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THE REGULARITY OF THE SPACE OF GERMS OF
FRECHET VALUED HOLOMORPHIC FUNCTIONS
AND THE MIXED HARTOG’S THEOREM

THAI THUAN QUANG

Abstract

It is shown that H (K, F) is regular for every reflexive Fréchet space F' with the property (LBs)
where K is a compact set of uniqueness in a Fréchet-Schwartz space E such that £ € (£2). Using
this result we give necessary and sufficient conditions for a Fréchet space F, under which every
separately holomorphic function on K x F* is holomorphic, where K is as above.

1. Introduction

The well known Hartogs theorem on the holomorphy of separately holo-
morphic functions in C* was extended to the infinite dimensional case by
several authors. In particular, this theorem is true for the classes of Fréchet
spaces and of dual Fréchet-Schwartz spaces. However, the problem is more
complicated in the mixed case. In the present paper we shall investigate the
holomorphy of separately holomorphic functions in connection with their local
Dirichlet representations and with the properties (€2, LB).

One of the keys, which is used to prove the above result is presented in
the first part of this paper. In this section we consider regularity of the space
H(K, F), where K is a compact set of uniqueness in a Fréchet space with the
property (£2) and F is a reflexive Fréchet space having the property (LB)
(Theorem 3.1).

The remaining part will deal with the holomorphy and the local Dirichlet
representation of separately holomorphic functions on K x F*, where K is a
compact set of uniqueness in a Fréchet-Schwartz space with the property (£2)
and F is a nuclear Fréchet space with the property (LBo,) (Theorem 4.4). To
prove this theorem we use the result in the above section.
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2. Preliminaries

2.1. General notations

We shall use standard notations of the theory of locally convex spaces as
presented in the book of Schaefer [11]. A locally convex space always is a
complex vector space with a locally convex Hausdorff topology.

For a Fréchet space E we always assume that its locally convex structure is
generated by an increasing system {||.||x} of semi-norms. Then we denote by Ey
the completion of the canonically normed space E/ Ker ||.||y and wy : E — Ej
denotes the canonical map and Uy denotes the set {x € E : ||x]||x < 1}.

If B is an absolutely convex subset of E we define a norm ||.||; on E*, the
strong dual space of E, with values in [0, +00] by

lully = sup{lu(x)|, x € B}.

Obviously ||| is the gauge functional of B°. Instead of ||. ||;‘]k we write || |[}.

For locally convex spaces E and F' we denote by L(E, F) the space of
all continuous linear mappings, while L B(E, F) denotes the set of all A €
L(E, F) for which there exists a zero neighbourhood U in E such that A(U)
is bounded.

2.2. The space of Kothe sequences

If A = (a;1)(jken: is a Kdthe matrix satisfying the condition in Pietsch [10]
then we denote by A(A) the sequence space

o
A(A) = {x eV x|k = Z |x;la;x < oo forall k e N}.
j=1

Obviously A(A) is a Fréchet space under the natural locally convex topology
induced by the semi-norm system {||.||x}-.
Let ¢ = (an)nen be an increasing unbounded sequence of positive real

numbers such that lim o, = +ooandlet0 < r; + R where 0 < R < 4o00.
n—0o0

By putting a; x = r:’, we define the power series space

oo
Ar(a) = A(A) = {x e CV:lxlle = > Ixjlr’ < oo forall k € N}.

j=1

Ag(@) is called a power series space. In the case R = 1 (resp. R = +00)
Ag(a) is called the power series space of finite (resp. infinite) type.
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2.3. Some linear topological invariants

Let E be a Fréchet space with a fundamental system of semi-norms {||. ||« }xen-
We say that E has the properties

(Q): if ¥ pIgVk3Id>0,C > 0such that ||.[3"+ < CIL.IFI. 15
(DN): if3p3d >0V g3k, C > 0such that ||| ;7 < CL.IIl.I5
and (LBy) if
Voy 1 00,3pVgIk(q) > q,C(g) > 0,Vx € EIm withq <m < k(q)

such that o
xll, ™ < C@Ilxllmllxl5".

In [13] Vogt has proved that £ € (LB,) if and only if
L(Aso(a), E) = LB(Ax (@), E)

for some exponent sequence @ = (¢;)eN-
Note that the following relation holds

(LB) = (DN).

The above properties have been introduced and investigated by Vogt [13],
[14], [15]. Hereafter, to be brief, whenever E has the property (£2) (resp. (DN),
(LBs)) we write E € (L2) (resp. E € (DN), E € (LBy)).

2.4. The space of germs of holomorphic functions on a compact set

Let E and F be locally convex spaces and let D C E be open, D # (. By
H (D, F) we denote the vector space of all holomorphic functions on D with
values in F'. H(D, F) equipped with the compact-open topology.

A seminorm o on H(D, F) is said to be t,-continuous if there exists a
compact set K in D and a continuous seminorm « on F such that, for every
neighbourhood V of K in D, there exists C(V) > 0 such that

o(f) = C(V)supa(f(2)), VfeHD,F).

zeV

For each compact set K in E we associate H (K, F), the space of germs of
F-valued holomorphic functions on K, equipped with the inductive topology

H(K, F):=limind(H(U, F); 7,),
KcU
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where U is taken over all neighbourhoods of K. It is known [9] that

H(K) = limind H®(U),
KcU

where H>(U) is the Banach space of all holomorphic functions which are
bounded on U.

For details concerning holomorphic maps on locally convex spaces we refer
to the book of Dineen [3].

2.5. Separately holomorphic functions on a compact set

Let K be a compact set in a locally convex space E and V an open set in a
locally convex space F. For a function f : K x V — Cwe put

i@ = f(x,2) for zeV,
ffx) = f(x,2) for x e K.

The function f is called separately holomorphicif f; : V — Cand f*: K —
C are holomorphic for all x € K and z € V, respectively. Here a function
on K is said to be holomorphic if it can be extended holomorphically to a
neighbourhood of K in E.

3. The regularity of the space of germs of F-valued holomorphic
functions

We first recall that the space H(K, F) of germs of F-valued holomorphic
functions on a compact set K is regular if every bounded subset in

H(K, F) :=limind(H(U, F); 1,),
KcU

is contained and bounded in some [H (U, F); 1,].

The problem of the regularity of the space H (K) was investigated by several
authors. Chae [1] proved that H(K) is regular for every compact subset K
of a Banach space E. When E is a metrizable locally convex space, H(K)
is represented as an inductive limit of a sequence of (D F')-spaces. Using a
theorem of Grothendieck on bounded subsets in an inductive limit of a sequence
of (D F)-spaces, Mujica [9] generalized the result of Chae. In [16] Vogt gave a
general characterization for the regularity of the inductive limit of a sequence
of Fréchet spaces.

In this section we prove the following.

THEOREM 3.1. Let F be a reflexive Fréchet space with F € (LBy,) and
E a Fréchet-Schwartz space with E € (2). Then H(K, F) is regular for all
compact sets of uniqueness K in E.
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Here, we recall that a compact set K in a Fréchet space is called a set of
uniqueness if for all f € H(K) and f|x = 0 then f = 0 on a neighbourhood
of Kin E.

For proving this theorem we need the following

PROPOSITION 3.2 ([6]). Let E be a Fréchet-Schwartz space. Then E € (2)
if and only if [H (K)]* € () for all compact sets K in E.

LEmMMA 3.3. Let F be a Fréchet space with the property (LBy) and B a
Banach space. Then the space L(B, F) of all continuous linear maps from B
into F has the property (LBy).

Proor. Given a sequence of positive numbers {oy}, choose £ > 1 such
that the property (LB) satisfied. Then for all f € L(B, F) we have

1178 = sup{ll f Ol = lxll < 1)

<C max sup{[|l f )l fCON" = llx]| < 1}
q<m=k(q)

= C max on
x| f 1

Thus L(B, F) € (LBy).

LEMMA 3.4. Let F be a Fréchet space with F € (LBy,) and K a compact
set in a Fréchet-Schwartz space E with E € (2). Then

L(H(K,B)]*, F)=LB(H(K, B)]*, F)

for every Banach space B.

PRrROOF. Let a continuous linear map 7 : [H(K, B)]* — F be given.
Because [H(K, B)]* = [H(K)]*@nB*, T induces a continuous linear map

T :[H(K)]* — L(B*, F).

From [14] and Proposition 3.2 there exists an index set / such that [H (K)]*
is isomorphic to a quotient space of

Aoola, €1(D)) = {(x,,) ') Y lxalln* < +o0, Vk = 1}

n=1

where ¢ = (log(n 4+ 1)),>1.

From sup,-, 10“;’(()":1) < oo and Lemma 3.3, repeating the proof of

Theorem 3.2 of Vogt [13] we deduce that every continuous linear map from
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Aoo(a, £'(I)) and, hence, from [H (K)]* to L(B*, F) is bounded on a neigh-
bourhood of 0 € [H(K)]*. Thus T is bounded on a zero neighbourhood U in
[H(K)]*. This yields that T is bounded on conv(U ® V'), a zero neighbourhood
in [H(K)]*®, B*, where V is the unit ball in B*.

We mention the following without proof.

LEmMMA 3.5 ([S]). Let f be a bounded function from an open set D in a
locally convex space E into the Banach space £*°(I) and let the coordinate
functions f, be holomorphic. Then f is holomorphic.

Now we can prove Theorem 3.1.

ProOOF OF THEOREM 3.1. Given a bounded family {f,}qe; in H(K, F),
consider the linear map

h: Ff — H(K, (1))

defined by
h(u) = (uo fo)aer

where F is the bornological space associated to F*. Lemma 3.5 and the
uniqueness of K imply that /() is correctly defined.

1) We first check that & is bounded.

Indeed, let B be a bounded set in F*. Take k > 1 such that B is contained
and bounded in F, where Fj is the Banach space associated to |.||x. Let
wy © F — F; be the canonical map. By the regularity of H (K, F) [12] and
the boundedness of {wy fy }ocr, We can find a neighbourhood V of K in E such
that {wy fy }aes 1S contained and bounded in H*°(V, Fy), the Banach space of
Fi-valued bounded holomorphic functions on V. Hence /(B) is contained and
bounded in H*°(V, £°°(I)). Therefore h is continuous.

2) By Lemma 3.4, the map h* : [H (K, £ ()" — [F5 " = F is of type
(LB). It follows that 2**, and hence, # is also of type (LB). Thus, we can find
aneighbourhood W of zero in Fy . for which there exists, for every u € F*, a
function 72(x) in H>®(V, £°(I)) such that

i) h(u) = h(u) on a neighbourhood of K in V,

ii) {ﬁ(u)}uew is bounded in H*(V, £>°(1)).

Now, foreacha € I, we define aholomorphic function g, : V — [Fy " =
F by

8u() () =uo fo(2) for zeV,ue Fl;kor‘

By (ii), {ga}aes 1s bounded in H*°(V, F). Thus, { f,}«es is contained and
bounded in [H*®(V, F); t,].
The theorem is completely proved.
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4. Representation of separately holomorphic functions

First we introduce the notion of local Dirichlet representations. Let E be a
locally convex space and D an open subset in E. A function f : D — Cis
said to have a local Dirichlet representation on D if for every xo € D there
exist a neighbourhood U of x( and sequences (&) C C, (ux) C E*, such that

fx) = Zé‘k exp ur(x) for xeU

k>1

and
Z |Ex| exp [lukllx < oo for every compact set K C U.

k>1

The global Dirichlet representation of entire functions was investigated in
[2].

We begin this section by presenting auxiliary lemmas, which are useful for
proving Theorem 4.4, the main result of the paper.

LEMMA 4.1. Let E be a Fréchet-Schwartz space with E € (2). Then E has
the following property:

(2%°) Vp3Ig Vk3IAD(k) > 0,Yu € E* such that ||u||Zl+k < D(k)||u||Z||u||;k.
Prookr. First we prove that

Aoola, €1(D)) = {(x,,) ') Y lxalln* < +o0, Yk > 1}

n=1

where o = (log(n + 1)),>; and [ is an index set, has the property (2°°).

We recall aresult of Meise and Vogt [8]: Let A(A) be given, where A = (a; ;)
is a Kothe matrix. Then for d > 0, D > 0 and p, g, m > 1 the following
conditions are equivalent

D LI < DL 5

2) an,m.a;‘f’p < Da,ll;d, Vn > 1.

On Ao (a, £1(1)) with an,j = n’, we use the norm-system {II.1l;}j=1 given

by '
1l = 3 lxalind.

n>1

For each p > 1, choose ¢ = 2p. Then for all m > 1 we have

m=<mp<m(g—p)+q = m(l+p) <@m+lg.
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It implies that

m(1+p) < n(m+1)q — a1+m

m. _
an‘m.anyp =n n,q M

By Meise and Vogt [8] A (e, £Y(I)) has the property (2%°).

Now, by the same arguments as in the proof of Lemma 4.4 of Vogt [15],
we can show that the property (2°°) is equivalent to the following: Vp 3g Vm
dD(m) > 0 such that

m D(m)
v, crv, + —U, forall r > 0.
r

From this, it is easy to see that the property (2°°) is inherited by quotient
spaces.

On the other hand, since E € (£2), by Vogt [14] and Proposition 3.2, there
exists an index set / such that [H (K)]*, where K is a compact set in E, is
isomorphic to a quotient space of

Aco(e, £'(1)) = {(x,,) c ') : ) |lxlln* < 400, Vk = 1}

n=1

where o = (log(n + 1)),>1. Hence E has the property (2°°). The lemma is
proved.

PrROPOSITION 4.2. Let E be a Fréchet space with E € (2) and F a nuclear
Fréchet space with F € (LB,). Then every E*-valued holomorphic function
on F* is locally bounded.

ProoF. Since F' € (LB), by Vogt [13] F € (DN). According to Vogt [15]
F is isomorphic to a subspace of s, the space of rapidly decreasing sequences.
Hence without loss of generality we may assume that F' has an absolute basis
{ej}.

Let {e]’.*} be a sequence of coefficient functionals associated to {e;}.

Let f : F* — E* be a holomorphic function and u, € F*. It is enough to
consider the case u, = 0.

By Lemma 4.1, Vo 38 Vy AD(y) > 0,Vu € E*

1+
Il < DOl ully -

For each g € N, take o = a(g) (we may assume that a(q) > ¢g), A, > 0 such
that
MGy, q. (@) = sup{ Il f @5, < lully < 2y} < 400
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and *
Ag e

* | %
7

U{;’ Vj>1.

For {d,} = {a(n)} 1 +o0, since F € (LBy), 3p Yq Ik(g) > q,C(q) >
0, Ye; € F,3m with g < m < k(q) such that

@.1) lej 1,74 < C(@)llejllmlle; 15
Observe that 1
lejlly = -——  Vk=1
lej Il

Thus, we obtain
“-2) lefllz" = = C@) eI, lleg 152
Put @y = a(p). From Lemma 4.1 we get

ABVy I DY) >0,YueckE”

4.3) lally ™ < DOl Nl -

We shall show that there exists a neighbourhood V of 0 € F* such that f maps
it holomorphically into E;. Write the Taylor expansion of f at0 € F*.

f@)=>"Puf)

n>0

where
Pofy = — [ L0

- dx, for ue F*.
27 [A]=1 kn+l

Put
A" ={w e F*: ol = C(@) o} ol ™}

P
J’"={jeN:e;‘eA’"}.
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By virtue of the properties (LB,) withg = p+1andforg <m < k(g),y =
a(m) and from (4.2), (4.3) we have

DIP @l

n>0

1P F (e el - -
< ZE: j{: Iz lef m* ﬂl u(e)llle; lly - - - lute)lle; Iy

”>0/l ----- ./nzl

1P f (el ... Dl
<> > > TR ’”*‘H Eller .. ute)lles 11k

n=0 g<m<k(q) ji.....jn€J" - lle, €inllg

<> Y Dlm)TmCg)=m

n>0 g<m=k(q)

—_— 1 — a(m)
)3 [IIPnf(e’-k ---,e*)lll’;(m)}lww[IIP NACHS -.-,e*)ll*l]lmm)
llej, 15, - - - lleg, 115 llej 1 - - - lleg 115

x lule;)ller NIy - - - lute)lle; Il

1 n 1
<> Y. Dm)FmCg) T —

n>0 qufk(q) )\-r]nJrMM) )" I+a(m)

P
A e* Ames
X P, f( - Jn )
Z lerlls™ " et Iy,

JlseesJn€J™

Ap e Ape’
Pf( =, .. f"*>
e || et

where Fn? is the symmetric n-linear form associated to P, f. Putting

1
I+a(m)

a(m)

a(m)
T+a(m)

lutellies I

Autelliel I,
~ 1
D(g)= max {D(a(m))m}

g<m=<k(q)

F(g) = max M, m,aOn) ™5 MGy, p,a(p) ™ |
g=m=<k(q)
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we have
C(q) H»a(m)
PRI OIFERIOD DS
l’l>0 l’l>0 (1<m<k((1) )\’ l+ot(m) }\' I4a(m)
1 a(m) I’ln
X M()\'ma m, Ol(m)) Ialm) M()\’P’ pv Ol(p)) La(m) I’l'
x Y fulelllen Ny lude)lller I
jl vvvvv jne‘lm

C(g) Tatm TraGn) n" “n
DipMq)y_ Y. — e Il

>0 q<m<k(q) )\' l+ot(m) )\‘ I+a(m)

r 1 qn

~ Clg)mm | n"
=DaM@ Y D | | Il

nzO qufk(q) )\‘ l+ot(m) )\‘ 1+a(m)

r 1 n
~ ~ (SC(q) 14+a(m) n
<D@M@), Y |——mr| 5 <

nzO quSk(lj) _)\‘ 14a(m) )\‘ 14a(m)

for ||u||Z < §, where

1 a(m)

)\‘rln+o((m) )\‘I;+oz(m)
1 .
C(q) I4a(m)

1
0<éd§< min —{

q=m=k(q) e

Therefore there exists a neighbourhood Vy = V1, of 0 € F,, such that
Jf maps holomorphically V,,;; into Eg and f(Vp41) is bounded in E%. Since
F is Schwartz, we may assume that V, is relatively compact in U bi2- BY
applying the above argument to each holomorphic map

gu(v) = fu+v) for u € V,11, v sufficiently near 0 € F*

we can choose a neighbourhood V)4, of 0 € F, such that f maps holo-
morphically V41 + Vp12 into Eg and f(Vp11 + Vj42) is bounded in Eg.
Continuing this process we get a sequence of neighbourhoods {V, 1} of
0€ F, . k = 1 satisfying
f(vp—H +---+ Vp+k) C E;

and f is holomorphic, bounded on V4 + --- + V4, fork > 1. Put V. =
> 22 Votk- Then V is a neighbourhood of 0 € F* and f(V) C Ej. Since



130 THAI THUAN QUANG

f |Z¢=1 Voi, is holomorphic for all k£ > 1, it follows that f is holomorphic on

V.Thus f : V — Ej is holomorphic and bounded.
The proposition is proved.

Note that this resut is also true for the case where F is a Fréchet-Schwartz
space having an absolute basis.

LEMMA 4.3. Let T : X — Y be a nuclear linear map between Banach
spaces and f a holomorphic function on an open set D C Y. Then f o T
admits a local Dirichlet representation on D = T~'(D).

PrOOF. Let xy € D. We may assume that 0 € D and xo = 0. In view of
[5], there exist two sequences of complex numbers {£;} and {o } satisfying

7= Zék exp oz for ze€C,

k>1
and

Cr =) lalexp(laxlr) <oo  for r=0.

k>1
We write
Tx = Zhj(x)ej
j=1

with

{hj} C X*, {e;} C Y and b:Z”hf””e/” < o0.
j=1

Let a > 0 be sufficiently small such that
Cll’lan bnnn
> G o

n!
n>0

and ae:
— for j>1,
llej ]
where V is a neighbourhood of 0 € Y satisfying
Ifllv :==sup{lf(»]|:yeV}<oo.

We now write the Taylor expansion of f at0 € V

f(y)=ZPnf(y) for yeV.

n>0
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Hence we get

f(T(a’x))
= Z Pnf<z h; (azx)ej)
n>0 j>1

n — hi(x) hj (x)
=>"a D gl kg I Paf (e el T

A YR

=>"a” > Al kg 1 Paf e e)

n>0 ey Jn=1

,m) ( ,,,(x))
(ng R T Zs" T

k>1
2
=> a” Z gl -~ Wk, 1€, -~ - &,
n>0 o n>1
k ok, >1

— h; h
X P,,f(ejl,...,ej”)exp|:ak] i () 4ot /"(x)]

a II
121 I,
On the other hand
2
2@ 3T gl ] 6
n>0 Jseesjn=1
ki,....ka>1

X Pof(ej,, ... ej)expllog, |+ -+l |]

2
<> @ D Ah el Uik, lile;, |

n=0 izl

"f< el ||e,,,||>‘<z'§"'exp'“"'>

k>1
annn n
<Iflv)  — (Z||hj||||ej||) o
n>0 j>1
a'b"Cin"
=Iflv )y == <00 for |xf <1.

n>0
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Hence
(foT)(x) = f(Tx) = f(T(a*x/a*))

=>"a > Al llhy, & &,

n>0 JlyeensJn>1
ki, k,>1
x P, f(ej,...,e;)exp|og —— 4 + g —2
nf Jio s CJn p|: 1a2”h_ ” "612”}1‘ ”
J1 In
2
=3 > gl kgl - &,
n=0 jl ~~~~~ anl
kl vvvvv anl
_ h. h:
xP,,f(ej,...,ejn)exp<x,ak e L
| ‘a2l | ||, |

for || x|| < a®. The lemma is proved.
REMARK. In the case of entire functions, Lemma 4.3 was proved in [4].
We now present the main result of the paper.

THEOREM 4.4. Let F be a nuclear Fréchet space and K be a compact set
of uniqueness in a nuclear Fréchet space E with E € (R2). Then the following
conditions are equivalent:

a) F € (LB)
b) Every separately holomorphic function on K x F* is holomorphic

c) Every separately holomorphic function as in b) has a local Dirichlet
representation.

PRrROOF. a) impliesb). Let a separately holomorphic function f : K x F* —
C be given. We shall prove that f is holomorphic at every point (xo, ug) €
K x V, where V is a neighbourhood of ug in F*. Without loss of generality
we may assume that0) € K x V and x9 = 0, ug = 0.

Consider the holomorphic function

fre s F* — H(K)

induced by f. From Propositions 3.2 and 4.2 it follows that there exists a
neighbourhood W of 0 € F* such that fr«(W) is bounded in H(K).

Since H (K) is regular (Theorem 3.1) there exists a neighbourhood U of K
in E such that fp« (W) is contained and bounded in H*(U). It follows that f
is bounded on W x U and hence f is holomorphic at0 € K x F*.
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b) implies c). Let f be a separately holomorphic function on K x F*. Fix
(x0, up) € K x F*. We may assume that xo = 0, ug = 0. The hypothesis im-
plies that f is bounded on a balanced convex neighbourhood W of 0 € E x F*.
Therefore we may consider f as a holomorphic function on a neighbourhood
D of 0 € (E x F*)y, the Banach space associated to W. Since E x F*
is nuclear, there exists a balanced convex neighbourhood U of 0 € E x F*
such that the canonical map T : (E x F*)y — (E x F*)y is nuclear. From
Lemma4.3 we deduce that foT and hence, f admits a Dirichlet representation
at0 e E x F*.

¢) implies a). By [13] it suffices to prove that every continuous linear map
T : F* — E*, where E = H(Q) is the space of holomorphic functions on C,
is compact.

Consider the separately continuous bilinear associated map f : E x F* —
C. Let K be a compact set of uniqueness in the nuclear Fréchet space E. We
may assume that K is balanced, convex and 0 € K x F*. By the hypothesis
we can find a balanced neighbourhood U x W of 0 € E x F* and {0;} C
E*; {z;} C F* = F satisfying

Tw)(x)= fluxw(x,u) = Zéj expl(x, oj) + (u,z;)] for xeU,uecW

j=1

and . .
> lglexplliojly + l1zill] < oo

izl

for every compactset B C U, L C W.
Since T is linear in x € E, we imply that

Tw)(x) =Y &oj(x)expu(z;) for x € E,ue W
j=1

and . .
> 1gilllojl exp liz;ll; < o0

j=1

for every compactset B C U, L C W.
Since E is Fréchet, we can choose p > 1 such that

> oyl < oo
Jj=1

Moreover, since E € (£2) we can find ¢ > 1 for all k > 1 there exists d > 0

verifying
1+d d
LE < L.
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Consider a compact set K and a k > 1 such that U, C K C U. Thus for every
compact set L C ﬁ W we have

> 1gillloj iz exp liz; 117

Jj=1

1/(14d) d/(1+d
<Y 1glllog oy 15D exp 12515

j=1
_ 1/(14d) d/(1+d) *1/(1+d) *d | (1+d) *
= > 1&g lloj 15" oy 115/ exp 12 115
j=1
1/(1+d) d/(1+d)
< (Z 1&1llo; I exp ||z,~||<1+d>L) (Z |s,»|||o||;’;) < 0.
jzl jz1

Hence T' maps continuously F* into F. This implies the compactness of 7.
The theorem is completely proved.

REMARK. In the case (5, DN), the mixed Hartogs Theorem is proved by
Nguyen Van Khue and Nguyen Ha Thanh [7] for separately holomorphic func-
tions on an open set E X D in E x F*.
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