ON SYMMETRIC WORDS IN THE SYMMETRIC GROUP OF DEGREE THREE

ERNEST PŁONKA

Abstract

A word $w(x_1, x_2, ..., x_n)$ from absolutely free group F_n is called symmetric *n*-word in a group G, if the equality $w(g_1, g_2, ..., g_n) = w(g_{\sigma 1}, g_{\sigma 2}, ..., g_{\sigma n})$ holds for all $g_1, g_2, ..., g_n \in G$ and all permutations $\sigma \in S_n$. The set $\mathbf{S}^{(n)}(G)$ of all symmetric *n*-words is a subgroup of F_n . In this paper the groups of all symmetric 2-words and 3-words for the symmetric group of degree 3 are determined.

0. Introduction

Let $\mathscr{A} = (A, \mathbf{F})$ be an algebra with a family **F** of fundamental finitary operations on A and let $\mathbf{A}^{(n)}(\mathscr{A})$ denote the set of all n-ary polynamials of the algebra \mathscr{A} . An element $f \in \mathbf{A}^{(n)}(\mathscr{A})$ is called symmetric if the equality $f(a_{\sigma 1}, a_{\sigma 2}, \ldots, a_{\sigma n}) = f(a_1, a_2, \ldots, a_n)$ holds for all $a_1, a_2, \ldots, a_n \in A$ and all permutations $\sigma \in S_n$. The set of all symmetric polynomials of \mathscr{A} is denoted by $\mathbf{S}^{(n)}(\mathcal{A})$. In the case of a group G the set $\mathbf{A}^{(n)}(G)$ consists of all functions $G^n \ni (g_1, g_2, \dots, g_n) \longrightarrow w(g_1, g_2, \dots, g_n)$, where $w(x_1, x_2, \dots, x_n)$ is a word of *n* variables, i.e. an element of the free group \mathcal{F}_n on free generators x_1, x_2, \ldots, x_n . Let $\mathcal{V}_n(G) = \mathcal{V}_n$ be the subgroup of \mathcal{F}_n consisting of all words w such that $w(g_1, g_2, \ldots, g_n) = 1$ for all $g_1, g_2, \ldots, g_n \in G$. For a permutation $\sigma \in S_n$ the mapping $x_i \longrightarrow x_{\sigma(i)}, 1 \le i \le n, \sigma \in S_n$, define an automorphism φ_{σ} of \mathcal{F}_n . Namely we have $\varphi_{\sigma}(w)(x_1, x_2, \ldots, x_n) =$ $w(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)})$. Since \mathscr{V}_n is complete characteristic subgroup of \mathscr{F}_n , the automorphism φ_{σ} induces an automorphism $\overline{\varphi}_{\sigma}$ of the factor group $\mathcal{F}_n/\mathcal{V}_n$. Clearly two words $w, v \in \mathcal{F}_n$ yield the same element of $\mathbf{A}^{(n)}(G)$ if and only if $wv^{-1} \in \mathcal{V}_n$ and therefore the set $\mathbf{S}^{(n)}(G)$ of all *n*-ary symmetric operations in G can be identified with the subgroup of the group $\mathcal{F}_n/\mathcal{V}_n$ consisting of all elements which are stable under the action of all automorphisms $\overline{\varphi}_{\sigma}, \sigma \in S_n$. Thus

$$\mathbf{S}^{(n)}(G) = \{ w \cdot \mathcal{V}_n \in \mathcal{F}_n / \mathcal{V}_n : \overline{\varphi}_{\sigma}(w \cdot \mathcal{V}_n) = w \cdot \mathcal{V}_n \text{ for all } \sigma \in S_n \} \\ = \{ w \in \mathcal{F}_n / \mathcal{V}_n : \varphi_{\sigma}(w) \cdot w^{-1} \in \mathcal{V}_n \text{ for all } \sigma \in S_n \}.$$

Received November 22, 2004.

ERNEST PŁONKA

The question of characterization of symmetric words of *n* variables (shortly *n*-words) in groups was initiated in [11] and [12]. It has been done for arbitrary nilpotent groups of class ≤ 3 and in the case of symmetric 2-words also for dihedral group of order 2p. In the papers [2] and [9] 2-words are determined for free metabelian groups and soluble groups of derived length 3. A description of the groups $\mathbf{S}^{(2)}(G)$ and $\mathbf{S}^{(3)}(G)$ for free metabelian and free metabelian, nilpotent group *G* is given in [4]. The same for free nilpotent groups of class 4 and 5 has been done in [5], [6] and [7]. Very recently all symmetric *n*-words for free metabelian groups are characterized in [8]. Some applications of symmetric words one can find in [13]. In this note all symmetric 2-words for the symmetric group S_3 are listed and using this we determine the group $\mathbf{S}^{(3)}(S_3)$. Unexpectedly enough it turns out that it is isomorphic to the group $(\mathbf{Z}_3)^6$, whereas the group $\mathbf{S}^{(2)}(S_3)$ is non-Abelian. Moreover we prove that all groups $S^{(n)}(S_3)$ with the exception n = 2 are commutative.

1. Preliminaries

Let us denote e = (1, 2, 3), $\mathbf{1} = (2, 3, 1)$, $\mathbf{2} = (3, 1, 2)$, $\varphi = (2, 1, 3)$, $\varphi \mathbf{1} = (3, 2, 1)$ and $\varphi \mathbf{2} = (1, 3, 2)$. We use standard notation:

$$x^{-1}yx = y^x$$
, $x^{-1}y^{-1}xy = [x, y]$, $x^{y+\alpha z+\beta} = x^y(x^{\alpha})^z x^{\beta}$, $x^0 = e^{-\alpha z+\beta}$

for arbitrary group elements x, y, z and all integers α , β . We often shall make use the following simple

STATEMENTS. (i) The following relations

$$yx = xy[y, x], [y, x]^{-1} = [x, y], [xy, z] = [x, z][x, z, y][y, z],$$
$$[x, yz] = [x, z][x, y][x, y, z]$$

are identities in any group.

(ii) The following equations

(1)
$$x^0 = 1$$

(2)
$$[x, y]^3 = 1$$

(3)
$$[x^2, [y, z]] = 1$$

(4) [[x, y], [z, u]] = 1

are identities in S_3 . The group S_3 is metabelian (comp. [10]) and therefore the Jacobi identity J(x, y, z) = 1, i.e. the equality

$$J(x, y, z) = [y, x]^{1-z} [z, x]^{y-1} [z, y]^{1-x} = 1$$

is an identity in S₃.

(iii) For arbitrary group G the relation $s(x_1, x_2, ..., x_n) \in \mathbf{S}^{(n)}(G)$ implies $s(x_1, x_2, ..., x_{n-1}, 1) \in \mathbf{S}^{(n-1)}(G)$.

(iv) If two words $w, v \in \mathbf{A}^{(2)}(S_3)$ are equal on the pairs $(\mathbf{1}, e)$, $(e, \mathbf{1})$, $(\mathbf{1}, \varphi)$, $(\varphi, \mathbf{1})$, $(\varphi, \mathbf{1}\varphi)$ and $(\mathbf{1}\varphi, \varphi)$, then w(x, y) = v(x, y) is an identity in S_3 ([11, Lemma]).

2. Auxiliary results

We begin with

THEOREM 1. The group $\mathbf{S}^{(2)}(S_3)$ consists of 18 elements

$1 \cdot 1 \cdot 1 = 1$	$1 \cdot 1v = x^2 y^2 [y, x]^{x-y}$	$1 \cdot 1v^2 = x^4 y^4 [y, x]^{y-x}$
$s1 \cdot 1 = [y, x]^{x-y}$	$s1v = x^2 y^2 [y, x]^{y-x}$	$s1v^2 = x^4y^4$
$s^2 1 \cdot 1 = [y, x]^{y-x}$	$s^2 1v = x^2 y^2$	$s^2 1 v^2 = x^4 y^4 [y, x]^{x-y}$
$1t1 = x^3 y^3 [y, x]^{-x-y}$	$1tv = x^5 y^5 [y, x]^{1+x+y}$	$1tv^2 = xy[y, x]^{-1}$
$st1 = x^3 y^3 [y, x]^x$	$stv = x^5 y^5 [y, x]^{1-y}$	$stv^2 = xy[y, x]^{-1-x+y}$
$s^2 t 1 = x^3 y^3 [y, x]^y$	$s^{2}tv = x^{5}y^{5}[y, x]^{1-x}$	$s^2 t v^2 = x y[y, x]^{-1+x-y}$

where

$$s = [y, x]^{x-y}, \quad t = x^3 y^3 [y, x]^{-x-y} \quad and \quad v = x^2 y^2 [y, x]^{x-y}.$$

Thus the group $\mathbf{S}^{(2)}(S_3)$ is the direct product of subgroup $gp\{s, t\} \cong S_3$ and cyclic group $gp\{v\}$ of order 3.

PROOF. It was proved in [11, Theorem 2] that the words $w = xy[y, x]^{-1}$ and $u = x^2y^2$ are symmetric in the group S_3 and that the group $\mathbf{S}^{(2)}(S_3)$ is generated by this words. Therefore *s*, *t* and *v* are symmetric words in S_3 . Using the identities from (i) and (ii) one can easily verify the relations $s^3 = 1$, $t^2 = 1$, $v^3 = 1$, $st = t^2s$, sv = vs and tv = vt. Hence the group gp{*s*, *t*} is isomorphic to S_3 , and thus gp{*s*, *t*} × {1, *v*, v^2 } = $\mathbf{S}^{(2)}(S_3)$.

LEMMA 1. If for integers a, b, c and d the equality

$$[y, x]^{ax+by+cxy+d} = 1$$

holds for all $x, y \in S_3$ *then* $a \equiv b \equiv c \equiv d \pmod{3}$ *.*

PROOF. We use (iv). Since the equality (5) holds for the pairs (1, e), (e, 1) and all integers a, b, c and d, we can restrict ourself to four pairs $(1, \varphi)$, $(\varphi, 1)$, $(b, 1\varphi)$ and $(1\varphi, \varphi)$. By (iv) the equality (5) is an identity in the group S_3 if

and only if the integers a, b, c and d satisfy the following system of equalities

$$\begin{cases} \mathbf{2}^{a} \cdot \mathbf{1}^{b} \cdot \mathbf{1}^{c} \cdot \mathbf{2}^{d} = e \\ \mathbf{2}^{a} \cdot \mathbf{1}^{b} \cdot \mathbf{2}^{c} \cdot \mathbf{1}^{d} = e \\ \mathbf{1}^{a} \cdot \mathbf{1}^{b} \cdot \mathbf{2}^{c} \cdot \mathbf{2}^{d} = e \\ \mathbf{2}^{a} \cdot \mathbf{2}^{b} \cdot \mathbf{1}^{c} \cdot \mathbf{1}^{d} = e \end{cases}$$

Since the mapping $e \rightarrow 0, \mathbf{1} \rightarrow 1, \mathbf{2} \rightarrow 2$ is an isomorphism of the permutation group ($\{e, \mathbf{1}, \mathbf{2}\}$; \circ) onto the cyclic group Z₃, the last system is equivalent to the homogenous system of equations

$$\begin{cases} 2a + b + c + 2d = 0\\ 2a + b + 2c + d = 0\\ a + b + 2c + 2d = 0\\ 2a + 2b + c + d = 0 \end{cases}$$

where + is taken modulo 3, of course. Let us observe that vector (1, 1, 1, 1) is a solution of the system. Since the rank of the matrix of the system is 3, the set {(1, 1, 1, 1), (2, 2, 2, 2), (0, 0, 0, 0)} consists of all solutions.

COROLLARY 1. The relation

$$[y, x]^{1+x+y+xy} = 1$$

is an identity in the group S_3 .

COROLLARY 2. If for some integers a, b, c and d the equality

$$[y, x]^{ax+by+cxy+d} = 1$$

holds for all $x, y \in S_3$ and at least one from the integers a, b, c or d is 0 (mod 3), then all the integers have to be equal 0 (mod 3).

LEMMA 2. The equality

(6)
$$[y, x]^{(1-z)(a+bx+cy+dz)}[z, x]^{f(y-1)(x-y)} = 1$$

holds for all $x, y, z \in S_3$ if and only if $c \equiv a - b - d \equiv f - b \equiv 0 \pmod{3}$.

PROOF. If we put z = x into (5) then we get

$$[y, x]^{(a-b-d)+(b+d-a)x+cy-cxy}.$$

It follows from Lemma 1 that $c \equiv a - b - d \equiv 0 \pmod{3}$. Because of the equality $[v, x]^{(1-z)(1+z)} = 1$ we can rewrite (5) as

$$[y, x]^{b(1-z)(x+1)}[z, x]^{f(y-1)(x-y)} = 1.$$

By putting z = y and taking into account Lemma 1 we get congruence $f \equiv b$ (mod 3).

Conversely, if the congruences hold then the equality (5) is of the form

$$[y, x]^{b(x+1)(1-z)}[z, x]^{b(x+1)(y-1)} = 1,$$

which is identical with the Jacobi identity $J(x, y, z)^{b(x+1)} = 1$.

3. Symmetric 3-words

Let w be a word of 3 variables in general form

(7)
$$w = x^{\alpha_1} y^{\beta_1} z^{\gamma_1} x^{\alpha_2} y^{\beta_2} z^{\gamma_2} \cdots x^{\alpha_n} y^{\beta_n} z^{\gamma_n},$$

where $\alpha_i, \beta_i, \gamma_i \in \mathbb{Z}, i = 1, 2, ..., n$ and $n \in \mathbb{N}$. In view of the identity (1), we may assume that all integers α_i , β_i and γ_i belong to the set {0, 1, 2, 3, 4, 5}. Using the identities from (i) it is possible to remove each x of the word (7) at the first place. One obtains a word of the form $x^{a_1}uv \dots$, where u, v, \dots are variables y, z or commutators of the form $[y, x]^{x^{i}}$ and $[z, x]^{x^{j}}$ for some $i, j = 1, 2, \dots$ Since squares of elements of the group S₃ commutes with commutators (comp. (3)), one can assume *i* and *j* equal 0 or 1. Now we remove all y's at the second place and apply (ii). We get a word $x^{\alpha}y^{\beta}u'v'\cdots$, where u', v', \ldots are words of the form $z, [y, x]^{x^i y^j}, [z, x]^{x^k y^l}$ or $[z, x]^{y^m}$ for some $i, j, k, l, m \in \{0, 1\}$. Clearly, the same collecting process can be made with the last variable z. This together with Corollary 2 gives

LEMMA 3. Any word of variables x, y and z in the group S_3 is equivalent modulo $\mathcal{V}_3(S_3)$ to the following word

(8)

$$w(x, y, z) = x^{a} y^{b} z^{c} \cdot [y, x]^{\alpha_{0} + \alpha_{1}x + \alpha_{2}y + \alpha_{3}z + \alpha_{13}xz + \alpha_{23}yz} \\
\cdot [z, x]^{\beta_{0} + \beta_{1}x + \beta_{2}y + \beta_{3}z + \beta_{12}xy + \beta_{23}yz} \\
\cdot [z, y]^{\gamma_{0} + \gamma_{1}x + \gamma_{2}y + \gamma_{3}z + \gamma_{12}xy + \gamma_{13}xz}$$

for some elements $a, b, c \in \{0, 1, 2, 3, 4, 5\}$ and $\alpha_0, \ldots, \gamma_{13} \in \{0, 1, 2\}$.

From now on we write w = u instead of $w \equiv u \pmod{\mathscr{V}_3(S_3)}$ and we prefer to write -1 than 2, when 2 is an exponent of a commutator. Now we are able to determine all words of three variables in the group S_3 . First we show that the image of each symmetric 3-word in S_3 treated as a function $S_3^3 \longrightarrow S_3$ is contained in the commutator subgroup of S_3 . More precisely we have

THEOREM 2. Let s(x, y, z) be a symmetric 3-word of the form (8) in the group S_3 . Then a = b = c = 2i for i = 0, 1 or 2.

PROOF. Clearly s(x, 1, 1) = s(1, x, 1) = s(x, 1, 1) and therefore we have $a \equiv b \equiv c \pmod{6}$.

Let us suppose that a = 1. We have

$$s(x, y, 1) = xy[y, x]^{(\alpha_0 + \alpha_3) + (\alpha_1 + \alpha_{13})x + (\alpha_2 + \alpha_{23})y},$$

$$s(x, 1, y) = xy[y, x]^{(\beta_0 + \beta_2) + (\beta_1 + \beta_{12})x + (\beta_3 + \beta_{23})y},$$

$$s(1, x, y) = xy[y, x]^{(\gamma_0 + \gamma_1) + (\gamma_2 + \gamma_{12})x + (\gamma_3 + \gamma_{13})y}.$$

By (iii) s(x, y, 1) is a symmetric 2-word in S_3 . It follows from Theorem 1 that s(x, y, 1) equals

 $xy[y, x]^{-1}$ or $xy[y, x]^{-1-x+y}$ or $xy[y, x]^{-1+x-y}$.

Without loss of generality we can assume that

$$s(x, y, 1) = xy[y, x]^{-1}$$
.

Indeed, it is easy to verify the equalities w(x, y, z) = w(y, x, z) = w(x, z, y), where

$$w(x, y, z) = [y, x]^{(y-x)z} [z, x]^{(z-x)y} [z, y]^{(z-y)x}$$

which means that w is a symmetric 3-word in the group S_3 such that $w(x, y, 1) = [y, x]^{y-x}$. Therefore if s(x, y, 1) does not equal $xy[y, x]^{-1}$, then we can consider $s \cdot w$ or $s \cdot w^2$ instead of s.

By Corollary 2 we get the congruences

(9)
$$\alpha_0 + \alpha_3 + 1 \equiv \beta_0 + \beta_2 + 1 \equiv \gamma_0 + \gamma_1 + 1 \equiv \alpha_1 + \alpha_{13} \equiv \beta_1 + \beta_{12}$$

 $\equiv \gamma_2 + \gamma_{12} \equiv \alpha_2 + \alpha_{23} \equiv \beta_3 + \beta_{23} \equiv \gamma_3 + \gamma_{13} \equiv 0 \pmod{3}.$

Therefore we can rewrite the word *s* as

$$s(x, y, z) = xyz \cdot [y, x]^{(1-z)(\alpha_0 + \alpha_1 x + \alpha_2 y) - z}$$
$$\cdot [z, x]^{(1-y)(\beta_0 + \beta_1 x + \beta_3 z) - y}$$
$$\cdot [z, y]^{(1-x)(\gamma_0 + \gamma_2 y + \gamma_3 z) - x}.$$

10

Now using (i) and (ii) we get

$$s(y, x, z) = xyz[y, x]^{z} \cdot [y, x]^{(1-z)(-\alpha_{0} - \alpha_{2}x - \alpha_{1}y) + z}$$
$$\cdot [z, x]^{(1-y)(\gamma_{0} + \gamma_{2}x + \gamma_{3}z) - y}$$
$$\cdot [z, y]^{(1-x)(\beta_{0} + \beta_{1}y + \beta_{3}z) - x}$$

and similarly

$$s(x, z, y) = xyz[z, y] \cdot [y, x]^{(1-z)(\beta_0 + \beta_1 x + \beta_3 y) - z}$$
$$\cdot [z, x]^{(1-y)(\alpha_0 + \alpha_1 x + \alpha_2 z) - y}$$
$$\cdot [z, y]^{(1-x)(-\gamma_0 - \gamma_3 y - \gamma_2 z) + x}.$$

The condition s(x, y, z) = s(y, x, z) implies

(10)
$$[y, x]^{(1-z)\{(-\alpha_0 + (\alpha_1 + \alpha_2)x + (\alpha_1 + \alpha_2)y\}} \cdot [z, x]^{(1-y)\{(\beta_0 - \gamma_0) + (\beta_1 - \gamma_2)x + (\beta_3 - \gamma_3)z\}} \cdot [z, y]^{(1-x)\{(\gamma_0 - \beta_0) + (\gamma_2 - \beta_1)y + (\gamma_3 - \beta_3)z\}} = 1$$

which in the case z = x gives

$$[y, x]^{(1-x)\{(-\alpha_0+\beta_0-\gamma_0)+(\alpha_1+\alpha_2+\beta_3-\gamma_3)x+(\alpha_1+\alpha_2+\beta_1-\gamma_2)y\}} = 1,$$

This, by Lemma 2, implies the congruences

$$\beta_1 \equiv \gamma_2 - \alpha_1 - \alpha_2 \pmod{3}$$
$$-\alpha_0 + \beta_0 - \gamma_0 \equiv \alpha_1 + \alpha_2 + \beta_3 - \gamma_3 \pmod{3}$$

Similarly the equality s(x, y, z) = s(x, z, y) gives

(11)
$$[y, x]^{(1-z)\{(\alpha_0 - \beta_0) + (\alpha_1 - \beta_1)x + (\alpha_2 - \beta_3)y\}} \cdot [z, x]^{(1-y)\{(\beta_0 - \alpha_0) + (\beta_1 - \alpha_1)x + (\beta_3 - \alpha_2)z\}} \cdot [z, y]^{(1-x)\{(-\gamma_0 - 1 + (\gamma_2 + \gamma_3)y + (\gamma_2 + \gamma_3)z\}} = 1,$$

which in the case y = x together with Lemma 2 yields the congruences

$$\beta_3 \equiv \alpha_2 - \gamma_2 - \gamma_3 \pmod{3}$$
$$-\alpha_0 + \beta_0 - \gamma_0 - 1 \equiv \beta_1 - \alpha_1 + \gamma_2 + \gamma_3 \pmod{3}.$$

After eliminating β_1 and β_3 from above system of four congruences we see that it has no solution.

THEOREM 3. Let s(x, y, z) be a symmetric 3-word in the group S_3 , then (12) $s = u^i \cdot s_0^j \cdot s_1^k \cdot s_2^l \cdot s_3^m \cdot w^n$ for some $i, j, k, l, m, n \in \{0, 1, -1\}$, where

$$\begin{split} u(x, y, z) &= x^2 y^2 z^2, \\ s_0(x, y, z) &= [y, x]^{z-1} [z, x]^{y-1}, \\ s_1(x, y, z) &= [y, x]^{(1-z)x} [z, x]^{1-y} [z, y]^{(1-x)(y-z)}, \\ s_2(x, y, z) &= [y, x]^{(1-z)y} [z, x]^{1-y} [z, y]^{(1-x)(y+z)} \\ s_3(x, y, z) &= [z, x]^{(1-y)(x+z)} [z, y]^{(1-y)(y+z)}, \\ w(x, y, z) &= [y, x]^{(y-x)z} [z, x]^{(z-x)y} [z, y]^{(z-y)x}. \end{split}$$

Presentation (12) is unique and therefore $\mathbf{S}^{(3)}(S_3)$ is Abelian group isomorphic to $(\mathbf{Z}_3)^6$.

PROOF. Let s(x, y, z) be a symmetric 3-word in S_3 of the form (8) with a = b = c = 0. We have

$$s(x, y, 1) = [y, x]^{(\alpha_0 + \alpha_3) + (\alpha_1 + \alpha_{13})x + (\alpha_2 + \alpha_{23})y},$$

$$s(x, 1, y) = [y, x]^{(\beta_0 + \beta_2) + (\beta_1 + \beta_{12})x + (\beta_3 + \beta_{23})y},$$

$$s(1, x, y) = [y, x]^{(\gamma_0 + \gamma_1) + (\gamma_2 + \gamma_{12})x + (\gamma_3 + \gamma_{13})y}.$$

By Theorem 1 every symmetric word s(x, y, 1) of two variables equals

either 1 or $[y, x]^{y-x}$ or else $[y, x]^{x-y}$.

Let us consider first case s(x, y, 1) = 1.

By Corollary 2 we have the following congruences

(13)
$$\alpha_0 + \alpha_3 \equiv \beta_0 + \beta_2 \equiv \gamma_0 + \gamma_1 \equiv \alpha_1 + \alpha_{13} \equiv \beta_1 + \beta_{12}$$

 $\equiv \gamma_2 + \gamma_{12} \equiv \alpha_2 + \alpha_{23} \equiv \beta_3 + \beta_{23} \equiv \gamma_3 + \gamma_{13} \equiv 0 \pmod{3},$

which enables us to rewrite the word *s* in the form

$$s(x, y, z) = [y, x]^{(1-z)(\alpha_0 + \alpha_1 x + \alpha_2 y)}$$
$$\cdot [z, x]^{(1-y)(\beta_0 + \beta_1 x + \beta_3 z)}$$
$$\cdot [z, y]^{(1-x)(\gamma_0 + \gamma_2 y + \gamma_3 z)}$$

It is well known the transpositions (1, 2) and (2, 3) generate the symmetric group S_3 of degree 3 and therefore s(x, y, z) is symmetric if and only if two equalities

$$s(y, x, z)^{-1} \cdot s(x, y, z) = 1,$$
 $s(x, z, y)^{-1} \cdot s(x, y, z) = 1$

12

hold for all elements x, y, z from S_3 . We check

$$s(y, x, z) = [y, x]^{(1-z)(-\alpha_0 - \alpha_2 x - \alpha_1 y)} \cdot [z, x]^{(1-y)(\gamma_0 + \gamma_2 x + \gamma_3 z)}$$
$$\cdot [z, y]^{(1-x)(\beta_0 + \beta_1 y + \beta_3 z)}$$

and similarly

$$s(x, z, y) = [y, x]^{(1-z)(\beta_0 + \beta_1 x + \beta_3 y)} \cdot [z, x]^{(1-y)(\alpha_0 + \alpha_1 x + \alpha_2 z)}$$
$$\cdot [z, y]^{(1-x)(-\gamma_0 - \gamma_3 y - \gamma_2 z)}.$$

Hence we get

(14)
$$f(x, y, z) = s(y, x, z)^{-1} \cdot s(x, y, z)$$
$$= [y, x]^{(1-z)\{-\alpha_0 + (\alpha_1 + \alpha_2)x + (\alpha_1 + \alpha_2)y\}}$$
$$\cdot [z, x]^{(y-1)\{(\gamma_0 - \beta_0) + (\gamma_2 - \beta_1)x + (\gamma_3 - \beta_3)z\}}$$
$$\cdot [z, y]^{(1-x)\{(\gamma_0 - \beta_0) + (\gamma_2 - \beta_1)y + (\gamma_3 - \beta_3)z\}}$$

and also

(15)
$$g(x, y, z) = s(x, z, y)^{-1} (s(x, y, z))$$
$$= [y, x]^{(1-z)\{(\alpha_0 - \beta_0) + (\alpha_1 - \beta_1)x + (\alpha_2 - \beta_3)y\}} \cdot [z, x]^{(y-1)\{(\alpha_0 - \beta_0) + (\alpha_1 - \beta_1)x + (\alpha_2 - \beta_3)z\}} \cdot [z, y]^{(1-x)\{-\gamma_0 + (\gamma_2 + \gamma_3)y + (\gamma_2 + \gamma_3)z\}}$$

Thus *s* is symmetric if and only if the equalities f(x, y, z) = g(x, y, z) = 1hold for all $x, y, z \in S_3$. Applying Jacobi identity

$$([y, x]^{1-z}[z, x]^{y-1}[z, y]^{1-x})^{\{(\gamma_0 - \beta_0) + (\gamma_2 - \beta_1)y + (\gamma_3 - \beta_3)z\}} = 1$$

to the equality (14) and

$$([y, x]^{1-z}[z, x]^{y-1}[z, y]^{1-x})^{\{(\alpha_0 - \beta_0) + (\alpha_1 - \beta_1)x + (\alpha_2 - \beta_3)y\}} = 1$$

to the equality (15) we see that s(x, y, z) is symmetric 3-word if and only if the following two equalities

$$1 = f(x, y, z) = [y, x]^{(1-z)\{(\beta_0 - \alpha_0 - \gamma_0) + (\alpha_1 + \alpha_2)x + (\alpha_1 + \alpha_2 + \beta_1 - \gamma_2)y + (\beta_3 - \gamma_3)z\}} \\ \cdot [z, x]^{(\gamma_2 - \beta_1)(y - 1)(x - y)},$$

$$1 = g(x, y, z) = [z, y]^{(1-x)\{(\beta_0 - \alpha_0 - \gamma_0) + (\beta_1 - \alpha_1)x + (\gamma_2 + \gamma_3 + \beta_3 - \alpha_2)y + (\gamma_2 + \gamma_3)z\}} \\ \cdot [z, x]^{(\alpha_2 - \beta_3)(y - 1)(z - y)}$$

ERNEST PŁONKA

holds for all $x, y, z \in S_3$. By Lemma 2 this is equivalent to the following system of congruences

$$\begin{aligned} \alpha_1 + \alpha_2 + \beta_1 - \gamma_2 &\equiv 0 \pmod{3}, \\ -\alpha_0 + \beta_0 - \gamma_0 &\equiv \alpha_1 + \alpha_2 + \beta_3 - \gamma_3 \pmod{3}, \\ \beta_3 - \gamma_3 &\equiv \gamma_2 - \beta_1 \pmod{3}, \\ -\alpha_2 + \beta_3 + \gamma_2 + \gamma_3 &\equiv 0 \pmod{3}, \\ -\alpha_0 + \beta_0 - \gamma_0 &\equiv \beta_1 - \alpha_1 + \gamma_2 + \gamma_3 \pmod{3}. \end{aligned}$$

Choosing α_0 , γ_0 , α_1 , α_2 and β_1 as parameters we obtain the following solution of the system

	0	1	2	3
α	$lpha_0$	α_1	α_2	$-lpha_0$
β	$\alpha_0 + \gamma_0 - \alpha_1 - \alpha_2$	β_1	$\alpha_0 - \gamma_0 + \alpha_1 + \alpha_2$	$\beta_1 - \alpha_2$
γ	γ_0	$-\gamma_0$	$\alpha_1 + \alpha_2 + \beta_1$	$-\alpha_1 + \alpha_2 + \beta_1$

Thus the word *s* can be written as

$$s(x, y, z) = [y, x]^{(1-z)(\alpha_0 + \alpha_1 x + \alpha_2 y)} \cdot [z, x]^{(1-y)((\alpha_0 + \gamma_0 - \alpha_1 - \alpha_2) + \beta_1 x + (\beta_1 - \alpha_2) z)}$$
$$\cdot [z, y]^{(1-x)(\gamma_0 + (\alpha_1 + \alpha_2 + \beta_1)(y - z))},$$

or

$$s = s_0^{\alpha_0} \cdot s_4^{\gamma_0} \cdot s_1^{\alpha_1} s_2^{\alpha_2} \cdot s_3^{\beta_1},$$

where

$$s_{0}(x, y, z) = [y, x]^{z-1}[z, x]^{y-1},$$

$$s_{4}(x, y, z) = [z, x]^{y-1}[z, y]^{x-1},$$

$$s_{1}(x, y, z) = [y, x]^{(1-z)x}[z, x]^{(1-y)}[z, y]^{(1-x)(y-z)},$$

$$s_{2}(x, y, z) = [y, x]^{(1-z)y}[z, x]^{1-y}[z, y]^{(1-x)(y+z)},$$

$$s_{3}(x, y, z) = [z, x]^{(1-y)(x+z)}[z, y]^{(1-x)(y+z)}.$$

Above we have made use of (i) and (ii). Observe that

$$s_0(x, y, z) \cdot s_4(x, y, z) = J(x, y, z)^{-1} = 1,$$

which yields

(16)
$$s = s_0^j \cdot s_1^k \cdot s_2^l \cdot s_3^m$$

for some $j, k, l, m \in \{0, 1, -1\}$. We claim that the presentation (16) of the word *s* is unique. Indeed, if for some $j, k, l, m \in \{0, 1, -1\}$ the equality

(17)
$$s_0(x, y, z)^j s_1(x, y, z)^k s_2(x, y, z)^l s_3(x, y, z)^m = 1$$

hold for all $x, y, z \in S_3$, then, in the case z = x, we get

$$[y, x]^{\{(-j+k+l+m)+(j-k-l-m)x-(k+m)y+(k+m)xy)\}} = 1,$$

which by Lemma 1 implies $l - j \equiv k + m \equiv 0 \pmod{3}$. If we put z = y into (16), we get

$$[y, x]^{(j+k-m)+(j+k+m)x+(j-k+m)y-(k+m)xy} = 1.$$

By Corollary 2 we have j = k = l = m = 0, as required.

As we have mentioned earlier $u = x^2 y^2 z^2$ is symmetric 3-word in S_3 and

$$w(x, y, z) = [y, x]^{(y-x)z} [z, x]^{(z-x)y} [z, y]^{(z-y)x}$$

is a symmetric 3-word with $w(x, y, 1) = [y, x]^{y-x}$. Let s(x, y, z) be arbitrary symmetric 3-word in S_3 such that $s(x, y, 1) = (x^2y^2)^i [y, x]^{n(y-x)}$ for some i, n = 0, 1, -1. Then the following product $(u^{-i}sw^{-n})$ is a symmetric 3-word with $(u^{-i}sw^{-n})(x, y, 1) = 1$ and therefore, in view of what we have just established, $u^{-i}sw^{-n} = s_0^j s_1^k s_2^l s_3^m$ for some j, k, l, m, n, which completes the proof.

THEOREM 4. For all $n \neq 2$ the groups $\mathbf{S}^{(n)}(S_3)$ of *n*-symmetric words of the group S_3 are commutative.

PROOF. Let $s(x_1, x_2, ..., x_n)$ be symmetric n-word, $n \ge 3$, in S_3 . Using the same arguments as in the proof of Theorem 1 it is possible to present the word s as $x_1^{a_1}x_2^{a_2}, ..., x_n^{a_n}c$, where c is a product of commutators of the form

$$[x_{i_1}, x_{i_2}]^P$$

for *P* being a polynomial in variables $x_1, x_2, ..., x_n$. Since $s(x, 1, 1, ..., 1) = s(1, x, 1, ..., 1) = \cdots = s(1, 1, ..., 1, x)$, we have the equality $a_1 \equiv a_2 \equiv \cdots \equiv a_n \equiv a \pmod{6}$. In view of statement (iii) $s(x, y, z, 1, ..., 1) = x^a y^a z^a c'$ is a symmetric 3-word in S_3 . By Theorem 2, the number *a* has to be even, which together with (2) of (ii) finishes the proof.

REMARK. Every symmetric *n*-word in a group *G* is symmetric in any group from the variety var(G) of groups generated by *G* and therefore the results of the paper are valid not only for the group S_3 but also for all groups from $var(S_3) = HSP(S_3)$.

ERNEST PŁONKA

REFERENCES

- Gupta, C. K., Hołubowski, W., On the linearity of free nilpotent-by-abelian groups, J. Algebra 24 (1993), 293–302.
- Gupta, C. K., Hołubowski, W., On 2-symmetric words for groups, Arch. Math. 73 (1999), 327–331.
- Gupta, C. K., Hołubowski, W., On 2-symmetric words in nilpotent groups, Ukrainian Math. J. 54 (2002), 1020–1024.
- Hołubowski, W., Symmetric words in metabelian groups, Comm. Algebra 23 (1995), 5161– 5167.
- Hołubowski, W., Symmetric words in free nilpotent groups of class 4, Publ. Math. Debrecen 57 (2000), 411–419.
- Hołubowski, W., Symmetric words in nilpotent groups of class 5, London Math. Soc. Lecture Note Ser. 260 (1999), 363–367.
- Hołubowski, W., Symmetric words in free nilpotent groups of class 4, Publ. Math. Debrecen 57 (2000), 411–419.
- Hołubowski, W., Note on symmetric words in metabelian groups, Ukrainian Math. J. 54 (2002), 1013–1015.
- Macedonska, O., Solitar, D., On binary σ-invariant words in a group, Contemp. Math. 169 (1994), 431–449.
- Magnus, W., Karrass, A., Solitar, D., Combinatorial group theory: Presentations of Groups in Terms of Generators and Relations, Intersciences Publishers, 1966.
- 11. Płonka, E., Symmetric operations in groups, Colloq. Math. 21 (1970), 179-186.
- 12. Płonka, E., Symmetric operations in nilpotent groups of class ≤ 3 , Fund. Math. 97 (1977), 95–103.
- Płonka E., On a non-Abelian variety of groups which are symmetric algebras, Math. Scand. 74 (1994), 184–190.

INSTITUTE OF MATHEMATICS SILESIAN UNIVERSITY OF TECHNOLOGY UL. KASZUBSKA 23 44-100 GLIWICE POLAND *E-mail:* eplonka@polsl.pl