {3/11} ∪ [1/3, 1/2]

for each integer n ≥ 0.
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It follows that in both cases there is a positive ξ for which ‖ξ10n/2‖ ∈
{3/11} ∪ [1/3, 1/2], n = 0, 1, 2, . . ., which yields the inequality ‖ξ10n/2‖ ≥
3/11, as claimed. Note that, with this ξ , using ξ

√
10 = (h + 3/11)10−m we

can write (h+3/11)
√

10 = ξ10m+1. From the fact that the decimal expansion
of ξ contains the digits 2, 3, 4, 5, 6, 7 only, we conclude that there is an integer
h ≥ 0 such that the decimal expansion of (h + 3/11)

√
10 contains no digits

0, 1, 8, 9. If such h as claimed in Corollary 7 does not exist, then the second
alternative cannot occur and so the stronger inequality ‖ξ10n/2‖ ≥ 1/3 holds
for each integer n ≥ 0.

Proof of Theorem 8. Fix u in {0, 1, . . . , 9} and set tn = 10n/3, ν =
−(u + 1)/10 in Theorem 1. Note that 0.9 > 1/(101/3 − 1). It follows from
Theorem 1 that there is a positive ξ such that {ξ10n/3 − (u + 1)/10} < 0.9
for each integer n ≥ 0. The number ξ satisfies the conditions of the theorem.
Indeed, since {ξ10k − (u+ 1)/10} < 0.9, {(ξ101/3)10k − (u+ 1)/10} < 0.9
and {(ξ102/3)10k − (u + 1)/10} < 0.9 for each integer k ≥ 0, the digit u
cannot appear in the decimal expansions of ξ , ξ101/3 and ξ102/3.

6. Fast growing sequences

Let us apply Theorem 4 to tn = r1r2 . . . rn, where 1 ≤ r0 ≤ r1 ≤ r2 ≤ . . . is
an arbitrary sequence of positive real numbers satisfying rn → ∞ as n → ∞.
Since

Tn = tn

∞∑

j=n+1

t−1
j =

∞∑

j=1

(rn+1rn+2 . . . rn+j )−1 <

∞∑

j=1

r
−j
n+1 = 1/(rn+1 − 1),

Theorem 4 implies that there is a ξ > 0 such that

{ξr0r1 . . . rn + ν} < 1/(rn+1 − 1)

for n = 0, 1, 2, . . .. In particular, for any η ∈ [0, 1], there is a ξ > 0 such that

lim
n→∞{ξr0r1 . . . rn} = η.

Likewise, on applying the above result to rn = n, we derive that there is a
ξ > 0 such that {ξn! + ν} < 1/n for n = 1, 2, . . .. Next, putting ν = 1/2, we
derive that there is a ξ > 0 such that

{ξn!} ∈ (1/2, 1/2 + 1/n)

for each n = 2, 3, . . .. (Plainly, such ξ should be irrational.) In particular, this
implies that ‖ξn!‖ > 1/2 − 1/n for each n = 2, 3, . . ..
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On the other hand, we claim that, for any real ξ , the inequality

‖ξn!‖ < 1/2 − 1/2(n+ 2)

holds for infinitely many n ∈ N.
Indeed, writing, for each n ∈ N, ξn! = xn + 1/2 + zn, where xn ∈ Z and

zn ∈ [−1/2, 1/2), we have

(n+ 1)(xn + 1/2 + zn) = xn+1 + 1/2 + zn+1.

Hence
(n+ 1)xn + n/2 − xn+1 = zn+1 − (n+ 1)zn.

It follows that |zn+1−(n+1)zn| ≥ 1/2 for each oddn. If both |zn| ≤ 1/2(n+2)
and |zn+1| ≤ 1/2(n+ 3) hold, then

1/2 ≤ |zn+1| + (n+ 1)|zn| ≤ 1/2(n+ 3)+ (n+ 1)/2(n+ 2)

= (n2 + 5n+ 5)/2(n2 + 5n+ 6) < 1/2,

a contradiction. So either |zn| > 1/2(n + 2) or |zn+1| > 1/2(n + 3). Con-
sequently, for anyM ∈ N, the inequality ‖ξn!‖ = 1/2−|zn| < 1/2−1/2(n+
2) holds for at least M positive integers n of the set {1, 2, . . . , 2M}.
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146 artūras dubickas

10. Dubickas, A., Arithmetical properties of powers of algebraic numbers, Bull. London Math.
Soc. 38 (2006), 70–80.

11. Dubickas, A., On the distance from a rational power to the nearest integer, J. Number Theory
117 (2006), 222–239.

12. Dubickas, A., On the powers of 3/2 and other rational numbers, Math. Nachr. (to appear).
13. Dubickas, A., Novikas, A., Integer parts of powers of rational numbers, Math. Z. 251 (2005),

635–648.
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