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ON SYMMETRIC WORDS IN THE SYMMETRIC
GROUP OF DEGREE THREE

ERNEST PLONKA

Abstract

A word w(xy, x2, ..., xp) from absolutely free group F, is called symmetric n-word in a group
G, if the equality w(g1, g2, ..., gn) = W(gs1, 8025 -+ gon) holds for all g1, g2, ..., gn €G
and all permutations o € S,,. The set S™ (G) of all symmetric n-words is a subgroup of F,. In
this paper the groups of all symmetric 2-words and 3-words for the symmetric group of degree 3
are determined.

0. Introduction

Let &/ = (A, F) be an algebra with a family F of fundamental finitary oper-
ations on A and let A™ (%) denote the set of all n-ary polynamials of the
algebra /. An element f € A™(sf) is called symmetric if the equality
flasi,as2,...,05n) = flai,as,...,a,) holds for all aj,ay,...,a, € A
and all permutations o € S,. The set of all symmetric polynomials of .« is
denoted by S™ («7). In the case of a group G the set A™ (G) consists of all func-
tions G" > (g1, &2, ..., &) — w(g1, &, ..., &), Where w(xy, X2, ..., X,)
is a word of n variables, i.e. an element of the free group &%, on free gen-
erators xp, X2, ..., X,. Let 7;,(G) = 7, be the subgroup of &%, consisting
of all words w such that w(g;, g2, ..., 8,) = 1forall g, g2,...,8, € G.
For a permutation o € S, the mapping x;, — X5,4),1 < i < n,o € §,,
define an automorphism ¢, of &,. Namely we have ¢, (w)(x1, x2, ..., x,) =
W(Xo (1), X5 (2)s - - - » Xo(n))- Since 7, is complete characteristic subgroup of #,,,
the automorphism ¢,, induces an automorphism @, of the factor group %, /7,,.
Clearly two words w, v € %, yield the same element of A" (G) if and only
if wv~! € ¥, and therefore the set S™ (G) of all n-ary symmetric operations
in G can be identified with the subgroup of the group &, /7, consisting of all
elements which are stable under the action of all automorphisms ¢, o € §,.
Thus

S"NG)={w- -V € F)Vy : 0y(w-V;) =w- ¥ forallo € S,}
={we%/V: g, (w) - w'e¥,forallo € S,)}.
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The question of characterization of symmetric words of n variables (shortly
n-words) in groups was initiated in [11] and [12]. It has been done for arbitrary
nilpotent groups of class < 3 and in the case of symmetric 2-words also for
dihedral group of order 2 p. In the papers [2] and [9] 2-words are determined for
free metabelian groups and soluble groups of derived length 3. A description
of the groups S®(G) and S®(G) for free metabelian and free metabelian,
nilpotent group G is given in [4]. The same for free nilpotent groups of class
4 and 5 has been done in [5], [6] and [7]. Very recently all symmetric n-
words for free metabelian groups are characterized in [8]. Some applications
of symmetric words one can find in [13]. In this note all symmetric 2-words
for the symmetric group S3 are listed and using this we determine the group
S®)(S3). Unexpectedly enough it turns out that it is isomorphic to the group
(Z3)®, whereas the group S» (S3) is non-Abelian. Moreover we prove that all
groups S™(S3) with the exception n = 2 are commutative.

1. Preliminaries

Let us denote ¢ = (1,2,3),1 = (2,3,1),2 = 3,1,2), ¢ = (2,1,3),
¢l =(3,2,1) and 2 = (1, 3, 2). We use standard notation:

x_lyx — yx, x—ly—lxy =[x, y]’ Xy+ozz+ﬁ — xy(xot)zxﬁ’ xO —e
for arbitrary group elements x, y, z and all integers «, 5. We often shall make
use the following simple
STATEMENTS. (i) The following relations
yx =xyly. xl, [y.x]"" =[x, y]. [xy.z] =[x zllx, 2, ylly. 2],
[x, yz] = [x, z][x, yl[x, y, z]

are identities in any group.
(i1) The following equations

(D X =1,
) [x, yP’ =1,
3) [x%, [y, 2zl = 1,
@) [[x, ¥, [z, ull = 1

are identities in Ss. The group S; is metabelian (comp. [10]) and therefore the
Jacobi identity J(x, y, z) = 1, i.e. the equality

J(x’ Y, Z) = [y,X]l_Z[Z,x]y_l[Z, y]l—x -1

is an identity in S;.
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(iii) For arbitrary group G the relation s(x1, xa, ..., x,) € S™(G) implies
S(X1, X2, oo, Xn_1, 1) € S"=D(G).

(iv) Iftwo words w, v € AP (S3) are equal on the pairs (1, e), (e, 1), (1, @),
(¢, 1), (¢, 1¢) and (A, @), then w(x, y) = v(x, y) is an identity in S3 ([11,
Lemmal]).

2. Auxiliary results
We begin with

THEOREM 1. The group S® (S3) consists of 18 elements

1-1-1=1 1-1v=x2y?[y, x]*Y  1-102 =x*y*y, xP~*
sl-1=1[y,x]*"” slv = x2y?[y, x]~ slv? = x4y*
§21-1=1[y,x]~* s21v = x2y? §210% = x*yHy, x]*7Y
111 = X33y, x]7Y 1o = Xy [y, x]'™H 100? = xyly, x]™!

st]l = x3y3[y, x]* Sty = x5y5[y, x]' stv? = xyly, x] 7y
2t = x3y3[y, x] 2ty = Xy [y, x]' s2tv? = xy[y, x]7 1Y
where

s=[y,x]'™7, t= x3y3[y, x]™7*7Y and v = xzyz[y, x]* .

Thus the group S® (S3) is the direct product of subgroup gp{s,t} = Ss and
cyclic group gp{v} of order 3.

PrOOF. It was proved in [11, Theorem 2] that the words w = xy[y, x]7!
and u = x?y? are symmetric in the group S3 and that the group S®(S3) is
generated by this words. Therefore s,  and v are symmetric words in S3. Using
the identities from (i) and (ii) one can easily verify the relations s* = 1, 1> = 1,
v3 =1, st = t%s,sv = vs and tv = vt. Hence the group gp{s, ¢} is isomorphic
to S3, and thus gp{s, 1} x {1, v, v?} = SP(S3).

LeEmMA 1. If for integers a, b, c and d the equality
(5) [y, x]ax+by+cxy+d =1

holds for all x,y € S; thena =b = ¢ = d (mod 3).

PrOOF. We use (iv). Since the equality (5) holds for the pairs (1, e), (e, 1)
and all integers a, b, ¢ and d, we can restrict ourself to four pairs (1, ¢), (¢, 1),
(b, 1) and (1¢, ¢). By (iv) the equality (5) is an identity in the group S if
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and only if the integers a, b, ¢ and d satisfy the following system of equalities
21712 = ¢
21720 11 =
19.17.2¢. 2 = ¢
22010 1 = e

Since the mapping e — 0, 1 — 1, 2 — 2 is an isomorphism of the
permutation group ({e, 1, 2}; o) onto the cyclic group Z3, the last system is
equivalent to the homogenous system of equations

2a4+ b+ c+2d=0
2a+ b+2c+ d=0
a+ b+2c+2d=0
2a4+2b+ c+ d=0

where + is taken modulo 3, of course. Let us observe that vector (1, 1,1, 1)
is a solution of the system. Since the rank of the matrix of the system is 3, the
set {(1,1,1,1),(2,2,2,2),(0,0,0,0)} consists of all solutions.

COROLLARY 1. The relation

[y’ x]1+x+y+xy =1

is an identity in the group Ss.
COROLLARY 2. If for some integers a, b, ¢ and d the equality

[y’ x]ax+by+cxy+d =1

holds for all x,y € S3 and at least one from the integers a, b, ¢ or d is 0
(mod 3), then all the integers have to be equal 0 (mod 3).

LEMMA 2. The equality

(6) [y’ x](l—z)(a-i-hx—i-cy-&-dz)[z, x]f(y—l)(x—y) -1

holds forall x, v,z € Sz ifandonlyifc=a—b —d = f —b =0 (mod 3).
ProoF. If we put z = x into (5) then we get

[y x](a—b—d)+(b+d—a)x+cy—cxy )
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It follows from Lemma 1 that c = a — b — d = 0 (mod 3). Because of the
equality [y, x]1=2U+29 = 1 we can rewrite (5) as

[y, x]h(lfz)(erl)[Z’ x]f(yfl)(xfy) = 1.

By putting z = y and taking into account Lemma 1 we get congruence f = b
(mod 3).
Conversely, if the congruences hold then the equality (5) is of the form

[y, x]PEHD=9 7 G Ppetho=D — |
which is identical with the Jacobi identity J (x, y, z)?¢D = 1.

3. Symmetric 3-words

Let w be a word of 3 variables in general form
(7 w = x¥ yﬁlzylxazyﬁzzyz e x yﬁnz%l’

where o;, Bi,v; € Z,i = 1,2,...,nand n € N. In view of the identity (1),
we may assume that all integers «;, 8; and y; belong to the set {0, 1, 2, 3, 4, 5}.
Using the identities from (i) it is possible to remove each x of the word (7)
at the first place. One obtains a word of the form x“'uv..., where u, v, ...
are variables y, z or commutators of the form [y, x]* and [z, x]*' for some
i,j = 1,2,.... Since squares of elements of the group S3 commutes with
commutators (comp. (3)), one can assume i and j equal O or 1. Now we
remove all y's at the second place and apply (ii). We get a word x*yPu'v’ - - -,
where u’, v/, ... are words of the form z, [y, Y [z, x]"ky] or [z, x]*" for
some i, j, k,[,m € {0, 1}. Clearly, the same collecting process can be made
with the last variable z. This together with Corollary 2 gives

LEMMA 3. Any word of variables x, y and 7 in the group S3 is equivalent
modulo 75(8S3) to the following word

w(x’ y, Z) — xaybzc . [y’ x]ao+a|x+a2y+a3z+oc13xz+oc23yz

(8) [z x]ﬁo+ﬂ1X+/52y+/33z+/512xy+/323yz

. [Z, y]VO+V1 X+Y2y+y3z+ynxy+yizxz

for some elements a, b, c € {0,1,2,3,4,5} and g, ..., y13 € {0, 1, 2}.

From now on we write w = u instead of w = u (mod 75(S3)) and we
prefer to write —1 than 2, when 2 is an exponent of a commutator. Now we are
able to determine all words of three variables in the group S3. First we show



10 ERNEST PEONKA

that the image of each symmetric 3-word in S treated as a function S3 — S;
is contained in the commutator subgroup of S3. More precisely we have

THEOREM 2. Let s(x, y, z) be a symmetric 3-word of the form (8) in the
group S3. Thena =b =c =2i fori =0, 1 or2.

Proor. Clearly s(x, 1,1) = s(1, x, 1) = s(x, 1, 1) and therefore we have
a=b=c (mod 6).
Let us suppose that a = 1. We have

s(x,y, D) =xyly, x](ao+0l3)+(061+wl3)x+(0l2+0123)y,

s(x,1,y)
s(1,x,y) = xyly, x]()/o-i-)/])+(V2+V12)X+(V3+V13)y‘

= xy[y, x]PotBI+Brtpr)rtBs+pn)y

By (iii) s (x, y, 1) is a symmetric 2-word in S3. It follows from Theorem 1 that
s(x, y, 1) equals

I—x+y —14+x—y

xyly, xI™" or  xyly, x]” or  xyly,x]

Without loss of generality we can assume that

s(x,y, 1) = xy[y,x]".

Indeed, it is easy to verify the equalities w(x, y, z) = w(y, x, 2) = w(x, z, ),
where
U)(xv Vs Z) = [y’ x](y*X)Z[Z’ x](Z*x)y[Z, y] Z*y)x’

which means that w is a symmetric 3-word in the group Sz such that w(x, y, 1)
= [y, x]*~*. Therefore if s(x, y, 1) does not equal xy[y, x]7', then we can
consider s - w or s - w? instead of s.

By Corollary 2 we get the congruences

Q) aytazt+l=p+ht+tl=pwt+yn+tl=a +az=p+pBn
=ymt+yn=ayt+as =6+ Bn=y;+yi3=0 (mod 3).

Therefore we can rewrite the word s as

s(x, y,2) = xyz - [y, x] 7 o=

-z, x](l—Y)(ﬂo+/31X+/33Z)—y

z y](l—x)(V0+VZY+V3Z)—X.
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Now using (1) and (i) we get
s(y, X,7) = xyz[y, x]z . [y’ x](l*Z)(*O(O*O(Z)C*(le)‘FZ
z x](]*y)()/o+y2x+)/31)*y

Iz y](I*X)(ﬁoJrﬁlerﬁsz)*x

and similarly

s(x,z,y) = xyzlz, y1- [y, x](lfz)(ﬁo+ﬂ1x+/33y')fz
z x](lfy)(otoJronerazz)*y

-z y](lfx)(*VO*)’z)’*VzZ)er‘

The condition s(x, y, z) = s(y, x, z) implies

(10) [y, x](0-DNao+tar++a)y)

](Fy){(ﬂo*}’o)Jr(ﬁl*Vz)er(ﬁer)z}
](I—X){(Vo—ﬂo)-‘r(yz—ﬂl),V+(V3—/33)Z} =1,

[z, x
'[Zvy

which in the case z = x gives

[y x](l—x){(—ao+ﬂ0—)/o)+(d1+0tz+/33—)/3)x+(0¢1+052+,31—)/2)y} =1

This, by Lemma 2, implies the congruences

Bi =y, —a; —ay (mod 3)
—ao+ Po— Yo =a1 + a4+ B3 — y3 (mod 3)

Similarly the equality s(x, y, z) = s(x, z, ¥) gives
(11) [y x](l—z){(ao—ﬂo)+(061—ﬁl)x+(az—ﬂ3)}’}
[z x](l—y){(ﬁn—ao)-i-(ﬁ]—Otl)x-i-(ﬁ}—ﬁtz)z}

-z, y](l*x){(*VO*1+(V2+V3))’+(V2+V3)Z} =1,

which in the case y = x together with Lemma 2 yields the congruences

B3 =ar—y» — y3 (mod 3)
—ao+Po—r—1=p —ar+y+y; (mod 3).
After eliminating 8, and B3 from above system of four congruences we see
that it has no solution.
THEOREM 3. Let s(x, y, z) be a symmetric 3-word in the group S, then

[

i J k m n
(12) s=u' 5557 5583 - W

forsome i, j,k,l,m,ne{0,1, -1},
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where
2.2.2
u(x,y,z) =x7yz,

solx, y,2) =1y, x]z_l[z, x]y_l,
s1(x, y,2) = [y, 1979z, x]' [z, y] OO,
505, v,2) = [y, x]97[z, x]' V[, y] RO+
s3(x, v, 2) =z, x](lfy)(xﬂ) [z, y](lfy)(erz),
wx, y,2) = [y, x]107% [z, x]¢7 [z, ],
Presentation (12) is unique and therefore S® (S3) is Abelian group isomorphic
to (23)6.
PROOF. Let s(x, y, z) be a symmetric 3-word in S3 of the form (8) with
a =b=c=0.Wehave
s(x,y, 1) =

s(x, 1, y) =
s(1,x,y) = [y, x](}’o-i-}/])+(Vz+712)x+()’3+713)y‘

[y x](ao+ﬂt3)+(061 +a3)x+(a+as)y

[y x](ﬂo+l32)+(ﬂ1 +B12)x+(B3+P23)y

By Theorem 1 every symmetric word s(x, y, 1) of two variables equals
either 1 or [y,x]’™* orelse [y, x]"’.

Let us consider first case s(x, y, 1) = 1.
By Corollary 2 we have the following congruences

(13) agtazs=Ppo+ =y +yi=a +ain=p6+pBn
=nt+yn=ar+an =6+ Bn=y;+y3 =0 (mod 3),

which enables us to rewrite the word s in the form

S('x’ Y, Z) = [y’ x](lfz)(a0+0l1x+a2y)

[z, x]
. [Z y](l—x)(yoJererysz).

(1=y)(Bo+Bi1x+B32)

It is well known the transpositions (1, 2) and (2, 3) generate the symmetric
group S3 of degree 3 and therefore s(x, y, z) is symmetric if and only if two
equalities

s x,2) sy, =1, stz ) sy, ) =1



ON SYMMETRIC WORDS IN THE SYMMETRIC GROUP OF DEGREE THREE 13

hold for all elements x, y, z from S3. We check

(1=2)(—ag—aax—a1y) [ (I=y)(vo+y2x+y32)

s(y,x,2) = [y, x] Z, x]

[z y](lfx)(ﬂ0+/31y+ﬁ3z)

and similarly

](1—Z)(ﬁo+ﬂlx+ﬂ3}’) ](1—)‘)(010-‘1'061X+0621)

S(X:Zv)’)z[y,x '[va
[z y](l—x)(—yu—)/z)’—}/zz)‘

Hence we get

—1
f(xsy,Z):S(yvva) ‘S(x,y,Z)
=y x](l—z){—ao+(o{|+a2)x+(a1+a2)y}

(14) [z x](y—l){(yo—ﬂo)+()/2—ﬁ1)X+(V3—,33)Z}
z y](1—X){(Vo—ﬂo)+(yz—ﬁ1)J’+(V3—,33)Z}
and also
glx,y.2) =s(x,z, ) ' (s(x,y,2)
=[y x](l—z){(ao—ﬁo)+(al—ﬂl)x+(¢¥2—ﬂ3)y}
(15)

[z, x](y—l){(ao—ﬁo)+(a1—ﬂl)x+(a2_ﬁ3)z}
-z, y](l—X){—Vo+(V2+y3)y+(y2+y3)z}

Thus s is symmetric if and only if the equalities f(x, y,z) = g(x,y,2) = 1
hold for all x, y, z € S3. Applying Jacobi identity

[y, x]lfz[z’ xP Yz, y]17X){(V0*/30)+(V2*l31)}'+(V3*ﬂ3)l} =1

to the equality (14) and

[y, x]lfz[z’ x]yfl[z’ y]1*X){(<¥07ﬁo)+(a17ﬁ1)x+(azfﬁ3)y} =1

to the equality (15) we see that s(x, y, z) is symmetric 3-word if and only if
the following two equalities

1= f(x,y,2) =y, x](1—Z){(ﬁo—ﬂto—}/o)-i'(ﬂtl+012)X+(011+Of2+/31—)/2)y+(/33—)/3)2}

z x](yz—ﬂl)(y—l)(x—y)

1 =g(x,v,2) =z, y](l—x){(ﬂo—ao—yo)-F(ﬂl—‘Xl)X+(V2+V3+ﬂ3—Olz)y+()/2+)/3)z}

[z x](az—ﬂ,z)(y—l)(z—)’)
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holds for all x, y,z € S3. By Lemma 2 this is equivalent to the following
system of congruences

a; +oz + B —y2 =0 (mod 3),
—ap+ fo—rvo =01+ o+ B3 — 3 (mod 3),
B3 — v3 =y2— B (mod 3),
—a2+ B3+ 2+ 3 =0 (mod 3),
—ap+ Bo— Yo =P — a1+ 2+ ys (mod 3).

Choosing ayg, Yo, o1, ot and B; as parameters we obtain the following solution
of the system

0 1 2 3
o oo o o —0o
Blawt+tyw—a—a Bi Qo — Yot ort+a B —
4 Y0 —% o+ o+ B -+ o+ B

Thus the word s can be written as

s(x,y,2) =y, x](l—z)(w0+alx+0lz}') -z, x](l—y)((woﬂ/o—dl—0l2)+ﬁlx+(ﬂ1—012)2

-z y](l—X)(Vo+(al+0tz+/31)(y—Z))
or o o] o B
s =850 550 5785?85
where

so(x, ¥, 2) = [y, xI¥7 [z, x 71,

sa(x,y,2) = [z, xP [z, 1",

s1(x, ¥, 2) = [y, X117 [z, x] TV, 170079,
52(x, y,2) = [y, X117z, x]' [z, y] OO,
s3(x, v, 2) = [z, x]0VEHI [ y]A-00+),

Above we have made use of (i) and (ii). Observe that
so(x, y,2) - sa(x, y,2) = J(x, 3,27 =1,
which yields

(16) s=s)-skoshosy
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for some j, k,I,m € {0, 1, —1}. We claim that the presentation (16) of the
word s is unique. Indeed, if for some j, k, [, m € {0, 1, —1} the equality

(17) so(x, ¥, 2)/s1(x, y, )5 s2(x, y, 2)'s3(x, y, )" = 1

hold for all x, y, z € S3, then, in the case z = x, we get

[y x]{(—j+k+l+m)+(j—k—l—m)x—(k+m)y+(k+m)xy)} -1

which by Lemma 1 implies/ — j = k+m = 0 (mod 3). If we put z = y into
(16), we get

[y’ x](j+k—m)+(j+k+m)x+(j—k+m)y—(k+m)xy = 1.

By Corollary 2 we have j = k =1 = m = 0, as required.
As we have mentioned earlier u = x?y?z? is symmetric 3-word in S3 and

w(x, v, 2) = [y, X107z, ], yl

is a symmetric 3-word with w(x, y, 1) = [y, x]*7*. Let s(x, y, z) be arbitrary
symmetric 3-word in S3 such that s(x, y, 1) = (x2y?)/[y, x]"0~* for some
i,n =0, 1, —1. Then the following product («~*sw™") is a symmetric 3-word

with (u 'sw™")(x, y, 1) = 1 and therefore, in view of what we have just
established, u 'sw™" = s(j) s’fsésg” for some j, k, [, m, n, which completes the
proof.

THEOREM 4. For all n # 2 the groups S (S3) of n-symmetric words of the
group Ss are commutative.

ProOF. Let s(x{, x2, ..., X,) be symmetric n-word, n > 3, in S3. Using
the same arguments as in the proof of Theorem 1 it is possible to present the
word s as x{' x5, ..., x%c, where c is a product of commutators of the form

P
[xil s xiz]
for P being a polynomial in variables x;, x», ..., x,. Since s(x, 1, 1,...,1) =
s(lyx,1,....,1) =---=s(1,1,..., 1, x), we have the equality a; = a, =
- = a, = a (mod 6). In view of statement (iii) s(x, y,z,1,...,1) =

x?y*z4c’ is a symmetric 3-word in S3. By Theorem 2, the number a has to
be even, which together with (2) of (ii) finishes the proof.

REMARK. Every symmetric n-word in a group G is symmetric in any group
from the variety var(G) of groups generated by G and therefore the results of
the paper are valid not only for the group S3 but also for all groups from
var(S3) = HSP(S3).
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