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ON SYMMETRIC WORDS IN THE SYMMETRIC
GROUP OF DEGREE THREE

ERNEST PŁONKA

Abstract
A word w(x1, x2, . . . , xn) from absolutely free group Fn is called symmetric n-word in a group
G, if the equality w(g1, g2, . . . , gn) = w(gσ1, gσ2, . . . , gσn) holds for all g1, g2, . . . , gn ∈ G

and all permutations σ ∈ Sn. The set S(n)(G) of all symmetric n-words is a subgroup of Fn. In
this paper the groups of all symmetric 2-words and 3-words for the symmetric group of degree 3
are determined.

0. Introduction

Let A = (A,F) be an algebra with a family F of fundamental finitary oper-
ations on A and let A(n)(A ) denote the set of all n-ary polynamials of the
algebra A . An element f ∈ A(n)(A ) is called symmetric if the equality
f (aσ1, aσ2, . . . , aσn) = f (a1, a2, . . . , an) holds for all a1, a2, . . . , an ∈ A

and all permutations σ ∈ Sn. The set of all symmetric polynomials of A is
denoted by S(n)(A ). In the case of a groupG the set A(n)(G) consists of all func-
tions Gn � (g1, g2, . . . , gn) −→ w(g1, g2, . . . , gn), where w(x1, x2, . . . , xn)

is a word of n variables, i.e. an element of the free group Fn on free gen-
erators x1, x2, . . . , xn. Let Vn(G) = Vn be the subgroup of Fn consisting
of all words w such that w(g1, g2, . . . , gn) = 1 for all g1, g2, . . . , gn ∈ G.
For a permutation σ ∈ Sn the mapping xi −→ xσ(i), 1 ≤ i ≤ n, σ ∈ Sn,
define an automorphism ϕσ of Fn. Namely we have ϕσ (w)(x1, x2, . . . , xn) =
w(xσ(1), xσ(2), . . . , xσ(n)). Since Vn is complete characteristic subgroup of Fn,
the automorphism ϕσ induces an automorphism ϕσ of the factor group Fn/Vn.
Clearly two words w, v ∈ Fn yield the same element of A(n)(G) if and only
if wv−1 ∈ Vn and therefore the set S(n)(G) of all n-ary symmetric operations
in G can be identified with the subgroup of the group Fn/Vn consisting of all
elements which are stable under the action of all automorphisms ϕσ , σ ∈ Sn.
Thus

S(n)(G) = {w · Vn ∈ Fn/Vn : ϕσ (w · Vn) = w · Vn for all σ ∈ Sn}
= {w ∈ Fn/Vn : ϕσ (w) · w−1 ∈ Vn for all σ ∈ Sn}.

Received November 22, 2004.



6 ernest płonka

The question of characterization of symmetric words of n variables (shortly
n-words) in groups was initiated in [11] and [12]. It has been done for arbitrary
nilpotent groups of class ≤ 3 and in the case of symmetric 2-words also for
dihedral group of order 2p. In the papers [2] and [9] 2-words are determined for
free metabelian groups and soluble groups of derived length 3. A description
of the groups S(2)(G) and S(3)(G) for free metabelian and free metabelian,
nilpotent group G is given in [4]. The same for free nilpotent groups of class
4 and 5 has been done in [5], [6] and [7]. Very recently all symmetric n-
words for free metabelian groups are characterized in [8]. Some applications
of symmetric words one can find in [13]. In this note all symmetric 2-words
for the symmetric group S3 are listed and using this we determine the group
S(3)(S3). Unexpectedly enough it turns out that it is isomorphic to the group
(Z3)

6, whereas the group S(2)(S3) is non-Abelian. Moreover we prove that all
groups S(n)(S3) with the exception n = 2 are commutative.

1. Preliminaries

Let us denote e = (1, 2, 3), 1 = (2, 3, 1), 2 = (3, 1, 2), ϕ = (2, 1, 3),
ϕ1 = (3, 2, 1) and ϕ2 = (1, 3, 2). We use standard notation:

x−1yx = yx, x−1y−1xy = [x, y], xy+αz+β = xy(xα)zxβ, x0 = e

for arbitrary group elements x, y, z and all integers α, β. We often shall make
use the following simple

Statements. (i) The following relations

yx = xy[y, x], [y, x]−1 = [x, y], [xy, z] = [x, z][x, z, y][y, z],

[x, yz] = [x, z][x, y][x, y, z]

are identities in any group.
(ii) The following equations

x6 = 1,(1)

[x, y]3 = 1,(2)

[x2, [y, z]] = 1,(3)

[[x, y], [z, u]] = 1(4)

are identities in S3. The group S3 is metabelian (comp. [10]) and therefore the
Jacobi identity J (x, y, z) = 1, i.e. the equality

J (x, y, z) = [y, x]1−z[z, x]y−1[z, y]1−x = 1

is an identity in S3.
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(iii) For arbitrary group G the relation s(x1, x2, . . . , xn) ∈ S(n)(G) implies
s(x1, x2, . . . , xn−1, 1) ∈ S(n−1)(G).

(iv) If two wordsw, v ∈ A(2)(S3) are equal on the pairs (1, e), (e, 1), (1, ϕ),
(ϕ, 1), (ϕ, 1ϕ) and (1ϕ, ϕ), then w(x, y) = v(x, y) is an identity in S3 ([11,
Lemma]).

2. Auxiliary results

We begin with

Theorem 1. The group S(2)(S3) consists of 18 elements

1 · 1 · 1 = 1 1 · 1v = x2y2[y, x]x−y 1 · 1v2 = x4y4[y, x]y−x

s1 · 1 = [y, x]x−y s1v = x2y2[y, x]y−x s1v2 = x4y4

s21 · 1 = [y, x]y−x s21v = x2y2 s21v2 = x4y4[y, x]x−y

1t1 = x3y3[y, x]−x−y 1tv = x5y5[y, x]1+x+y 1tv2 = xy[y, x]−1

st1 = x3y3[y, x]x stv = x5y5[y, x]1−y stv2 = xy[y, x]−1−x+y

s2t1 = x3y3[y, x]y s2tv = x5y5[y, x]1−x s2tv2 = xy[y, x]−1+x−y

where

s = [y, x]x−y, t = x3y3[y, x]−x−y and v = x2y2[y, x]x−y.

Thus the group S(2)(S3) is the direct product of subgroup gp{s, t} ∼= S3 and
cyclic group gp{v} of order 3.

Proof. It was proved in [11, Theorem 2] that the words w = xy[y, x]−1

and u = x2y2 are symmetric in the group S3 and that the group S(2)(S3) is
generated by this words. Therefore s, t and v are symmetric words in S3. Using
the identities from (i) and (ii) one can easily verify the relations s3 = 1, t2 = 1,
v3 = 1, st = t2s, sv = vs and tv = vt . Hence the group gp{s, t} is isomorphic
to S3, and thus gp{s, t} × {1, v, v2} = S(2)(S3).

Lemma 1. If for integers a, b, c and d the equality

(5) [y, x]ax+by+cxy+d = 1

holds for all x, y ∈ S3 then a ≡ b ≡ c ≡ d (mod 3).

Proof. We use (iv). Since the equality (5) holds for the pairs (1, e), (e, 1)
and all integers a, b, c and d, we can restrict ourself to four pairs (1, ϕ), (ϕ, 1),
(b, 1ϕ) and (1ϕ, ϕ). By (iv) the equality (5) is an identity in the group S3 if
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and only if the integers a, b, c and d satisfy the following system of equalities




2a · 1b · 1c · 2d = e

2a · 1b · 2c · 1d = e

1a · 1b · 2c · 2d = e

2a · 2b · 1c · 1d = e

Since the mapping e −→ 0, 1 −→ 1, 2 −→ 2 is an isomorphism of the
permutation group ({e, 1, 2}; ◦) onto the cyclic group Z3, the last system is
equivalent to the homogenous system of equations




2a + b + c + 2d = 0

2a + b + 2c + d = 0

a + b + 2c + 2d = 0

2a + 2b + c + d = 0

where + is taken modulo 3, of course. Let us observe that vector (1, 1, 1, 1)
is a solution of the system. Since the rank of the matrix of the system is 3, the
set {(1, 1, 1, 1), (2, 2, 2, 2), (0, 0, 0, 0)} consists of all solutions.

Corollary 1. The relation

[y, x]1+x+y+xy = 1

is an identity in the group S3.

Corollary 2. If for some integers a, b, c and d the equality

[y, x]ax+by+cxy+d = 1

holds for all x, y ∈ S3 and at least one from the integers a, b, c or d is 0
(mod 3), then all the integers have to be equal 0 (mod 3).

Lemma 2. The equality

(6) [y, x](1−z)(a+bx+cy+dz)[z, x]f (y−1)(x−y) = 1

holds for all x, y, z ∈ S3 if and only if c ≡ a − b − d ≡ f − b ≡ 0 (mod 3).

Proof. If we put z = x into (5) then we get

[y, x](a−b−d)+(b+d−a)x+cy−cxy .
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It follows from Lemma 1 that c ≡ a − b − d ≡ 0 (mod 3). Because of the
equality [y, x](1−z)(1+z) = 1 we can rewrite (5) as

[y, x]b(1−z)(x+1)[z, x]f (y−1)(x−y) = 1.

By putting z = y and taking into account Lemma 1 we get congruence f ≡ b

(mod 3).
Conversely, if the congruences hold then the equality (5) is of the form

[y, x]b(x+1)(1−z)[z, x]b(x+1)(y−1) = 1,

which is identical with the Jacobi identity J (x, y, z)b(x+1) = 1.

3. Symmetric 3-words

Let w be a word of 3 variables in general form

(7) w = xα1yβ1zγ1xα2yβ2zγ2 · · · xαnyβnzγn ,
where αi, βi, γi ∈ Z, i = 1, 2, . . . , n and n ∈ N. In view of the identity (1),
we may assume that all integers αi , βi and γi belong to the set {0, 1, 2, 3, 4, 5}.
Using the identities from (i) it is possible to remove each x of the word (7)
at the first place. One obtains a word of the form xa1uv . . ., where u, v, . . .

are variables y, z or commutators of the form [y, x]x
i

and [z, x]x
j

for some
i, j = 1, 2, . . .. Since squares of elements of the group S3 commutes with
commutators (comp. (3)), one can assume i and j equal 0 or 1. Now we
remove all y ′s at the second place and apply (ii). We get a word xαyβu′v′ · · ·,
where u′, v′, . . . are words of the form z, [y, x]x

iyj , [z, x]x
kyl or [z, x]y

m

for
some i, j, k, l, m ∈ {0, 1}. Clearly, the same collecting process can be made
with the last variable z. This together with Corollary 2 gives

Lemma 3. Any word of variables x, y and z in the group S3 is equivalent
modulo V3(S3) to the following word

(8)

w(x, y, z) = xaybzc · [y, x]α0+α1x+α2y+α3z+α13xz+α23yz

· [z, x]β0+β1x+β2y+β3z+β12xy+β23yz

· [z, y]γ0+γ1x+γ2y+γ3z+γ12xy+γ13xz

for some elements a, b, c ∈ {0, 1, 2, 3, 4, 5} and α0, . . . , γ13 ∈ {0, 1, 2}.
From now on we write w = u instead of w ≡ u (mod V3(S3)) and we

prefer to write −1 than 2, when 2 is an exponent of a commutator. Now we are
able to determine all words of three variables in the group S3. First we show
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that the image of each symmetric 3-word in S3 treated as a function S3
3 −→ S3

is contained in the commutator subgroup of S3. More precisely we have

Theorem 2. Let s(x, y, z) be a symmetric 3-word of the form (8) in the
group S3. Then a = b = c = 2i for i = 0, 1 or 2.

Proof. Clearly s(x, 1, 1) = s(1, x, 1) = s(x, 1, 1) and therefore we have
a ≡ b ≡ c (mod 6).

Let us suppose that a = 1. We have

s(x, y, 1) = xy[y, x](α0+α3)+(α1+α13)x+(α2+α23)y,

s(x, 1, y) = xy[y, x](β0+β2)+(β1+β12)x+(β3+β23)y,

s(1, x, y) = xy[y, x](γ0+γ1)+(γ2+γ12)x+(γ3+γ13)y .

By (iii) s(x, y, 1) is a symmetric 2-word in S3. It follows from Theorem 1 that
s(x, y, 1) equals

xy[y, x]−1 or xy[y, x]−1−x+y or xy[y, x]−1+x−y.

Without loss of generality we can assume that

s(x, y, 1) = xy[y, x]−1.

Indeed, it is easy to verify the equalitiesw(x, y, z) = w(y, x, z) = w(x, z, y),
where

w(x, y, z) = [y, x](y−x)z[z, x](z−x)y[z, y](z−y)x,

which means that w is a symmetric 3-word in the group S3 such that w(x, y, 1)
= [y, x]y−x . Therefore if s(x, y, 1) does not equal xy[y, x]−1, then we can
consider s · w or s · w2 instead of s.

By Corollary 2 we get the congruences

(9) α0 + α3 + 1 ≡ β0 + β2 + 1 ≡ γ0 + γ1 + 1 ≡ α1 + α13 ≡ β1 + β12

≡ γ2 + γ12 ≡ α2 + α23 ≡ β3 + β23 ≡ γ3 + γ13 ≡ 0 (mod 3).

Therefore we can rewrite the word s as

s(x, y, z) = xyz · [y, x](1−z)(α0+α1x+α2y)−z

· [z, x](1−y)(β0+β1x+β3z)−y

· [z, y](1−x)(γ0+γ2y+γ3z)−x.
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Now using (i) and (ii) we get

s(y, x, z) = xyz[y, x]z · [y, x](1−z)(−α0−α2x−α1y)+z

· [z, x](1−y)(γ0+γ2x+γ3z)−y

· [z, y](1−x)(β0+β1y+β3z)−x

and similarly

s(x, z, y) = xyz[z, y] · [y, x](1−z)(β0+β1x+β3y)−z

· [z, x](1−y)(α0+α1x+α2z)−y

· [z, y](1−x)(−γ0−γ3y−γ2z)+x.

The condition s(x, y, z) = s(y, x, z) implies

(10) [y, x](1−z){(−α0+(α1+α2)x+(α1+α2)y}

· [z, x](1−y){(β0−γ0)+(β1−γ2)x+(β3−γ3)z}

· [z, y](1−x){(γ0−β0)+(γ2−β1)y+(γ3−β3)z} = 1,

which in the case z = x gives

[y, x](1−x){(−α0+β0−γ0)+(α1+α2+β3−γ3)x+(α1+α2+β1−γ2)y} = 1,

This, by Lemma 2, implies the congruences

β1 ≡ γ2 − α1 − α2 (mod 3)

−α0 + β0 − γ0 ≡ α1 + α2 + β3 − γ3 (mod 3)

Similarly the equality s(x, y, z) = s(x, z, y) gives

(11) [y, x](1−z){(α0−β0)+(α1−β1)x+(α2−β3)y}

· [z, x](1−y){(β0−α0)+(β1−α1)x+(β3−α2)z}

· [z, y](1−x){(−γ0−1+(γ2+γ3)y+(γ2+γ3)z} = 1,

which in the case y = x together with Lemma 2 yields the congruences

β3 ≡ α2 − γ2 − γ3 (mod 3)

−α0 + β0 − γ0 − 1 ≡ β1 − α1 + γ2 + γ3 (mod 3).

After eliminating β1 and β3 from above system of four congruences we see
that it has no solution.

Theorem 3. Let s(x, y, z) be a symmetric 3-word in the group S3, then

(12) s = ui · sj0 · sk1 · sl2 · sm3 · wn for some i, j, k, l, m, n ∈ {0, 1,−1},
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where
u(x, y, z) = x2y2z2,

s0(x, y, z) = [y, x]z−1[z, x]y−1,

s1(x, y, z) = [y, x](1−z)x[z, x]1−y[z, y](1−x)(y−z),

s2(x, y, z) = [y, x](1−z)y[z, x]1−y[z, y](1−x)(y+z)

s3(x, y, z) = [z, x](1−y)(x+z)[z, y](1−y)(y+z),

w(x, y, z) = [y, x](y−x)z[z, x](z−x)y[z, y](z−y)x .

Presentation (12) is unique and therefore S(3)(S3) is Abelian group isomorphic
to (Z3)

6.

Proof. Let s(x, y, z) be a symmetric 3-word in S3 of the form (8) with
a = b = c = 0. We have

s(x, y, 1) = [y, x](α0+α3)+(α1+α13)x+(α2+α23)y,

s(x, 1, y) = [y, x](β0+β2)+(β1+β12)x+(β3+β23)y,

s(1, x, y) = [y, x](γ0+γ1)+(γ2+γ12)x+(γ3+γ13)y .

By Theorem 1 every symmetric word s(x, y, 1) of two variables equals

either 1 or [y, x]y−x or else [y, x]x−y.

Let us consider first case s(x, y, 1) = 1.
By Corollary 2 we have the following congruences

(13) α0 + α3 ≡ β0 + β2 ≡ γ0 + γ1 ≡ α1 + α13 ≡ β1 + β12

≡ γ2 + γ12 ≡ α2 + α23 ≡ β3 + β23 ≡ γ3 + γ13 ≡ 0 (mod 3),

which enables us to rewrite the word s in the form

s(x, y, z) = [y, x](1−z)(α0+α1x+α2y)

· [z, x](1−y)(β0+β1x+β3z)

· [z, y](1−x)(γ0+γ2y+γ3z).

It is well known the transpositions (1, 2) and (2, 3) generate the symmetric
group S3 of degree 3 and therefore s(x, y, z) is symmetric if and only if two
equalities

s(y, x, z)−1 · s(x, y, z) = 1, s(x, z, y)−1 · s(x, y, z) = 1
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hold for all elements x, y, z from S3. We check

s(y, x, z) = [y, x](1−z)(−α0−α2x−α1y) · [z, x](1−y)(γ0+γ2x+γ3z)

· [z, y](1−x)(β0+β1y+β3z)

and similarly

s(x, z, y) = [y, x](1−z)(β0+β1x+β3y) · [z, x](1−y)(α0+α1x+α2z)

· [z, y](1−x)(−γ0−γ3y−γ2z).

Hence we get

(14)

f (x, y, z) = s(y, x, z)−1 · s(x, y, z)
= [y, x](1−z){−α0+(α1+α2)x+(α1+α2)y}

· [z, x](y−1){(γ0−β0)+(γ2−β1)x+(γ3−β3)z}

· [z, y](1−x){(γ0−β0)+(γ2−β1)y+(γ3−β3)z}

and also

(15)

g(x, y, z) = s(x, z, y)−1(s(x, y, z)

= [y, x](1−z){(α0−β0)+(α1−β1)x+(α2−β3)y}

· [z, x](y−1){(α0−β0)+(α1−β1)x+(α2−β3)z}

· [z, y](1−x){−γ0+(γ2+γ3)y+(γ2+γ3)z}

Thus s is symmetric if and only if the equalities f (x, y, z) = g(x, y, z) = 1
hold for all x, y, z ∈ S3. Applying Jacobi identity

([y, x]1−z[z, x]y−1[z, y]1−x){(γ0−β0)+(γ2−β1)y+(γ3−β3)z} = 1

to the equality (14) and

([y, x]1−z[z, x]y−1[z, y]1−x){(α0−β0)+(α1−β1)x+(α2−β3)y} = 1

to the equality (15) we see that s(x, y, z) is symmetric 3-word if and only if
the following two equalities

1 = f (x, y, z) = [y, x](1−z){(β0−α0−γ0)+(α1+α2)x+(α1+α2+β1−γ2)y+(β3−γ3)z}

· [z, x](γ2−β1)(y−1)(x−y),

1 = g(x, y, z) = [z, y](1−x){(β0−α0−γ0)+(β1−α1)x+(γ2+γ3+β3−α2)y+(γ2+γ3)z}

· [z, x](α2−β3)(y−1)(z−y)
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holds for all x, y, z ∈ S3. By Lemma 2 this is equivalent to the following
system of congruences

α1 + α2 + β1 − γ2 ≡ 0 (mod 3),

−α0 + β0 − γ0 ≡ α1 + α2 + β3 − γ3 (mod 3),

β3 − γ3 ≡ γ2 − β1 (mod 3),

−α2 + β3 + γ2 + γ3 ≡ 0 (mod 3),

−α0 + β0 − γ0 ≡ β1 − α1 + γ2 + γ3 (mod 3).

Choosing α0, γ0, α1, α2 and β1 as parameters we obtain the following solution
of the system

0 1 2 3

α α0 α1 α2 −α0

β α0 + γ0 − α1 − α2 β1 α0 − γ0 + α1 + α2 β1 − α2

γ γ0 −γ0 α1 + α2 + β1 −α1 + α2 + β1

Thus the word s can be written as

s(x, y, z) = [y, x](1−z)(α0+α1x+α2y) · [z, x](1−y)((α0+γ0−α1−α2)+β1x+(β1−α2)z

· [z, y](1−x)(γ0+(α1+α2+β1)(y−z)),

or
s = s

α0
0 · sγ0

4 · sα1
1 s

α2
2 · sβ1

3 ,

where
s0(x, y, z) = [y, x]z−1[z, x]y−1,

s4(x, y, z) = [z, x]y−1[z, y]x−1,

s1(x, y, z) = [y, x](1−z)x[z, x](1−y)[z, y](1−x)(y−z),

s2(x, y, z) = [y, x](1−z)y[z, x]1−y[z, y](1−x)(y+z),

s3(x, y, z) = [z, x](1−y)(x+z)[z, y](1−x)(y+z).

Above we have made use of (i) and (ii). Observe that

s0(x, y, z) · s4(x, y, z) = J (x, y, z)−1 = 1,

which yields

(16) s = s
j

0 · sk1 · sl2 · sm3
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for some j, k, l, m ∈ {0, 1,−1}. We claim that the presentation (16) of the
word s is unique. Indeed, if for some j, k, l, m ∈ {0, 1,−1} the equality

(17) s0(x, y, z)
j s1(x, y, z)

ks2(x, y, z)
ls3(x, y, z)

m = 1

hold for all x, y, z ∈ S3, then, in the case z = x, we get

[y, x]{(−j+k+l+m)+(j−k−l−m)x−(k+m)y+(k+m)xy)} = 1,

which by Lemma 1 implies l − j ≡ k +m ≡ 0 (mod 3). If we put z = y into
(16), we get

[y, x](j+k−m)+(j+k+m)x+(j−k+m)y−(k+m)xy = 1.

By Corollary 2 we have j = k = l = m = 0, as required.
As we have mentioned earlier u = x2y2z2 is symmetric 3-word in S3 and

w(x, y, z) = [y, x](y−x)z[z, x](z−x)y[z, y](z−y)x

is a symmetric 3-word with w(x, y, 1) = [y, x]y−x . Let s(x, y, z) be arbitrary
symmetric 3-word in S3 such that s(x, y, 1) = (x2y2)i[y, x]n(y−x) for some
i, n = 0, 1,−1. Then the following product (u−i sw−n) is a symmetric 3-word
with (u−i sw−n)(x, y, 1) = 1 and therefore, in view of what we have just
established, u−i sw−n = s

j

0 s
k
1s

l
2s

m
3 for some j, k, l, m, n, which completes the

proof.

Theorem 4. For all n �= 2 the groups S(n)(S3) of n-symmetric words of the
group S3 are commutative.

Proof. Let s(x1, x2, . . . , xn) be symmetric n-word, n ≥ 3, in S3. Using
the same arguments as in the proof of Theorem 1 it is possible to present the
word s as xa1

1 x
a2
2 , . . . , xann c, where c is a product of commutators of the form

[xi1 , xi2 ]P

forP being a polynomial in variables x1, x2, . . . , xn. Since s(x, 1, 1, . . . , 1) =
s(1, x, 1, . . . , 1) = · · · = s(1, 1, . . . , 1, x), we have the equality a1 ≡ a2 ≡
· · · ≡ an ≡ a (mod 6). In view of statement (iii) s(x, y, z, 1, . . . , 1) =
xayazac′ is a symmetric 3-word in S3. By Theorem 2, the number a has to
be even, which together with (2) of (ii) finishes the proof.

Remark. Every symmetric n-word in a group G is symmetric in any group
from the variety var(G) of groups generated by G and therefore the results of
the paper are valid not only for the group S3 but also for all groups from
var(S3) = HSP(S3).
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