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THE CONNECTION BETWEEN THE CEGRELL
CLASSES AND COMPLIANT FUNCTIONS

RAFAŁ CZYŻ and PER ÅHAG∗

Abstract

In this article the connection between the Cegrell classes and compliant functions is studied. A
suitable norm is constructed which makes the compliant functions into a Banach space. As an
application a characterization of the Dirichlet problem for pluriharmonic functions is achieved.
Explicit examples of non-compliant functions will be constructed and a sufficient condition for
compliance will be proved.

1. Introduction

Throughout this article let� ⊆ Cn be a hyperconvex domain, i.e., a connected,
open set that admits a negative plurisubharmonic exhaustion function. Fur-
thermore it is assumed that � is bounded. Recall that the Perron-Bremermann
envelope for a given function f : ∂� → R is defined by

(1) PBf (z) = sup

{
w(z) : w ∈ PSH (�), lim sup

ζ→ξ
ζ∈�

w(ζ ) ≤ f (ξ)∀ξ ∈ ∂�

}
,

where PSH (�) is the class of all plurisubharmonic functions defined on �.
If f : ∂� → R is a continuous function, then PBf ∈ PSH (�) since a
hyperconvex domain viewed as a set in R2n is regular to the Laplace operator.
Consider the following two assertions:

P1: lim
z→ξ
z∈�

(
PBf + PB−f

)
(z) = 0 for every ξ ∈ ∂�,

P2:
∫
�

(ddc(PBf + PB−f ))n < +∞,

where (ddc · )n is the complex Monge-Ampère operator. A continuous func-
tion f : ∂� → R which satisfies P1 and P2 is called a compliant function.
The compliant functions first arose in [3] when some of the Cegrell classes
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given by a continuous function were introduced. Let CP(∂�) denote the class
of compliant functions defined on ∂�. If n = 1, then the set of compliant
functions and continuous functions defined on ∂� coincide, therefore it will
be assumed that n ≥ 2 throughout this article. The special case when � is a
hyperconvex product domain� = �n1 ×· · ·×�nk , n = n1 +· · ·+nk , k ≥ 3,
was studied in [7].

The Cegrell classes were first introduced in [3]. In [4] and [15] new classes
were added to the Cegrell family. Let E0(f ) be the class of plurisubharmonic
functions defined in [3] (see also Definiton 2.1). Example 2.4 shows that there
exists a function u ∈ E0(f ) such that

∫
�

(ddcu)n = +∞.

This cannot occur if f is compliant (Lemma 2.5). Let u ∈ E0(f ). Then f is
compliant if, and only if, (u+ PB−f ) ∈ E0(0). A more thorough study about
this property in the different Cegrell classes will be made in Section 2. By
using a convexity property of E0(f ) it is proved that a continuous function
f : ∂� → R is compliant if, and only if, E0(f )⊕ E0(−f ) ⊆ E0(0), where ⊕
is the sum of two sets (Theorem 2.7).

Let ‖ · ‖ : CP(∂�) → R be defined by

(2) ‖f ‖ = ‖f ‖∞ +
(∫

�

(ddc(PBf + PB−f ))n
) 1

n

,

where ‖f ‖∞ = sup{|f (ξ)| : ξ ∈ ∂�}. The aim of Section 3 is to prove that
(CP(∂�), ‖ · ‖) is a Banach space (Theorem 3.3). Let PH (∂�) denote those
continuous functions ∂� → R which can be extended to a pluriharmonic func-
tion in �. A considerable amount of results concerning the Dirichlet problem
for pluriharmonic functions exist, see e.g. [1], [2], [7], [8], [9], [10], [11]
and the references therein. As an application of Theorem 3.3 it is proved that
PH (∂�) is equivalent to the closed subspace, CP0(∂�), of CP(∂�) that
contains functions for which −PBf = PB−f on � (Theorem 3.5).

Example 4.1 shows that it is not enough to assume that f is a C1-function
to ensure that P2 is true, even if � is the unit ball. Example 4.2 shows that
even if P2 is true and f ∈ C∞(∂�), it may happen that P1 is false. If � is a
strictly pseudoconvex domain in Cn with C2-boundary and f : ∂� → R is a
C2-function, then f is a compliant function (Proposition 4.3).

The authors would like to thank Jonas Andersson, Sławomir Kołodziej and
Frank Wikström for many valuable comments on and suggestions for this
manuscript.
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2. The connection between the Cegrell classes and compliant functions

In this section assume that f : ∂� → R is a continuous function such that

(3) lim
z→ξ

PBf (z) = f (ξ),

for every ξ ∈ ∂�, hence PBf ∈ PSH (�) ∩ C(�̄) by Walsh’s theorem
(see [13]). A bounded plurisubharmonic function ϕ defined on � belongs to
E0 (= E0(�)) if limz→ξ ϕ(z) = 0 for every ξ ∈ ∂� and

∫
�

(ddcϕ)n < +∞.

The class E0 has a role similar to that of the test functions, C∞
0 (�), in the

theory of distributions. Before the connection between the Cegrell classes and
compliant functions will be discussed the definition of the Cegrell classes given
by a continuous function will be stated. For the definition of Fp and Ep see
[3] and for F , E see [4]. For further information about the Cegrell classes see
e.g. [6] and the references therein.

Definition 2.1. Let K ∈ {E0,Fp, Ep,F , E } and f : ∂� → R a con-
tinuous function that satisfies (3). A plurisubharmonic function u defined on
� belongs to K (f ) (= K (�, f )) if there exists a function ϕ ∈ K such that

PBf ≥ u ≥ ϕ + PBf .

Remark. Let K ∈ {E0,Fp, Ep,F , E }, then K (0) = K .

Proposition 2.2. Let K ∈ {E0,Fp, Ep,F } and let u ∈ K (f ). If f is a
compliant function, then (u+ PB−f ) ∈ K (0).

Proof. Let K ∈ {E0,Fp, Ep,F } and u ∈ K (f ). Definition 2.1 implies
that u ∈ PSH (�) and that there exists a function ϕ ∈ K such that PBf ≥
u ≥ ϕ + PBf , hence

(4) 0 ≥ PBf + PB−f ≥ u+ PB−f ≥ ϕ + PBf + PB−f .

The function (ϕ + PBf + PB−f ) belongs to K , since K is a convex cone and
f is compliant. By (4) it follows that (u+ PB−f ) ∈ K (0).

Remark. The converse statement of Proposition 2.2 is true for E0(f ), i.e.,
if u ∈ E0(f ) and (u + PB−f ) ∈ E0(0), then f is a compliant function. Let
K ∈ { Fp, Ep,F } and u ∈ K . If (u+PB−f ) ∈ K (0), then (PBf +PB−f ) ∈
K (0). But (PBf + PB−f ) ∈ K (0) is generally not a sufficient condition for
f to be compliant.
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Proposition 2.2 yields an easy method to transform questions about the
Cegrell classes given by a continuous function to the classes with zero boundary
values. The classes with zero boundary values is much easier to handle and
therefore the question of finding a natural characterization of the compliant
functions is of importance. If u ∈ E (f ), then (u + PB−f ) always belongs
to E without the assumption that f is compliant. Example 2.4 is a slightly
modified version of Example 5.6 in [5] and it shows that there exists a function
u ∈ E0(f ), f ∈ C∞(∂�), such that the total mass of (ddcu)n is infinite. This
cannot occur if f is a compliant function (see Lemma 2.5).

Lemma 2.3. If f, g ∈ F , then

(∫
�

(ddc(u+ v))n
) 1

n

≤
(∫

�

(ddcu)n
) 1

n

+
(∫

�

(ddcv)n
) 1

n

.

Proof. See Lemma 2.5 in [5].

Example 2.4. Let P be the unit polydisc in C2, i.e., P = {(z1, z2) ∈
C2 : |z1| < 1, |z2| < 1}. Let f : ∂P → R be defined by f (z1, z2) = |z2|2.
The function f is not compliant, f ∈ C∞(∂P ) and PBf (z1, z2) = |z2|2.
For each j ∈ N define the function ϕj : P → R by ϕj (z) = ϕj (z1, z2) =
max(aj log |z1|, bj log |z2|, cj ), where aj , bj , cj ∈ R, aj , bj > 0 and cj <

0. Then ϕj ∈ PSH (P ) ∩ C(P̄ ), lim(z1,z2)→(ξ1,ξ2) ϕj (z1, z2) = 0 for every
(ξ1, ξ2) ∈ ∂P and

(5)
∫
P

(ddcϕj )
2 = (2π)2ajbj < +∞,

hence ϕj ∈ E0. Let vk : P → R be defined by vk = ∑k
j=1 ϕj . From this

definition it follows that vk ∈ E0 and that [vk] is a decreasing sequence on P .
Lemma 2.3 and (5) yields that

(6)
∫
P

(ddcvk)
2 ≤

( k∑
j=1

(∫
P

(ddcϕj )
2

) 1
2
)2

≤ (2π)2

( k∑
j=1

(ajbj )
1
2

)2

.

Assume that

(7)
∞∑
j=1

(ajbj )
1
2 < +∞ and

∞∑
j=1

cj > −∞

and let v(z) = limk→∞ vk(z). The construction of the function v implies that
lim(z1,z2)→(ξ1,ξ2) v(z1, z2) = 0 for every (ξ1, ξ2) ∈ ∂P . The assumptions in (7)
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imply that v ∈ PSH (P )∩L∞(P ) and by inequality (6) it follows that v ∈ E0.
Let u : P → R be defined by u = v + PBf , hence u = (v + |z2|2) ∈ E0(f ).
Then it follows that∫

P

(ddc(vk + |z2|2))2 =
∫
P

(ddcvk)
2 + 4i

∫
P

(ddcvk) ∧ dz2 ∧ dz̄2

=
∫
P

(ddcvk)
2 + 32

∫
P

∂2vk

∂z1∂z̄1
dV ((z1, z2))

=
∫
P

(ddcvk)
2 + 32

∫
P

k∑
j=1

∂2ϕj

∂z1∂z̄1
dV ((z1, z2))

≥ 32
k∑

j=1

∫
P

∂2ϕj

∂z1∂z̄1
dV ((z1, z2)),(8)

where V is the Lebesgue measure on C2. Let ε > 0 be given such that 0 <

ε < 1 and let D(0, r) = {z ∈ C : |z| < r}. Choose χ1, χ2 ∈ C∞
0 (D(0, 1))

such that 0 ≤ χ1, χ2 ≤ 1 and χ1 = 1 = χ2 on D(0, 1 − ε). For fixed

|z2| ≤ min
(
1 − ε, (1 − ε)

aj

bj

)
fix, it follows that

(9)
∫
D(0,1)

χ1(z1)
∂2ϕj

∂z1∂z̄1
dV (z1) = 8πaj .

Under the assumption that aj ≥ bj inequality (8) together with (9) yield that

∫
P

(ddc(vk + |z2|2))2 ≥ 32
k∑

j=1

∫
P

(χ1(z1)χ2(z2))
∂2ϕj

∂z1∂z̄1
dV ((z1, z2))

≥ c

k∑
j=1

aj

(
min

(
1 − ε, (1 − ε)

aj

bj

))2

,(10)

where c > 0 is a constant. Let ε → 0+, then (10) implies that

∫
P

(ddc(vk + |z2|2))2 ≥ c

k∑
j=1

aj .

Thus

(11)
∫
P

(ddcu)2 = lim
k→+∞

∫
P

(ddc(vk + |z2|2))2 ≥ c

∞∑
j=1

aj .
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Let the sequences [aj ], [bj ] and [cj ] be defined by aj = 1/j , bj = 1/j 3 and
cj = −1/j 2. Thus the assumptions (7) and aj ≥ bj are satisfied, which implies
that the function defined on P by

u(z1, z2) =
∞∑
j=1

max

(
1

j
log |z1|, 1

j 3
log |z2|,− 1

j 2

)
+ |z2|2,

belongs to E0(f ) and
∫
P
(ddcu)2 = +∞, by (11).

Lemma 2.5. If f ∈ CP(∂�), then F (f ) = {u ∈ F (f ) :
∫
�
(ddcu)n <

+∞}.
Proof. Let u ∈ F (f ), i.e., u ∈ PSH (�) and there exists a function ϕ ∈

F such that PBf ≥ u ≥ ϕ+PBf . Theorem 2.1 in [4] implies that there exists a
decreasing sequence [ϕj ], ϕj ∈ E0, that converges pointwise to ϕ as j → +∞.
Let the sequence [uj ], j ∈ N, be defined by uj = max

(
u, ϕj + PBf

)
. Then the

decreasing sequence [uj ], uj ∈ E0(f ), converges pointwise to u as j → +∞
and

(ddc(ϕj + PBf + PB−f ))n ≥ (ddc(ϕj + PBf ))
n + (ddcPB−f )n(12)

= (ddc(ϕj + PBf ))
n,

since (PBf +PB−f ) ∈ E0(0). The sequence [(ϕj +PBf +PB−f )] is decreasing
and converges pointwise to (ϕ + PBf + PB−f ) ∈ F as j → +∞. From
Proposition 5.1 in [4] it follows that

lim
j→+∞

∫
�

(ddc(ϕj + PBf + PB−f ))n =
∫
�

(ddc(ϕ + PBf + PB−f ))n,

hence

(13) sup
j

∫
�

(ddcuj )
n < +∞,

by (12). Let [φs], φs ∈ C∞
0 (�), φs ≥ 0, be an increasing sequence which

converges pointwise to 1 on � as s → +∞. For s ∈ N fixed, it follows from
(13) that

(14)
∫
�

φs(ddcu)n = lim
j→+∞

∫
�

φs(ddcuj )
n ≤ sup

j

∫
�

(ddcuj )
n < +∞.

Let s → +∞, this lemma then follows from (14) and the monotone conver-
gence theorem.
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Lemma 2.6. Assume that f, g : ∂� → R are continuous functions such
that

lim
z→ξ
z∈�

PBf (z) = f (ξ) and lim
z→ξ
z∈�

PBg(z) = g(ξ),

for every ξ ∈ ∂� and in addition assume that f is a compliant function.
Let K ∈ {E0,Fp, Ep,F }. If u ∈ K (f ) and v ∈ K (g), then (αu + βv) ∈
K (αf + βg), where α, β ∈ R, α, β ≥ 0.

Proof. Let K ∈ {E0,Fp, Ep,F },u ∈ K (f ) andv ∈ K (g). Definition 2.1
implies that u, v ∈ PSH (�) and that there exist functions ϕ,ψ ∈ K such
that PBf ≥ u ≥ ϕ + PBf and PBg ≥ v ≥ ψ + PBg . The definition of
the Perron-Bremermann envelope yields that PBβg ≥ PBαf+βg + PB−αf and
therefore it follows that

PBαf+βg ≥ αu+ βv ≥ αϕ + βψ + PBαf + PBβg

≥ αϕ + βψ + PBαf + PBαf+βg + PB−αf
= αϕ + βψ + α(PBf + PB−f )+ PBαf+βg.

Thus (αu+ βv) ∈ K (αf + βg), since (αϕ + βψ + α(PBf + PB−f )) ∈ K .

Theorem 2.7. Let � ⊆ Cn be a bounded hyperconvex domain and let
f : � → R be a continuous function. The function f is compliant if, and only
if,

(15) E0(f )⊕ E0(−f ) ⊆ E0(0),

where ⊕ is the sum of two sets. Moreover, equality holds in (15) if, and only
if, PBf is pluriharmonic on � and continuous on �̄.

Proof. Assume that f is a compliant, hence −f is compliant. Let u ∈
E0(f ) and v ∈ E0(−f ). Lemma 2.6 implies that (u+ v) ∈ E0(f + (−f )) =
E0(0). The converse follows immediately since PBf ∈ E0(f ) and PB−f ∈
E0(−f ). For the second statement first assume that equality holds in (15).
Then there exist u ∈ E0(f ) and v ∈ E0(−f ) such that u + v = 0, hence u
is pluriharmonic on � and u = PBf . Walsh’s theorem concludes that PBf is
continuous on �̄. This proof ends with noticing that if PBf is pluriharmonic
on � and continuous on �̄, then PB−f = PBf and for u ∈ E0 it follows that
(u+ PBf ) ∈ E0(f ) and u = (u+ PBf )+ PB−f .

Corollary 2.8 is a direct consequence of Theorem 2.7 and Lemma 2.5.

Corollary 2.8. If f ∈ CP(∂�) is a compliant function, then E0(f ) =
{u ∈ E0(f ) :

∫
�
(ddcu)n < +∞} and E0(−f ) = {v ∈ E0(−f ) :

∫
�
(ddcv)n <

+∞}.
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3. The compliant functions as a Banach space

For convenience let u be the operator defined on a function f : ∂� → R by
u(f ) = PBf + PB−f . Then it immediately from (1) that if f, g : ∂� → R are
two functions and α, β ∈ R, then

(16) 0 ≥ u(αf + βg) ≥ |α| u(f )+ |β| u(g).
This inequality together with the fact that E0 is a convex cone yields Proposi-
tion 3.1.

Proposition 3.1. Let � ⊆ Cn be a bounded hyperconvex domain. The
set of all compliant functions is a linear subspace of the real vector space
containing the real-valued continuous functions defined on ∂�.

Lemma 3.2. If f, g ∈ CP(∂�), then |u(f )(z) − u(g)(z)| ≤ 2‖f − g‖∞
for all z ∈ �.

Proof. The definition of the Perron-Bremermann envelope implies that
PBf−g ≤ PBf − PBg and PBf − PBg ≤ −PBg−f and from this it follows that

min
∂�

(g − f ) ≤ PBf−g ≤ PBf − PBg ≤ −PBg−f ≤ − min
∂�

(f − g),

hence |PBf − PBg| ≤ ‖f − g‖∞ and therefore

|u(f )(z)− u(g)(z)| = |PBf + PB−f − PBg − PB−g| ≤ 2‖f − g‖∞,

which concludes the proof.

Theorem 3.3. If ‖ · ‖ is defined by (2), then (CP(∂�), ‖ · ‖) is a Banach
space.

Proof. If f is identically 0, then it follows from (2) that ‖f ‖ = 0.
Moreover, if ‖f ‖ = 0, then ‖f ‖∞ = 0. Hence f = 0. Let t ∈ R, then

‖tf ‖ = ‖tf ‖∞ +
(∫

�

(ddcu(tf ))n
) 1

n

= |t |‖f ‖∞ + |t |
(∫

�

(ddcu(f ))n
) 1

n

= |t |‖f ‖.
Thus (CP(∂�), ‖ · ‖) is a normed vector space, since the triangle inequality
follows from Lemma 2.3. It remains to prove completeness. Now assume that
[fj ] is a Cauchy sequence in (CP(∂�), ‖ · ‖), hence it is a Cauchy sequence
in ‖ · ‖∞ norm and therefore there exists a continuous function f : ∂� → R
such that [fj ] converges uniformly on ∂� to f as j → +∞. Because [fj ] is
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a Cauchy sequence in (CP(∂�), ‖ · ‖) there exists an increasing sequence jk
such that ‖fjk+1 − fjk‖ ≤ 2−k , hence

(17)
∫
�

(ddcu(fjk+1 − fjk ))
n ≤ 2−nk,

by (2). Note that

fjk+1 = fj1 +
k∑
i=1

(fji+1 − fji )

and then by using (17) together with Lemma 2.3 it follows that

(∫
�

(ddcu(fjk+1))
n

) 1
n

≤
(∫

�

(ddcu(fj1))
n

) 1
n

+
k∑
i=1

(∫
�

(ddcu(fji+1 − fji ))
n

) 1
n

≤ ‖fj1‖ + 1.

Thus, supk
∫
�
(ddcu(fjk+1))

n ≤ (‖f1‖ + 1)n < +∞. Lemma 3.2 now yields
that the total mass of (ddcu(f ))n is bounded by (‖fj1‖ + 1)n, i.e., f satisfies
P2. Now assume that P1 is false, then there exists a ξ ∈ ∂� and a sequence
[zl] in � such that [zl] converges to ξ and liml→∞ u(zl) = −a < 0, where
a ≥ 0 is a constant. The sequence [fj ] converges uniformly to f on ∂�, hence
there exists m ∈ N such that ‖fj − f ‖∞ ≤ a

4 for all j ≥ m. Lemma 3.2 yields
that |u(fj )(zl)− u(f )(zl)| ≤ 2‖fj − f ‖∞ < a

2 and a contradiction has been
achieved since ∣∣ lim

l→∞(u(fj )(zl)− u(f )(zl))
∣∣ = a.

Thus, f is a compliant function and this proof is completed.

Corollary 3.4. If [fj ] is a sequence which converges in (CP(∂�), ‖ · ‖)
to a function f , then [(ddcu(fj ))n] converges to (ddcu(f ))n in the weak∗-
topology. In other words the map CP(∂�) � f → (ddcu(f ))n is continuous.

Theorem 3.5. The set CP0(∂�) is a closed subspace of CP(∂�). More-
over, CP0(∂�) = PH (∂�).

Proof. Inequality (16) implies that CP0(∂�) is a subspace. Now assume
that [fj ] is a sequence in CP0(∂�) which converges in norm to a function f .
Corollary 3.4 implies that [(ddcu(fj ))n] converges to (ddcu(f ))n in the weak∗-
topology. By assumption u(fj ) = 0, hence (ddcu(fj ))n = 0 and therefore it
follows by Corollary 3.4 that (ddcu(f ))n = 0. Hence u(f ) = 0, i.e., f ∈
CP0(∂�) which yields that CP0(∂�) is closed.

To prove the second statement let f ∈ CP0(∂�), i.e., u(f ) is identically
0. This together will Walsh’s theorem implies that PBf ,PB−f ∈ PSH (�) ∩
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C(�̄) and −PBf = PB−f . Thus, PBf ∈ PH (�) ∩ C(�̄). On the other hand,
if there exists a function u ∈ PH (�) ∩ C(�̄) such that u = f on ∂�, then
ddcu = 0 and therefore u = PBf . Similarly, −u = PB−f . Thus, u(f ) is
identically 0.

Remark. It was proved in [7] that if D is a hyperconvex product domain
D = Dn1 ×· · ·×Dnk , n = n1 +· · ·+nk , k ≥ 3, then CP0(∂D) = CP(∂D) =
PH (∂D). Consider f (z1, z2) = |z1|2 defined on the boundary of the unit ball
in C2. This simple example shows by some straight forward calculations that
CP0(∂B) is generally not equal to CP(∂B).

4. Examples

Example 4.1 shows that it is not enough to assume that f is a C1-function to
ensure that P2 is true.

Example 4.1. Let B ⊆ Cn be the unit ball and z = (z′, zn) ∈ B. For fixed
0 < p < 1, let fp : ∂B → R be the function defined by fp(z′, zn) = |zn|2p.
Then

PBfp (z
′, zn) = |zn|2p and PB−fp (z

′, zn) = −(1 − |z′|2)p.
Set E = {(z′, zn) ∈ B : zn = 0} ∪ {(z′, zn) ∈ B : |z′| = 1}. The set E is a
pluripolar, hence

∫
�

(ddc(PBfp + PB−fp ))
n =

∫
�\E

(ddc(PBfp + PB−fp ))
n

= C

∫ 1

0
|r|2np−2n+1(1 − r2)n−1dr,

whereC > 0 is a constant only depending on n andp. Thus fp is not compliant
if, and only if, p ≤ n−1

n
. For n > 2, the function fn−1

n
belongs to C1(∂B).

Example 4.2 shows that even if P2 is true and f ∈ C∞(∂�), it may happen
that P1 is false. This phenomenon cannot happen if� is a B-regular domain (see
e.g. [12] for the definition and elementary properties of B-regular domains).

Example 4.2. Let P be the unit polydisc in C2, i.e., P = {(z1, z2) ∈
C2 : |z1| < 1, |z2| < 1} and let the function f : ∂P → R be defined
by f (z1, z2) = |z2|2. Then f ∈ C∞(∂P ) PBf (z1, z2) = |z2|2. From (1) it
follows that PB−f (z1, z2) ≥ −1. Fix (z0, w0) ∈ P and let vz0 be a function
defined on the unit discD in C by vz0(ζ ) = PB−f (z0, ζ ), hence vz0 ∈ SH (D)

and lim supζ→ξ vz0(ζ ) ≤ −1 for every ξ ∈ ∂D(0, 1), hence vz2 ≤ −1 on
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D(0, 1) by the maximum principle for subharmonic functions and therefore
PB−f ≤ −1 on P . Thus, PB−f (z1, z2) = −1. Moreover,

∫
P

(ddc(PBf + PB−f ))2 = 0.

Thus P2 is true, but

lim
(z1,z2)→(ξ1,ξ2)

(z1,z2)∈P
(PBf (z1, z2)+ PB−f (z1, z2)) �= 0,

when (ξ1, ξ2) ∈ ∂P \ {(w1, w2) ∈ C2 : |w2| = 1}, hence P1 is false.

Proposition 4.3. If D ⊆ Cn is a bounded, strictly pseudoconvex domain
with C2-boundary and f ∈ C2(∂D), then f is a compliant function.

Proof. The domain D is in particular B-regular and the function f is in
particular continuous and therefore it follows that P1 is true. There exists
an open neighbourhood U of D and a strictly plurisubharmonic C2-function
ρ : U → R such that ρ = 0 on ∂�, since D is a strictly pseudoconvex
domain with C2-boundary. By Theorem I in [14] there exists a C2-function
f̃ : Cn → R such that f̃ = f on ∂D. Choose A > 0 such that u = (f̃ +
Aρ) ∈ PSH (D) and B > 0 such that v = (−f̃ + Bρ) ∈ PSH (D). Hence,
u, v ∈ PSH (U) ∩ C2(U), u = −v = f on ∂D. Thus

(18)
∫
D

(ddc(u+ v))n =
∫
D

n∑
k=0

(
n

k

)
(ddcu)n−k ∧ (ddcv)k < +∞.

The construction of PBf and PB−f implies that u+ v ≤ PBf + PB−f , hence
∫
D

(ddc(PBf + PB−f ))n ≤
∫
D

(ddc(u+ v))n < +∞,

by (18) and the comparison principle. Thus P2 holds.

Remark. Let k ∈ {0, 1, 2, . . .} ∪ {+∞}. See [14] for the definition of how
a function f : ∂� → R is of class Ck and their basic properties.
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