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THE REGULARITY OF THE SPACE OF GERMS OF
FRÉCHET VALUED HOLOMORPHIC FUNCTIONS

AND THE MIXED HARTOG’S THEOREM

THAI THUAN QUANG

Abstract

It is shown that H(K,F) is regular for every reflexive Fréchet space F with the property (LB∞)
whereK is a compact set of uniqueness in a Fréchet-Schwartz space E such that E ∈ (�). Using
this result we give necessary and sufficient conditions for a Fréchet space F , under which every
separately holomorphic function on K × F ∗ is holomorphic, where K is as above.

1. Introduction

The well known Hartogs theorem on the holomorphy of separately holo-
morphic functions in Cn was extended to the infinite dimensional case by
several authors. In particular, this theorem is true for the classes of Fréchet
spaces and of dual Fréchet-Schwartz spaces. However, the problem is more
complicated in the mixed case. In the present paper we shall investigate the
holomorphy of separately holomorphic functions in connection with their local
Dirichlet representations and with the properties (�,LB∞).

One of the keys, which is used to prove the above result is presented in
the first part of this paper. In this section we consider regularity of the space
H(K,F), whereK is a compact set of uniqueness in a Fréchet space with the
property (�) and F is a reflexive Fréchet space having the property (LB∞)
(Theorem 3.1).

The remaining part will deal with the holomorphy and the local Dirichlet
representation of separately holomorphic functions on K × F ∗, where K is a
compact set of uniqueness in a Fréchet-Schwartz space with the property (�)
and F is a nuclear Fréchet space with the property (LB∞) (Theorem 4.4). To
prove this theorem we use the result in the above section.
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2. Preliminaries

2.1. General notations

We shall use standard notations of the theory of locally convex spaces as
presented in the book of Schaefer [11]. A locally convex space always is a
complex vector space with a locally convex Hausdorff topology.

For a Fréchet space E we always assume that its locally convex structure is
generated by an increasing system {‖.‖k} of semi-norms. Then we denote byEk
the completion of the canonically normed spaceE/Ker ‖.‖k andωk : E → Ek
denotes the canonical map and Uk denotes the set {x ∈ E : ‖x‖k < 1}.

If B is an absolutely convex subset of E we define a norm ‖.‖∗
B on E∗, the

strong dual space of E, with values in [0,+∞] by

‖u‖∗
B = sup{|u(x)|, x ∈ B}.

Obviously ‖.‖∗
B is the gauge functional of B0. Instead of ‖.‖∗

Uk
we write ‖.‖∗

k .
For locally convex spaces E and F we denote by L(E, F ) the space of

all continuous linear mappings, while LB(E, F ) denotes the set of all A ∈
L(E, F ) for which there exists a zero neighbourhood U in E such that A(U)
is bounded.

2.2. The space of Köthe sequences

If A = (aj,k)(j,k)∈N2 is a Köthe matrix satisfying the condition in Pietsch [10]
then we denote by λ(A) the sequence space

λ(A) =
{
x ∈ CN : ‖x‖k =

∞∑
j=1

|xj |aj,k < ∞ for all k ∈ N
}
.

Obviously λ(A) is a Fréchet space under the natural locally convex topology
induced by the semi-norm system {‖.‖k}.

Let α = (αn)n∈N be an increasing unbounded sequence of positive real
numbers such that lim

n→∞αn = +∞ and let 0 < rk ↑ R where 0 < R ≤ +∞.

By putting aj,k = r
αj
k , we define the power series space

�R(α) = λ(A) =
{
x ∈ CN : ‖x‖k =

∞∑
j=1

|xj |rαjk < ∞ for all k ∈ N
}
.

�R(α) is called a power series space. In the case R = 1 (resp. R = +∞)
�R(α) is called the power series space of finite (resp. infinite) type.
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2.3. Some linear topological invariants

LetE be a Fréchet space with a fundamental system of semi-norms {‖.‖k}k∈N.
We say that E has the properties

(�): if ∀ p ∃ q ∀ k ∃ d > 0, C > 0 such that ‖.‖∗1+d
q ≤ C‖.‖∗

k‖.‖∗d
p

(DN): if ∃ p ∃ d > 0 ∀ q ∃ k, C > 0 such that ‖.‖1+d
q ≤ C‖.‖k‖.‖dp

and (LB∞) if

∀!N ↑ ∞, ∃p ∀q ∃k(q) ≥ q, C(q) > 0,∀x ∈ E ∃m with q ≤ m ≤ k(q)

such that
‖x‖1+!m

q ≤ C(q)‖x‖m‖x‖!mp .
In [13] Vogt has proved that E ∈ (LB∞) if and only if

L(�∞(α), E) = LB(�∞(α), E)

for some exponent sequence α = (αn)n∈N.
Note that the following relation holds

(LB∞) ⇒ (DN).

The above properties have been introduced and investigated by Vogt [13],
[14], [15]. Hereafter, to be brief, wheneverE has the property (�) (resp. (DN),
(LB∞)) we write E ∈ (�) (resp. E ∈ (DN), E ∈ (LB∞)).

2.4. The space of germs of holomorphic functions on a compact set

Let E and F be locally convex spaces and let D ⊂ E be open, D �= ∅. By
H(D,F) we denote the vector space of all holomorphic functions on D with
values in F . H(D,F) equipped with the compact-open topology.

A seminorm ! on H(D,F) is said to be τω-continuous if there exists a
compact set K in D and a continuous seminorm α on F such that, for every
neighbourhood V of K in D, there exists C(V ) > 0 such that

!(f ) ≤ C(V ) sup
z∈V

α(f (z)), ∀ f ∈ H(D,F).

For each compact setK in E we associateH(K,F), the space of germs of
F -valued holomorphic functions on K , equipped with the inductive topology

H(K,F) := lim ind
K⊂U (H(U, F ); τω),
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where U is taken over all neighbourhoods of K . It is known [9] that

H(K) ∼= lim ind
K⊂U H∞(U),

where H∞(U) is the Banach space of all holomorphic functions which are
bounded on U .

For details concerning holomorphic maps on locally convex spaces we refer
to the book of Dineen [3].

2.5. Separately holomorphic functions on a compact set

Let K be a compact set in a locally convex space E and V an open set in a
locally convex space F . For a function f : K × V → C we put

fx(z) = f (x, z) for z ∈ V,
f z(x) = f (x, z) for x ∈ K.

The function f is called separately holomorphic if fx : V → C and f z : K →
C are holomorphic for all x ∈ K and z ∈ V , respectively. Here a function
on K is said to be holomorphic if it can be extended holomorphically to a
neighbourhood of K in E.

3. The regularity of the space of germs of F -valued holomorphic
functions

We first recall that the space H(K,F) of germs of F -valued holomorphic
functions on a compact set K is regular if every bounded subset in

H(K,F) := lim ind
K⊂U (H(U, F ); τω),

is contained and bounded in some [H(U,F ); τω].
The problem of the regularity of the spaceH(K)was investigated by several

authors. Chae [1] proved that H(K) is regular for every compact subset K
of a Banach space E. When E is a metrizable locally convex space, H(K)
is represented as an inductive limit of a sequence of (DF)-spaces. Using a
theorem of Grothendieck on bounded subsets in an inductive limit of a sequence
of (DF)-spaces, Mujica [9] generalized the result of Chae. In [16] Vogt gave a
general characterization for the regularity of the inductive limit of a sequence
of Fréchet spaces.

In this section we prove the following.

Theorem 3.1. Let F be a reflexive Fréchet space with F ∈ (LB∞) and
E a Fréchet-Schwartz space with E ∈ (�). Then H(K,F) is regular for all
compact sets of uniqueness K in E.
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Here, we recall that a compact set K in a Fréchet space is called a set of
uniqueness if for all f ∈ H(K) and f |K = 0 then f = 0 on a neighbourhood
of K in E.

For proving this theorem we need the following

Proposition 3.2 ([6]). Let E be a Fréchet-Schwartz space. Then E ∈ (�)
if and only if [H(K)]∗ ∈ (�) for all compact sets K in E.

Lemma 3.3. Let F be a Fréchet space with the property (LB∞) and B a
Banach space. Then the space L(B, F ) of all continuous linear maps from B

into F has the property (LB∞).

Proof. Given a sequence of positive numbers {!N }, choose k ≥ 1 such
that the property (LB∞) satisfied. Then for all f ∈ L(B, F ) we have

‖f ‖1+!m
q = sup{‖f (x)‖1+!m

q : ‖x‖ ≤ 1}
≤ C max

q≤m≤k(q)
sup{‖f (x)‖m‖f (x)‖!mp : ‖x‖ ≤ 1}

= C max
q≤m≤k(q)

‖f ‖m‖f ‖!mp .

Thus L(B, F ) ∈ (LB∞).

Lemma 3.4. Let F be a Fréchet space with F ∈ (LB∞) and K a compact
set in a Fréchet-Schwartz space E with E ∈ (�). Then

L([H(K,B)]∗, F ) = LB([H(K,B)]∗, F )

for every Banach space B.

Proof. Let a continuous linear map T : [H(K,B)]∗ → F be given.
Because [H(K,B)]∗ ∼= [H(K)]∗⊗̂πB

∗, T induces a continuous linear map

T̂ : [H(K)]∗ → L(B∗, F ).

From [14] and Proposition 3.2 there exists an index set I such that [H(K)]∗
is isomorphic to a quotient space of

�∞(α, ,1(I )) =
{
(xn) ⊂ ,1(I ) :

∞∑
n=1

‖xn‖nk < +∞,∀k ≥ 1

}
where α = (log(n+ 1))n≥1.

From supn≥1
log(n+1)

log n < ∞ and Lemma 3.3, repeating the proof of
Theorem 3.2 of Vogt [13] we deduce that every continuous linear map from
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�∞(α, ,1(I )) and, hence, from [H(K)]∗ to L(B∗, F ) is bounded on a neigh-
bourhood of 0 ∈ [H(K)]∗. Thus T̂ is bounded on a zero neighbourhood U in
[H(K)]∗. This yields that T is bounded on conv(U⊗V ), a zero neighbourhood
in [H(K)]∗⊗̂πB

∗, where V is the unit ball in B∗.

We mention the following without proof.

Lemma 3.5 ([5]). Let f be a bounded function from an open set D in a
locally convex space E into the Banach space ,∞(I ) and let the coordinate
functions fα be holomorphic. Then f is holomorphic.

Now we can prove Theorem 3.1.

Proof of Theorem 3.1. Given a bounded family {fα}α∈I in H(K,F),
consider the linear map

h : F ∗
bor → H(K, ,∞(I ))

defined by
h(u) = (u ◦ fα)α∈I

where F ∗
bor is the bornological space associated to F ∗. Lemma 3.5 and the

uniqueness of K imply that h(u) is correctly defined.
1) We first check that h is bounded.
Indeed, let B be a bounded set in F ∗. Take k ≥ 1 such that B is contained

and bounded in F ∗
k , where Fk is the Banach space associated to ‖.‖k . Let

ωk : F → Fk be the canonical map. By the regularity of H(K,Fk) [12] and
the boundedness of {ωkfα}α∈I , we can find a neighbourhood V ofK inE such
that {ωkfα}α∈I is contained and bounded in H∞(V , Fk), the Banach space of
Fk-valued bounded holomorphic functions on V . Hence h(B) is contained and
bounded in H∞(V , ,∞(I )). Therefore h is continuous.

2) By Lemma 3.4, the map h∗ : [H(K, ,∞(I ))]∗ → [F ∗
bor]

∗ ∼= F is of type
(LB). It follows that h∗∗, and hence, h is also of type (LB). Thus, we can find
a neighbourhood W of zero in F ∗

bor for which there exists, for every u ∈ F ∗, a
function ĥ(u) in H∞(V , ,∞(I )) such that

i) ĥ(u) = h(u) on a neighbourhood of K in V ,
ii) {̂h(u)}u∈W is bounded in H∞(V , ,∞(I )).
Now, for eachα ∈ I , we define a holomorphic functiongα : V → [F ∗

bor]
∗ ∼=

F by
gα(z)(u) = u ◦ fα(z) for z ∈ V, u ∈ F ∗

bor.

By (ii), {gα}α∈I is bounded in H∞(V , F ). Thus, {fα}α∈I is contained and
bounded in [H∞(V , F ); τω].

The theorem is completely proved.
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4. Representation of separately holomorphic functions

First we introduce the notion of local Dirichlet representations. Let E be a
locally convex space and D an open subset in E. A function f : D → C is
said to have a local Dirichlet representation on D if for every x0 ∈ D there
exist a neighbourhood U of x0 and sequences (ξk) ⊂ C, (uk) ⊂ E∗, such that

f (x) =
∑
k≥1

ξk exp uk(x) for x ∈ U

and ∑
k≥1

|ξk| exp ‖uk‖∗
K < ∞ for every compact set K ⊂ U.

The global Dirichlet representation of entire functions was investigated in
[2].

We begin this section by presenting auxiliary lemmas, which are useful for
proving Theorem 4.4, the main result of the paper.

Lemma 4.1. LetE be a Fréchet-Schwartz space withE ∈ (�). ThenE has
the following property:

(�∞) ∀p ∃q ∀k ∃D(k) > 0,∀u ∈ E∗ such that ‖u‖∗1+k
q ≤ D(k)‖u‖∗

k‖u‖∗k
p .

Proof. First we prove that

�∞(α, ,1(I )) =
{
(xn) ⊂ ,1(I ) :

∞∑
n=1

‖xn‖nk < +∞,∀k ≥ 1

}
where α = (log(n+ 1))n≥1 and I is an index set, has the property (�∞).

We recall a result of Meise andVogt [8]: Letλ(A)be given, whereA = (ai,j )

is a Köthe matrix. Then for d > 0,D > 0 and p, q,m ≥ 1 the following
conditions are equivalent

1) ‖.‖∗1+d
q ≤ D‖.‖∗

m‖.‖∗d
p

2) an,m.adn,p ≤ Da1+d
n,q , ∀n ≥ 1.

On �∞(α, ,1(I )) with an,j = nj , we use the norm-system {‖.‖j }j≥1 given
by

‖(xn)‖j =
∑
n≥1

‖xn‖nj .

For each p ≥ 1, choose q = 2p. Then for all m ≥ 1 we have

m ≤ mp < m(q − p)+ q �⇒ m(1 + p) < (m+ 1)q.
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It implies that

an,m.a
m
n,p = nm(1+p) < n(m+1)q = a1+m

n,q .

By Meise and Vogt [8] �∞(α, ,1(I )) has the property (�∞).
Now, by the same arguments as in the proof of Lemma 4.4 of Vogt [15],

we can show that the property (�∞) is equivalent to the following: ∀p ∃q ∀m
∃D(m) > 0 such that

Uq ⊂ rmUm + D(m)

r
Up for all r > 0.

From this, it is easy to see that the property (�∞) is inherited by quotient
spaces.

On the other hand, since E ∈ (�), by Vogt [14] and Proposition 3.2, there
exists an index set I such that [H(K)]∗, where K is a compact set in E, is
isomorphic to a quotient space of

�∞(α, ,1(I )) =
{
(xn) ⊂ ,1(I ) :

∞∑
n=1

‖xn‖nk < +∞,∀k ≥ 1

}
where α = (log(n + 1))n≥1. Hence E has the property (�∞). The lemma is
proved.

Proposition 4.2. Let E be a Fréchet space with E ∈ (�) and F a nuclear
Fréchet space with F ∈ (LB∞). Then every E∗-valued holomorphic function
on F ∗ is locally bounded.

Proof. Since F ∈ (LB∞), by Vogt [13] F ∈ (DN). According to Vogt [15]
F is isomorphic to a subspace of s, the space of rapidly decreasing sequences.
Hence without loss of generality we may assume that F has an absolute basis
{ej }.

Let {e∗
j } be a sequence of coefficient functionals associated to {ej }.

Let f : F ∗ → E∗ be a holomorphic function and uo ∈ F ∗. It is enough to
consider the case uo = 0.

By Lemma 4.1, ∀α ∃β ∀γ ∃D(γ ) > 0,∀u ∈ E∗

‖u‖∗1+γ
β ≤ D(γ )‖u‖∗

γ ‖u‖∗γ
α .

For each q ∈ N, take α = α(q) (we may assume that α(q) ≥ q), λq > 0 such
that

M(λq, q, α(q)) = sup
{‖f (u)‖∗

α(q) : ‖u‖∗
q < λq

}
< +∞
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and
λqe

∗
j

‖e∗
j ‖∗

q

∈ Uo
q ∀j ≥ 1.

For {dn} = {α(n)} ↑ +∞, since F ∈ (LB∞), ∃p ∀q ∃k(q) ≥ q, C(q) >

0, ∀ej ∈ F, ∃m with q ≤ m ≤ k(q) such that

(4.1) ‖ej‖1+α(m)
q ≤ C(q)‖ej‖m‖ej‖α(m)p .

Observe that
‖e∗
j ‖∗

k = 1

‖ej‖k , ∀ k ≥ 1.

Thus, we obtain

(4.2) ‖e∗
j ‖∗1+α(m)

q ≥ C(q)−1‖e∗
j ‖∗

m‖e∗
j ‖∗α(m)

p .

Put α1 = α(p). From Lemma 4.1 we get

∃ β ∀γ ∃ D(γ ) > 0,∀ u ∈ E∗

(4.3) ‖u‖∗1+γ
β ≤ D(γ )‖u‖∗

γ ‖u‖∗γ
α1
.

We shall show that there exists a neighbourhood V of 0 ∈ F ∗ such that f maps
it holomorphically into E∗

β . Write the Taylor expansion of f at 0 ∈ F ∗.

f (u) =
∑
n≥0

Pnf (u)

where
Pnf (u) = 1

2πi

∫
|λ|=1

f (λu)

λn+1
dλ, for u ∈ F ∗.

Put
Am = {

ω ∈ F ∗ : ‖ω‖∗1+α(m)
q ≥ C(q)−1‖ω‖∗

m‖ω‖∗α(m)
p

}
Jm = {j ∈ N : e∗

j ∈ Am}.
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By virtue of the properties (LB∞)with q = p+1 and for q ≤ m ≤ k(q), γ =
α(m) and from (4.2), (4.3) we have∑
n≥0

‖Pnf (u)‖∗
β

≤
∑
n≥0

∑
j1,...,jn≥1

‖P̂nf (e∗
j1
, . . . , e∗jn )‖∗

β

‖e∗
j1
‖∗
q . . . ‖e∗

jn
‖∗
q

|u(ej1)|‖e∗
j1
‖∗
q . . . |u(ejn)|‖e∗

jn
‖∗
q

≤
∑
n≥0

∑
q≤m≤k(q)

∑
j1,...,jn∈Jm

‖P̂nf (e∗
j1
, . . . , e∗jn )‖∗

β

‖e∗
j1
‖∗
q . . . ‖e∗

jn
‖∗
q

|u(ej1)|‖e∗
j1
‖∗
q . . . |u(ejn)|‖e∗

jn
‖∗
q

≤
∑
n≥0

∑
q≤m≤k(q)

D(α(m))
1

1+α(m) C(q)
n

1+α(m)

×
∑

j1,...,jn∈Jm

[‖P̂nf (e∗
j1
, . . . , e∗jn )‖∗

α(m)

‖e∗
j1
‖∗
m . . . ‖e∗

jn
‖∗
m

] 1
1+α(m)

[‖P̂nf (e∗
j1
, . . . , e∗jn )‖∗

α1

‖e∗
j1
‖∗
p . . . ‖e∗

jn
‖∗
p

] α(m)

1+α(m)

× |u(ej1)|‖e∗
j1
‖∗
q . . . |u(ejn)|‖e∗

jn
‖∗
q

≤
∑
n≥0

∑
q≤m≤k(q)

D(α(m))
1

1+α(m) C(q)
n

1+α(m)
1

λ
n

1+α(m)
m λ

nα(m)

1+α(m)
p

×
∑

j1,...,jn∈Jm

∥∥∥∥P̂nf(
λme

∗
j1

‖e∗
j1
‖∗
m

, . . . ,
λme

∗
jn

‖e∗
jn

‖∗
m

)∥∥∥∥ 1
1+α(m)

α(m)

×
∥∥∥∥P̂nf(

λpe
∗
j1

‖e∗
j1
‖∗
p

, . . . ,
λpe

∗
jn

‖e∗
jn

‖∗
p

)∥∥∥∥ α(m)

1+α(m)

α1

|u(ej1)|‖e∗
j1
‖∗
q . . . |u(ejn)|‖e∗

jn
‖∗
q,

where P̂nf is the symmetric n-linear form associated to Pnf . Putting

D̃(q) = max
q≤m≤k(q)

{
D(α(m))

1
1+α(m)

}
M̃(q) = max

q≤m≤k(q)

{
M(λm,m, α(m))

1
1+α(m) .M(λp, p, α(p))

α(m)

1+α(m)
}
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we have∑
n≥0

‖Pnf (u)‖∗
β ≤ D̃(q)

∑
n≥0

∑
q≤m≤k(q)

C(q)
n

1+α(m)

λ
n

1+α(m)
m λ

nα(m)

1+α(m)
p

×M(λm,m, α(m))
1

1+α(m)M(λp, p, α(p))
α(m)

1+α(m)
nn

n!

×
∑

j1,...,jn∈Jm
|u(ej1)|‖e∗

j1
‖∗
q . . . |u(ejn)|‖e∗

jn
‖∗
q

≤ D̃(q)M̃(q)
∑
n≥0

∑
q≤m≤k(q)

C(q)
n

1+α(m)

λ
n

1+α(m)
m λ

nα(m)

1+α(m)
p

nn

n!
‖u‖∗n

q

= D̃(q)M̃(q)
∑
n≥0

∑
q≤m≤k(q)

[
C(q)

1
1+α(m)

λ
1

1+α(m)
m λ

α(m)

1+α(m)
p

]n
nn

n!
‖u‖∗n

q

< D̃(q)M̃(q)
∑
n≥0

∑
q≤m≤k(q)

[
δC(q)

1
1+α(m)

λ
1

1+α(m)
m λ

α(m)

1+α(m)
p

]n
nn

n!
< ∞

for ‖u‖∗
q < δ, where

0 < δ < min
q≤m≤k(q)

1

e

{
λ

1
1+α(m)
m λ

α(m)

1+α(m)
p

C(q)
1

1+α(m)

}
.

Therefore there exists a neighbourhood Vq = Vp+1 of 0 ∈ F ∗
p+1 such that

f maps holomorphically Vp+1 into E∗
β and f (Vp+1) is bounded in E∗

β . Since
F is Schwartz, we may assume that Vp+1 is relatively compact in Uo

p+2. By
applying the above argument to each holomorphic map

gu(v) = f (u+ v) for u ∈ Vp+1, v sufficiently near 0 ∈ F ∗

we can choose a neighbourhood Vp+2 of 0 ∈ F ∗
p+2 such that f maps holo-

morphically Vp+1 + Vp+2 into E∗
β and f (Vp+1 + Vp+2) is bounded in E∗

β .
Continuing this process we get a sequence of neighbourhoods {Vp+k} of

0 ∈ F ∗
p+k, k ≥ 1 satisfying

f (Vp+1 + · · · + Vp+k) ⊂ E∗
β

and f is holomorphic, bounded on Vp+1 + · · · + Vp+k , for k ≥ 1. Put V =∑∞
k=1 Vp+k . Then V is a neighbourhood of 0 ∈ F ∗ and f (V ) ⊂ E∗

β . Since
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f |∑k
j=1 Vp+j is holomorphic for all k ≥ 1, it follows that f is holomorphic on

V . Thus f : V → E∗
β is holomorphic and bounded.

The proposition is proved.

Note that this resut is also true for the case where F is a Fréchet-Schwartz
space having an absolute basis.

Lemma 4.3. Let T : X → Y be a nuclear linear map between Banach
spaces and f a holomorphic function on an open set D ⊂ Y . Then f ◦ T
admits a local Dirichlet representation on D̂ = T −1(D).

Proof. Let x0 ∈ D̂. We may assume that 0 ∈ D̂ and x0 = 0. In view of
[5], there exist two sequences of complex numbers {ξk} and {αk} satisfying

z =
∑
k≥1

ξk expαkz for z ∈ C,

and
Cr =

∑
k≥1

|ξk| exp(|αk|r) < ∞ for r ≥ 0.

We write
T x =

∑
j≥1

hj (x)ej

with

{hj } ⊂ X∗, {ej } ⊂ Y and b =
∑
j≥1

‖hj‖‖ej‖ < ∞.

Let a > 0 be sufficiently small such that∑
n≥0

Cn1a
nbnnn

n!
< ∞

and aej

‖ej‖ ∈ V for j ≥ 1,

where V is a neighbourhood of 0 ∈ Y satisfying

‖f ‖V := sup{|f (y)| : y ∈ V } < ∞.

We now write the Taylor expansion of f at 0 ∈ V
f (y) =

∑
n≥0

Pnf (y) for y ∈ V.
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Hence we get

f (T (a2x))

=
∑
n≥0

Pnf

(∑
j≥1

hj (a
2x)ej

)

=
∑
n≥0

a2n
∑

j1,...,jn≥1

‖hj1‖ · · · ‖hjn‖P̂nf (ej1 , . . . , ejn)‖
hj1(x)

‖hj1‖
· · · hjn(x)‖hjn‖

=
∑
n≥0

a2n
∑

j1,...,jn≥1

‖hj1‖ · · · ‖hjn‖P̂nf (ej1 , . . . , ejn)

×
(∑
k≥1

ξk expαk
hj1(x)

‖hj1‖
)

· · ·
(∑
k≥1

ξk expαk
hjn(x)

‖hjn‖
)

=
∑
n≥0

a2n
∑

j1,...,jn≥1
k1,...,kn≥1

‖hj1‖ · · · ‖hjn‖ξk1 · · · ξkn

× P̂nf (ej1 , . . . , ejn) exp

[
αk1

hj1(x)

‖hj1‖
+ · · · + αkn

hjn(x)

‖hjn‖
]
.

On the other hand∑
n≥0

a2n
∑

j1,...,jn≥1
k1,...,kn≥1

‖hj1‖ · · · ‖hjn‖ |ξk1 | · · · |ξkn |

× P̂nf (ej1 , . . . , ejn) exp[|αk1 | + · · · + |αkn |]
≤

∑
n≥0

a2n
∑

j1,...,jn≥1

‖hj1‖‖ej1‖ · · · ‖hjn‖‖ejn‖

×
∣∣∣∣P̂nf(

a
ej1

‖ej1‖
, . . . , a

ejn

‖ejn‖
)∣∣∣∣(∑

k≥1

|ξk| exp |αk|
)n

≤ ‖f ‖V
∑
n≥0

annn

n!

(∑
j≥1

‖hj‖‖ej‖
)n
Cn1

= ‖f ‖V
∑
n≥0

anbnCn1n
n

n!
< ∞ for ‖x‖ < 1.
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Hence

(f ◦ T )(x) = f (T x) = f (T (a2x/a2))

=
∑
n≥0

a2n
∑

j1,...,jn≥1
k1,...,kn≥1

‖hj1‖ · · · ‖hjn‖ξk1 · · · ξkn

× P̂nf (ej1 , . . . , ejn) exp

[
αk1

hj1(x)

a2‖hj1‖
+ · · · + αkn

hjn(x)

a2‖hjn‖
]

=
∑
n≥0

a2n
∑

j1,...,jn≥1
k1,...,kn≥1

‖hj1‖ · · · ‖hjn‖ξk1 · · · ξkn

× P̂nf (ej1 , . . . , ejn) exp

〈
x, αk1

hj1

a2‖hj1‖
+ · · · + αkn

hjn

a2‖hjn‖
〉

for ‖x‖ < a2. The lemma is proved.

Remark. In the case of entire functions, Lemma 4.3 was proved in [4].

We now present the main result of the paper.

Theorem 4.4. Let F be a nuclear Fréchet space and K be a compact set
of uniqueness in a nuclear Fréchet space E with E ∈ (�). Then the following
conditions are equivalent:

a) F ∈ (LB∞)
b) Every separately holomorphic function on K × F ∗ is holomorphic

c) Every separately holomorphic function as in b) has a local Dirichlet
representation.

Proof. a) implies b). Let a separately holomorphic function f : K×F ∗ →
C be given. We shall prove that f is holomorphic at every point (x0, u0) ∈
K × V , where V is a neighbourhood of u0 in F ∗. Without loss of generality
we may assume that 0 ∈ K × V and x0 = 0, u0 = 0.

Consider the holomorphic function

fF ∗ : F ∗ → H(K)

induced by f . From Propositions 3.2 and 4.2 it follows that there exists a
neighbourhood W of 0 ∈ F ∗ such that fF ∗(W) is bounded in H(K).

SinceH(K) is regular (Theorem 3.1) there exists a neighbourhood U ofK
in E such that fF ∗(W) is contained and bounded in H∞(U). It follows that f
is bounded on W × U and hence f is holomorphic at 0 ∈ K × F ∗.
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b) implies c). Let f be a separately holomorphic function on K × F ∗. Fix
(x0, u0) ∈ K × F ∗. We may assume that x0 = 0, u0 = 0. The hypothesis im-
plies that f is bounded on a balanced convex neighbourhoodW of 0 ∈ E×F ∗.
Therefore we may consider f as a holomorphic function on a neighbourhood
D of 0 ∈ (E × F ∗)W , the Banach space associated to W . Since E × F ∗
is nuclear, there exists a balanced convex neighbourhood U of 0 ∈ E × F ∗
such that the canonical map T : (E × F ∗)U → (E × F ∗)W is nuclear. From
Lemma 4.3 we deduce that f ◦T and hence, f admits a Dirichlet representation
at 0 ∈ E × F ∗.

c) implies a). By [13] it suffices to prove that every continuous linear map
T : F ∗ → E∗, where E = H(C) is the space of holomorphic functions on C,
is compact.

Consider the separately continuous bilinear associated map f : E×F ∗ →
C. Let K be a compact set of uniqueness in the nuclear Fréchet space E. We
may assume that K is balanced, convex and 0 ∈ K × F ∗. By the hypothesis
we can find a balanced neighbourhood U × W of 0 ∈ E × F ∗ and {σj } ⊂
E∗; {zj } ⊂ F ∗∗ = F satisfying

T (u)(x) = f |U×W(x, u) =
∑
j≥1

ξj exp[〈x, σj 〉 + 〈u, zj 〉] for x ∈ U, u ∈ W

and ∑
j≥1

|ξj | exp[‖σj‖∗
B + ‖zj‖∗

L] < ∞

for every compact set B ⊂ U,L ⊂ W .
Since T is linear in x ∈ E, we imply that

T (u)(x) =
∑
j≥1

ξjσj (x) exp u(zj ) for x ∈ E, u ∈ W

and ∑
j≥1

|ξj |‖σj‖∗
B exp ‖zj‖∗

L < ∞

for every compact set B ⊂ U,L ⊂ W .
Since E is Fréchet, we can choose p ≥ 1 such that∑

j≥1

|ξj |‖σj‖∗
p < ∞.

Moreover, since E ∈ (�) we can find q ≥ 1 for all k ≥ 1 there exists d > 0
verifying ‖.‖∗1+d

q ≤ ‖.‖∗
k‖.‖∗d

p .
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Consider a compact setK and a k ≥ 1 such that Uk ⊂ K ⊂ U . Thus for every
compact set L ⊂ 1

1+dW we have∑
j≥1

|ξj |‖σj‖∗
q exp ‖zj‖∗

L

≤
∑
j≥1

|ξj |‖σj‖∗1/(1+d)
K ‖σj‖∗d/(1+d)

p exp ‖zj‖∗
L

=
∑
j≥1

|ξj |1/(1+d)|ξj |d/(1+d)‖σj‖∗1/(1+d)
K ‖σj‖∗d/(1+d)

p exp ‖zj‖∗
L

≤
(∑
j≥1

|ξj |‖σj‖∗
K exp ‖zj‖(1+d)L

)1/(1+d)(∑
j≥1

|ξj |‖σ‖∗
p

)d/(1+d)
< ∞.

Hence T maps continuously F ∗ into F ∗
q . This implies the compactness of T .

The theorem is completely proved.

Remark. In the case (�,DN), the mixed Hartogs Theorem is proved by
Nguyen Van Khue and Nguyen Ha Thanh [7] for separately holomorphic func-
tions on an open set E ×D in E × F ∗.
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