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SCHATTEN-VON NEUMANN PROPERTIES
OF BILINEAR HANKEL FORMS OF

HIGHER WEIGHTS

MARCUS SUNDHÄLL∗

Abstract

Hankel forms of higher weights, on weighted Bergman spaces in the unit ball of Cd , were intro-
duced by Peetre. Each Hankel form corresponds to a vector-valued holomorphic function, called
the symbol of the form. In this paper we characterize bounded, compact and Schatten-von Neu-
mann Sp class (2 ≤ p <∞) Hankel forms in terms of the membership of the symbols in certain
Besov spaces.

1. Introduction and Main Results

1.1. Introduction

Hankel operators on the unit disc have been studied extensively and have
found many applications, see [13], [22] and [8]. One of the central problems
is to study the characterization of their Schatten-von Neumann properties. We
recall briefly the definition of Hankel operators on a Hardy space on the unit
disc. Consider the Hardy space H 2(T ) ⊂ L2(T ) of holomorphic functions,
where T = {z ∈ C : |z| = 1}. Let P : L2(T ) → H 2(T ) be the Szegő
projection. The Hankel operator H̃f with holomorphic symbol f is defined by
H̃f g = (I − P)(f̄ g), g ∈ H 2(T ). It can also be viewed (up to a rank one
operator) as a bilinear form Hf on H 2(T ), namely

Hf (g1, g2) =
∫
∂D

f (z)g1(z)g2(z) dσ (z).

Their Schatten-von Neumann properties were studied first by Peller, see [14].
It is proved there thatHf is of Schatten-von Neumann class if and only if f is
in a certain Besov space. The corresponding problem for Hankel forms on a
Bergman space has been studied in [8] and [18]. It was realized later that the
Hilbert-Schmidt Hankel forms on a weighted Bergman space can be viewed as
the first irreducible component in the irreducible decomposition of the tensor
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product of two copies of the Bergman spaces, and subsequently Janson and
Peetre [7] introduced the Hankel forms of higher weights on Bergman spaces
on the unit disc; see also [19] where multilinear Hankel forms are studied.

A natural problem is to consider Hankel forms on the unit ball in Cd . In
[11] Peetre introduced Hankel forms on the unit ball. As in the case of the unit
disc the spaces of Hankel forms of higher weights are explicit characterization
of irreducible components in the tensor product of Bergman spaces under the
Möbius group, see [7], [11] and [15]. However their Schatten-von Neumann
properties have not been studied so far. In this paper we will address this
problem.

The Hilbert and Banach spaces of symbols appearing in this paper are
closely related to the quotients of function modules studied in [4], and the
expansion of the reproducing kernels of some similar spaces have been studied
in [6]. It is interesting to consider those problems in our context.

Part of this paper is from my licentiate thesis under the supervision of my
advisor Genkai Zhang. I would like to thank him for many fruitful discussions.
I am also grateful for all the encouragement and help from my supervisorYang
Liu. I thank also the referee for his/her comments, remarks and for pointing
out certain incomplete arguments. After the first manuscript was submitted we
have established a necessary and sufficient condition for the membership of
Hankel forms in Schatten-von Neumann class Sp, 2 < p < ∞, by studying
the Bergman type projections (see Section 7 and Section 8).

The paper is arranged in the following manner. In Section 1 we introduce the
Hankel forms and state the main results in the form of three theorems. Section 2
consists of preliminary results. Section 3 is devoted to certain Banach spaces of
vector-valued holomorphic functions. Section 4 gives an equivalent description
for certain Besov spaces. The proofs of Theorem 1.1(a) and Theorem 1.1(b)
are given in Section 5 and Section 6 respectively. The proof of Theorem 1.2
is given in Section 6. In Section 7 we prove some LP -boundedness properties
of certain Bergman type projections, which are used in Section 8 to prove
Theorem 1.3.

1.2. Notation

Let H1 and H2 be Hilbert spaces and let T : H1 → H2 be a linear operator.
Define the singular numbers sn(T ) = inf{‖T − K‖ : rank(K) ≤ n}, n ≥ 0.
If T is compact, these singular numbers are equal to the eigenvalues of |T | =
(T ∗T )1/2. We denote by Sp the ideal of operators for which {sn(T )}n≥0 ∈ lp,
0 < p ≤ ∞, see [21]. We remark that S∞ is the class of bounded operators.
(The compact operators correspond to c0, not to l∞.)

Let dm denote the Lebesgue measure on the unit ball B ⊂ Cd and let dι(z)
be the measure (1−|z|2)−d−1 dm(z). For d < ν <∞ let dιν(z) be the measure
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cν(1− |z|2)ν dι(z), where cν is chosen such that∫
B
dιν(z) = 1,

i.e., cν = �(ν)/(πd�(ν − d)). The closed subspace of all holomorphic func-
tions inL2(dιν) is denoted byL2

a(dιν) and is called a weighted Bergman space.
Note that the spaceL2

a(dιν) has a reproducing kernelKz(w) = (1−〈w, z〉)−ν ,
that is,

(1) f (z) = 〈f,Kz〉ν =
∫

B
f (w)Kz(w) dιν(w), f ∈ L2

a(dιν), z ∈ B.

Denote by B(z,w) the Bergman operator on V = Cd as in [10], namely

(2) B(z,w) = (1− 〈z,w〉)(I − z⊗ w∗),
where z⊗w∗ stands for the rank one operator given by (z⊗w∗)(v) = 〈v,w〉z.
Viewed as a matrix acting on column vectors it is

(3) B(z,w) = (1− 〈z,w〉)(I − zw̄t ),

where wt is the transpose of w. B(z,w) is holomorphic in z and antiholo-
morphic in w.

The Bergman metric at z ∈ B, when we identify the tangent space with V ,
is 〈B(z, z)−1u, v〉 for u, v ∈ V . We note that

(4) B(z,w)−1 = (1− 〈z,w〉)−2
(
(1− 〈z,w〉)I + z⊗ w∗).

Let Bt(z,w) denote the dual of B(z,w) acting on the dual space V ′ of V .
When acting on a vector v′ ∈ V ′ it is

(5) Bt (z, w)v′ = (1− 〈z,w〉)v′(I − zw̄t ).

Actually we may identify Bt(z,w) with (1− 〈z,w〉)(I − w̄zt ).
For a non-negative integer s, let⊗sV ′ be the tensor product of s factors V ′

and let⊗0V ′ = C. The space⊗sV ′ is equipped with a natural Hermitian inner
product induced by that of V ′, so that

〈v1 ⊗ · · · ⊗ vs, w1 ⊗ · · · ⊗ ws〉 =
s∏

j=1

〈vj , wj 〉

where vj , wj ∈ V ′, j = 1, . . . , s.
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Let {u1, . . . , ud} ⊂ V ′. Denote by ui11 � ui22 � · · · � uidd the sum

i1! · · · id !

s!

∑
π∈S

π(u1 ⊗ · · · ⊗ u1︸ ︷︷ ︸
i1 factors

⊗ · · · ⊗ ud ⊗ · · · ⊗ ud︸ ︷︷ ︸
id factors

)

where i1+ · · · + id = s, S = Ss/(Si1 × · · ·× Sid ), Ss is the permutation group
acting on the tensor by permutating the factors in the tensor and Si1 , . . . , Sid are
the subgroups permutating the first i1, the second i2, . . . , the last id elements
respectively.

Let {e1, . . . , ed} be a basis for V ′. Denote by �sV ′ the subspace of sym-
metric tensors of length s{ ∑

i1+···+id=s
vi e

i1
1 � ei22 � · · · � eidd : i = (i1, . . . , id) ∈ Nd , vi ∈ C

}
.

Also, denote by ⊗sBt (z, z) the operator on ⊗sV ′ induced by the action of
Bt(z, z) on V ′, where ⊗0Bt(z, z) = I .

1.3. Hankel forms and main results

The Transvectant Ts on L2
a(dιν)⊗ L2

a(dιν) (introduced in [11], see also [12]
and [15]) is defined by

(6) Ts(f, g)(z) =
s∑
k=0

(
s

k

)
(−1)s−k

∂kf (z)� ∂s−kg(z)
(ν)k(ν)s−k

where

∂sf (z) =
d∑

j1...js=1

∂j1 · · · ∂js f (z) dzj1 ⊗ · · · ⊗ dzjs ∈ �sV ′

and (ν)k = ν(ν + 1) · · · (ν + k − 1), (ν)0 = 1, is the Pochammer symbol.
The Hankel bilinear form Hs

F on L2
a(dιν)⊗ L2

a(dιν) is defined by

(7) H s
F (f, g) =

∫
B

〈⊗sBt (z, z)Ts(f, g)(z), F (z)
〉
dι2ν(z)

where F : B → �sV ′ is holomorphic. We call F the symbol of the corres-
ponding Hankel form. We remark that

H 0
F (f, g) =

∫
B
f (z)g(z)F (z) dι2ν(z).

This is the classical Hankel form studied in [8].
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With the form Hs
F one can associate the operator AsF defined by

Hs
F (f, g) =

〈
f,AsF g

〉
ν

as in [8]. Notice that AsF is an anti-linear operator on L2
a(dιν). To get a linear

operator one combines AsF with a conjugation, i.e., one instead considers the
operator A

s

F : g → AsFg. We say that Hs
F is of Schatten-von Neumann class

Sp, for 0 < p <∞, if and only if A
s

F : L2
a(dιν)→ L2(dιν) is of class Sp.

Finally we present the main results, of this paper, in the form of three
theorems where we let s be a non-negative integer.

Theorem 1.1. Let F : B →�sV ′ be a holomorphic function.

(a) Hs
F is bounded if and only if

sup
z∈B

〈
(1− |z|2)2ν ⊗s Bt (z, z)F (z), F (z)

〉
< +∞,

(b) Hs
F is compact if and only if〈

(1− |z|2)2ν ⊗s Bt (z, z)F (z), F (z)
〉→ 0 as |z| ↗ 1.

Theorem 1.2. Hs
F is of Hilbert-Schmidt class S2 if and only if∫

B

〈
(1− |z|2)2ν ⊗s Bt (z, z)F (z), F (z)

〉
dι(z) < +∞.

Theorem 1.3. Hs
F is of class Sp, for 2 < p <∞, if and only if∫

B

〈
(1− |z|2)2ν ⊗s Bt (z, z)F (z), F (z)

〉p/2
dι(z) < +∞.

2. Preliminaries

2.1. G = Aut(B): The automorphisms of B

We shall need some results on the group G = Aut(B) of biholomorphic map-
pings of B.

Let Pz be the orthogonal projection of Cd into Cz and letQz = I −Pz. Put
sz = (1− |z|2)1/2 and define a linear fractional mapping ϕz on B by

(8) ϕz(w) = z− Pzw − szQzw

1− 〈w, z〉 .
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If g ∈ G and g(z) = 0 then there is a unique unitary operator U : Cd → Cd

such that
g = Uϕz.

Sometimes g(z) will be written as gz. Define the complex Jacobian Jg by
Jg(w) = det(g′(w)). Then we have Jg(w) = detU ·Jϕz(w). Lemma 2.1 gives
the differential of the Möbius transformations. It can be proved by similar
computations as in the proof of Theorem 2.2.2 in [20].

Lemma 2.1. Let ϕz be the linear fractional mapping (8) on B. Then

ϕ′z(w) =
−s2

z Pz − szQz + sz(〈w, z〉 − w ⊗ z∗)
(1− 〈w, z〉)2 .

By computating the determinant of ϕ′z(w) we get the next proposition. It is
a refinement of Theorem 2.2.6 in [20], which we state as a corollary.

Proposition 2.2. Let ϕz be the linear fractional mapping (8) on B. Then

Jϕz(w) = (−1)d
(

sz

1− 〈w, z〉
)d+1

.

Corollary 2.3. Let g ∈ G. Then the real Jacobian JR,g of g is

JR,g(w) = |Jg(w)|2 =
(

1− |z|2
|1− 〈w, z〉|2

)d+1

.

We need also the Forelli-Rudin estimate (see Proposition 1.4.10 in [20]).

Lemma 2.4. Let γ > α > d. Then∫
B

(1− |w|2)α
|1− 〈z,w〉|γ dι(w) ≤ C(1− |z|

2)−(γ−α).

2.2. Some elementary properties of the Bergman operator

Let g ∈ G. Combining Proposition IX.1.1 with Proposition IX.2.6 in [3] we
get

B(z,w)−1 = (dg(w))∗ B(gz, gw)−1dg(z).

This yields

(9) Bt (gz, gw) = (dg(w)t )∗Bt(z,w)dg(z)t .
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Now we consider another property of the Bergman operator. It holds that

(10) Bt (z, z) = (1− |z|2)Qz̄ + (1− |z|2)2Pz̄.
Thus

(11) (1− |z|2)2I ≤ Bt(z, z) ≤ (1− |z|2)I ;
in particular Bt(z, z) is a positive operator. Actually ⊗sBt (z, z) is positive on
⊗sV ′. To prove this we need an elementary observation.

Lemma 2.5. Let H1 and H2 be Hilbert spaces. Let A and B be positive
operators on H1 and H2 respectively. Then the operator A⊗ B is positive on
the induced Hilbert space H1 ⊗H2.

Remark 2.6. Since Bt(z, z) is positive on V ′ we have now that⊗sBt (z, z)

is positive for s = 0, 1, 2, . . ..

2.3. The norm of zα in the Bergman space L2
a(dιν)

Let α = (α1, α2, . . . , αd) denote ordered d-tuples of non-negative integers αi
and denote |α| = α1+· · ·+αd . Then the polynomials {zα} forms an orthogonal
basis for L2

a(dιν) and

(12) ‖zα‖2
ν =

∫
B
|zα1

1 · zα2
2 · · · zαdd |2 dιν(z) =

α1!α2! · · ·αd !

(ν)|α|

where (ν)|α| = ν(ν + 1) · · · (ν + |α| − 1) = �(ν + |α|)/�(ν), (ν)0 = 1, is
the Pochammer symbol.

2.4. Some remarks on boundedness, compactness and S2

Consider the bilinear Hankel form Hs
F with symbol F . First observe that the

operator norm of the corresponding operator A
s

F equals

‖Hs
F‖ = sup

‖f ‖ν=‖g‖ν=1
|Hs

F (f, g)|.

If A
s

F is compact and {gn}∞n=1 ⊂ L2
a(dιν), with ‖gn‖ν = 1, gn → 0 weakly as

n→∞, then there is a sequence {cn}∞n=1 of positive numbers such that

|Hs
F (f, gn)| ≤ cn‖f ‖ν

for alln. Also cn → 0 asn→∞. On the other hand, if {An}∞n=1 is a sequence of
compact bilinear forms on L2

a(dιν)⊗L2
a(dιν) such that An → Hs

F in operator
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norm, thenHs
F is compact. AlsoHs

F is of Hilbert-Schmidt class S2 if and only
if ∥∥Hs

F

∥∥2
S2
=

∞∑
|α|=0

∞∑
|β|=0

|Hs
F (eα, eβ)|2 <∞

where eα = zα/‖zα‖ν . In addition, ifA is a bilinear form onL2
a(dιν)⊗L2

a(dιν)

of Hilbert-Schmidt class, then A is compact.

3. The Banach space H
p
ν,s

LetLpν,s , for 1 < p <∞, be the space of measurable functions S : B →�sV ′
such that

‖S‖ν,s,p =
(∫

B

〈
(1− |z|2)2ν ⊗s Bt (z, z)S(z), S(z)

〉p/2
dι(z)

)1/p

<∞.

Then Lpν,s is a Banach space. The closed subspace of holomorphic functions
in Lpν,s is denoted by H

p
ν,s .

3.1. Transformation properties of Hs
F

Define an action πν of G on L2
a(dιν) by

(13) πν : g ∈ G, f (w)→ f (g−1w)
(
Jg−1(w)

)ν/(d+1)
.

Remark 3.1. Let z ∈ B. Then�(1−〈w, z〉) ≥ (1−|z|) > 0 for allw ∈ B
so that (1 − 〈w, z〉)α can be defined as a holomorphic function in w for any
real α. Thus for any g ∈ G, writing g = Uϕz where U ∈ U(d) and ϕz is the
linear fractional mapping (8), we let, according to Proposition 2.2,(
Jg−1(w)

)ν/(d+1) = (
(−1)d(1− |z|2)(d+1)/2 detU

)ν/(d+1) · (1− 〈w, z〉)−ν

which then defines a holomorphic function in w.

Actually πν : g→ πν(g) is a projective unitary representation on L2
a(dιν),

that is ‖πν(g)f ‖ν = ‖f ‖ν and πν(g1g2) = C(g1, g2)πν(g1)πν(g2) for some
constant C(g1, g2). This yields the following equality of two operator norms

(14) ‖Hs
F (πν(g)(·), πν(g)(·)) ‖ = ‖Hs

F‖.
Define an action πν,s on H 2

ν,s by

(15) πν,s : g ∈ G, S(z)→ (⊗s
(
dg−1(z)

)t)
S(g−1z)

(
Jg−1(z)

)2ν/(d+1)
.
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Then

(16) H s
F (πν(g)f1, πν(g)f2) = Hs

S(f1, f2)

where S(z) = πν,s(g
−1)F (z). Equation (16) is a consequence of Lemma 3.2

below. Define an action πν(·)⊗ πν(·) on L2
a(dιν)⊗ L2

a(dιν) by

(17) πν ⊗ πν : g ∈ G , (f1(w1), f2(w2))

→ f1(g
−1w1)f2(g

−1w2)
(
Jg−1(w1)

)ν/(d+1) (
Jg−1(w2)

)ν/(d+1)
.

The following invariance property of the Transvectant is proved in [11], see
also [15].

Lemma 3.2. Let πν,s and πν(·)⊗πν(·) be the representations given by (15)
and (17) respectively. Let g ∈ G. Then

Ts (πν(g)⊗ πν(g)) (f1, f2) = πν,s(g)Ts(f1, f2).

Remark 3.3. It follows from Theorem 4.1 that Ts takes values in H 2
ν,s . In

fact, Theorem 4.1 shows that Ts : L2
a(dιν) ⊗ L2

a(dιν) → H 2
ν,s is a bounded

bilinear form.

Remark 3.4. As a consequence of Lemma 3.2 we have (16), namely

Hs
F

(
(πν(g)⊗ πν(g)) (f1, f2)

) = 〈
Ts (πν(g)⊗ πν(g)) (f1, f2), F

〉
ν,s,2

= 〈
πν,s(g)Ts(f1, f2), F

〉
ν,s,2

= 〈
Ts(f1, f2), πν,s(g

−1)F
〉
ν,s,2

which gives the result if we observe that S = πν,s(g
−1)F .

3.2. Reproducing kernel of the space H 2
ν,s

Lemma 3.5. The reproducing kernel of H 2
ν,s is, up to a nonzero constant,

Kν,s(z, w) =
(
1− 〈z,w〉)−2ν ⊗s

(
Bt(z,w)

)−1
.

Namely, for any f ∈ H 2
ν,s and any v ∈ �sV ′ it holds that

〈f (z), v〉 = c
〈
f (·),Kν,s(·, z)v

〉
ν,s,2

= c

∫
B

〈
(1− |w|2)2ν ⊗s Bt (w,w)f (w),Kν,s(w, z)v

〉
dι(w).
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Proof. For any v ∈ �sV ′ we prove that f → 〈f (z), v〉 is a bounded
functional on H 2

ν,s . It follows then by Riesz lemma that there exists a function
R(z,w) : �sV ′ → �sV ′ such that 〈f (z), v〉 = 〈f,R(·, z)v〉ν,s,2. Let f ∈
H 2
ν,s and let z ∈ B. Since z→ ‖f (z)‖ is subharmonic then

‖f (z)‖ ≤ Cd,r,ν
∫
z+rB

‖f (w)‖ dι2ν(w)

so by Jensen’s inequality

‖f (z)‖2 ≤ C ′d,r,ν
∫
z+rB

‖f (w)‖2 dι2ν(w)

if z+ rB ⊂ B. On the other hand, there is a constant dr > 0 such that drI ≤
⊗sBt (w,w) for all w ∈ z+ rB. Hence

‖f (z)‖2 ≤ Dd,r,ν

∫
z+rB

〈
(1− |z|2)2ν ⊗s Bt (w,w)f (w), f (w)

〉
dι(w)

so that f → 〈f (z), v〉 is bounded. Then the reproducing property at z = 0
reads as

〈f (0), v〉 = 〈f (·), R(·, 0)v〉ν,s,2.
On the other hand, the space of�sV ′-valued polynomials is dense in H 2

ν,s and
〈p(·), v〉ν,s,2 = 0 for all homogeneous polynomials of degree ≥ 1. Thus if

f (z) =
∞∑
m=0

fm(z)

where fm are homogeneous polynomials of degree m, then

〈f (·), v〉ν,s,2 = 〈f0(·), v〉ν,s,2 = 〈f (0), v〉ν,s,2 = c′〈f (0), v〉.
Therefore

〈f (·), R(·, 0)v〉ν,s,2 = 〈f (0), v〉 = 1

c′
〈f (·), v〉ν,s,2

so that R(·, 0) = cI with c �= 0. Next we prove that R(z,w) transforms under
G as follows

(18) R(gz, gw)

= (⊗sdg(z)t
)−1
R(z,w)

(⊗s(dg(w)t )∗
)−1(

Jg(z)
)−2ν/(d+1)(

Jg(w)
)−2ν/(d+1)
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where g ∈ G. Indeed, for all F ∈ H 2
ν,s

〈F(z), v〉 =
∫

B

〈
(1− |w|2)2ν ⊗s Bt (w,w)F (w), R(w, z)v

〉
dι(w)

from which it follows that for all f ∈ L2
a(dιν)〈

Jg(z)
2ν/(d+1) ⊗s dg(z)tf (gz), v

〉
(19)

=
∫

B

〈
(1− |w|2)2ν ⊗s Bt (w,w)Jg(w)

2ν/(d+1)

⊗sdg(w)tf (gw), R(w, z)v
〉
dι(w).

On the other hand, it follows from (9)〈
f (gz),

(
Jg(z)

)2ν/(d+1) ⊗s
(
dg(z)t

)∗
v
〉

=
∫

B

〈
⊗sBt (w,w)f (w), R(w, gz)

(
Jg(z)

)2ν/(d+1) ⊗s
(
dg(z)t

)∗
v
〉 dι2ν(w)

c2ν

=
∫

B

〈
⊗sBt (gw, gw)f (gw),R(gw, gz)

(
Jg(z)

)2ν/(d+1) ⊗s
(
dg(z)t

)∗
v
〉

·
∣∣∣(Jg(w))2ν/(d+1)

∣∣∣2 dι2ν(w)

c2ν

=
∫

B

〈(
1− |w|2)2ν ⊗s Bt (w,w)

(
Jg(w)

)2ν/(d+1) ⊗s dg(w)tf (gw),

⊗s dg(w)tR(gw, gz)⊗s
(
dg(z)t

)∗
v
〉

· (Jg(z))2ν/(d+1)(
Jg(w)

)2ν/(d+1)
dι(w).

Comparing this with (19) we get (18). Now both R(z,w)/c and Kν,s(z, w)

satisfy the same transformation rule (18) and are identity operator at z = 0.
Thus they are the same for all z,w ∈ B. This completes the proof of the lemma.

4. The Besov space Bν,s

Let s = 1, 2, 3, . . . and define

Bν,s

=
{
f : B → C holomorphic,

∫
B

〈⊗sBt (z, z)∂sf (z), ∂sf (z)
〉
dιν(z) < +∞

}
.
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The space Bν,s is called a Besov space. It is a Hilbert space, equipped with the
inner product 〈·, ·〉ν,s given by

〈f, g〉ν,s = f (0)g(0)+ · · · + 〈
(∂(s−1)f )(0), (∂(s−1)g)(0)

〉
+

∫
B

〈⊗sBt (z, z)∂sf (z), ∂sg(z)
〉
dιν(z).

Actually Bν,s = L2
a(dιν), namely they are equal as sets and their norms are

equivalent, as is shown below.

Theorem 4.1. There exist constants Cν,s,Dν,s > 0 such that

Cν,s · ‖f ‖ν ≤ ‖f ‖ν,s ≤ Dν,s · ‖f ‖ν
for all holomorphic f : B → C.

We need first some elementary lemmas.

Lemma 4.2. Let fm and fn be homogeneous holomorphic polynomials of
degree m and n respectively, with m �= n. Then 〈fm, fn〉ν,s = 0.

Proof. Let 0 < θ < 2π . Then eiθ �= 1. Since fm is a homogeneous
polynomial of degree m we have fm(eiθ z) = eimθfm(z). Given m and n with
m �= n, it is enough to prove that

(20) 〈fm, fn〉ν,s = ei(m−n)θ 〈fm, fn〉ν,s
The case s = 0 follows directly from the homogeneity. Now consider the case
s = 1. It is easy to see that Bt(z, z) = Bt(e−iθ z, e−iθ z). By the chain rule and
homogeneity it follows that

(∂fm)(e
iθw) = e−iθ ∂(fm(eiθ ·))(w) = ei(m−1)θ (∂fm)(w)

so that the equation (20) holds for s = 1. The cases s = 2, 3, . . . now follow in
the same way if we first notice that (∂sfm)(eiθw) = ei(m−s)θ (∂sfm)(w). This
completes the proof.

We recall now a result from Rudin (Theorem 12.2.8 in [20]). Consider the
space Pm of all homogeneous holomorphic polynomials of degreem on B with
the natural group action of the unitary group U(d):

(πgf )(z) = f (g−1z), f ∈ Pm, g ∈ U(d).

Then
(
Pm, πg

)
is a unitary irreducible representation of U(d). As a con-

sequence of Schur’s lemma (Theorem 1.10 in [2]) we have
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Lemma 4.3. Let m be a non-negative integer. Then there exists a positive
constant Cν,s,m such that

‖fm‖ν,s = Cν,s,m · ‖fm‖ν
for all fm ∈ Pm.

Remark 4.4. Actually, this lemma is a special case of the result in exercise
1.16.7 in [2].

Now we can prove the norm-equivalence of Bν,s and L2
a(dιν).

Proof of Theorem 4.1. It is enough to prove the theorem for f with
f (0) = · · · = ∂s−1f (0) = 0. Write f = ∑∞

m=0 fm where fm ∈ Pm. By
Lemma 4.2 we have that {fm}∞m=0 is an orthogonal set in both L2

a(dιν) and
Bν,s . Also, by Lemma 4.3 we have ‖fm‖ν,s = Cν,s,m · ‖fm‖ν where Cν,s,m
does not depend on fm of degree m. We compute Cν,s,m and prove that there
exist positive constants Cν,s and Dν,s such that

(21) Cν,s ≤ Cν,s,m ≤ Dν,s

for all m. We may assume that m ≥ s. Take fm(z) = zm1 . We shall calculate

‖fm‖2
ν,s =

∫
B

〈⊗sBt (z, z)∂sfm(z), ∂
sfm(z)

〉
dιν(z).

First observe that〈⊗sBt (z, z)∂sfm(z), ∂
sfm(z)

〉
= 〈⊗sBt (z, z)

(
∂s1z

m
1

)⊗s dz1,
(
∂s1z

m
1

)⊗s dz1
〉

= 〈
Bt(z, z)(∂s1z

m
1 )dz1, (∂

s
1z
m
1 )dz1

〉 · 〈Bt(z, z)dz1, dz1
〉s−1

= �(m+ 1)2

�(m− s + 1)2
(1− |z|2)s(1− |z1|2)s |z1|2(m−s).

We have

Cν

∫
B
|z1|2(m−s)(1− |z1|2)(1− |z|2)ν+s dι(z) =∫

|z1|<1
|z1|2(m−s)(1−|z1|2)s

∫
|z′|<
√

1−|z1|2
(1−|z1|2−|z′|2)ν+s−d−1dm(z′)dm(z1)

and∫
|z′|<
√

1−|z1|2
(1− |z1|2 − |z′|2)ν+s−d−1dm(z′) = C ′ν · (1− |z1|2)ν+s−2.
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Since∫
|z1|<1

|z1|2(m−s)(1− |z1|2)s(1− |z1|2)s+ν−2 dm(z1)

= C ′′ν ·
�(m− s + 1)�(ν + 2s − 1)

�(m+ s + ν)
we get

‖fm‖2
ν,s = aν · �(m+ 1)2�(ν + 2s − 1)

�(m− s + 1)�(m+ s + ν) .

On the other hand
‖fm‖2

ν =
�(m+ 1)�(ν)

�(m+ ν)
so that

C2
ν,s,m =

‖fm‖2
ν,s

‖fm‖2
ν

= aν · �(m+ 1)�(ν + 2s − 1)�(m+ ν)
�(m− s + 1)�(m+ s + ν)�(ν) .

For m ≥ s we have

�(m+ 1)�(m+ ν)
�(m− s + 1)�(m+ s + ν) =

m(m− 1) · · · (m− s + 1)

(m+ s + ν − 1) · · · (m+ ν)

=
(
1− 1

m

) · · · (1− s−1
m

)(
1+ s+ν−1

m

) · · · (1+ ν
m

)
so that

bν,s =
(
1− 1

s

) · · · (1− s−1
s

)(
1+ s+ν−1

s

) · · · (1+ ν
s

) ≤ �(m+ 1)�(m+ ν)
�(m− s + 1)�(m+ s + ν) ≤ 1.

So (21) follows by putting

Cν,s =
√
aν · bν,s · �(ν + 2s − 1)

�(ν)

and

Dν,s =
√
aν · �(ν + 2s − 1)

�(ν)
.
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5. Boundedness

5.1. The Banach space H∞
ν,s

Denote by L∞ν,s the space of functions F : B →�sV ′ such that

‖F‖ν,s,∞ = sup
z∈B

〈
(1− |z|2)2ν ⊗s Bt (z, z)F (z), F (z)

〉1/2
<∞.

If we write ‖F‖ν,s,∞ = supz∈B ‖S(z)‖W where

‖S(z)‖W =
∥∥(
(1− |z|2)2ν ⊗s Bt (z, z)

)1/2
F(z)

∥∥
and W = �sV ′, then L∞ν,s is a Banach space since it is easy to see that, if
Sn : B → W satisfies ∞∑

n=1

sup
z∈B
‖Sn(z)‖W <∞

then there is a S : B → W with supz∈B ‖S(z)‖W <∞ such that

sup
z∈B

∥∥∥∥ S(z)− N∑
n=1

Sn(z)

∥∥∥∥
W

→ 0 as N →∞.

The closed subspace of holomorphic functions in L∞ν,s is denoted by H∞
ν,s .

5.2. Proof of Theorem 1.1(a)

Proof of sufficiency. The Hankel form in (7) can be written as a sum of
certain integrals, we estimate each one, as follows,∣∣∣∣
∫

B

〈
(1− |z|2)2ν ⊗s Bt (z, z)∂kf (z)⊗ ∂s−kg(z), F (z)〉 dι(z)∣∣∣∣ ≤

‖F‖ν,s,∞ ·
∫

B

〈⊗sBt (z, z)∂kf (z)⊗ ∂s−kg(z), ∂kf (z)⊗ ∂s−kg(z)〉1/2 dιν(z)
cν

and〈⊗sBt (z, z)∂kf (z)⊗ ∂s−kg(z), ∂kf (z)⊗ ∂s−kg(z)〉
= 〈⊗kBt (z, z)∂kf (z), ∂kf (z)

〉 · 〈⊗s−kBt (z, z)∂s−kg(z), ∂s−kg(z)
〉

so that∣∣∣∣
∫

B

〈
(1− |z|2)2ν ⊗s Bt (z, z)∂kf (z)⊗ ∂s−kg(z), F (z)〉 dι(z)∣∣∣∣

≤ c′ν · ‖F‖ν,s,∞ · ‖f ‖ν,k · ‖g‖ν,s−k ≤ Cν,s · ‖F‖s,∞ · ‖f ‖ν · ‖g‖ν,
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where the last inequality follows from Theorem 4.1.

For notational convenience we denote

〈u, v〉z =
〈⊗sBt (z, z)u, v

〉
where u, v ∈ �sV ′, and it defines an inner product on �sV ′.

Proof of necessity. Let v ∈ �sV ′. By Lemma 3.5 we have

〈F(0), v〉 = c

∫
B

〈
(1− |w|2)2ν ⊗s Bt (w,w)F (w), v

〉
dι(w).

We may write
v =

∑
|i|=s

vi e
i1
1 � · · · � eidd

where i = (i1, . . . , id) and vi ∈ C. Take

f (w) =
∑
|i|=s

w
i1
1 · · ·wis

d · vi and g(w) = 1.

Then f, g ∈ L2
a(dιν). By (6)

Ts(f, g)(w) =
s∑
k=0

(
s

k

)
(−1)s−k

∂kf (w)� ∂s−kg(w)
(ν)k(ν)s−k

=
(
s

0

)
∂sf (w)� g(w)

(ν)s(ν)0

where

∂sf (w) =
∑
|i|=s

∂s
(
w
i1
1 · · ·wid

d

) · vi = ∑
|i|=s

s! · vi ei11 � · · · � eidd = s! v

so that
Ts(f, g)(w) = s!

(ν)s
v.

Hence

(22) |〈F(0), v〉|2 = c2(ν)2s ·
1

(s!)2
∣∣Hs

F (f, g)
∣∣2

so that

(23) |〈F(0), v〉|2 ≤ Cν,s‖Hs
F‖2‖f ‖2

ν‖g‖2
ν ≤ Cν,s‖Hs

F‖2‖v‖2.
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Define

S(w) = (
πν,s(ϕz)F

)
(w) = (⊗sϕ′z(w)

t
)
F(ϕz(w))

(
Jϕz(w)

)2ν/(d+1)
.

Then S : B →�sV ′ is holomorphic. Also by equations (14) and (16)

‖Hs
S‖ = ‖Hs

F‖ <∞,
so by (23) with F replaced by S

(24) |〈S(0), v〉|2 ≤ C‖Hs
S‖2‖v‖2 = C‖Hs

F‖2‖v‖2.

Now
S(0) = (⊗sϕ′z(0)

t
)
F(z)

(
Jϕz(0)

)2ν/(d+1)
.

Since −ϕ′z(0)t = s2
z Pz̄ + szQz̄ ≥ 0 then (−ϕ′z(0)t )2 = Bt(z, z) and by the

uniqueness of positive square root Bt(z, z)1/2 = −ϕ′z(0)t . Thus(⊗sBt (z, z)
)1/2 = ⊗sBt (z, z)1/2 = (−1)s ⊗s ϕ′z(0)

t .

Hence
S(0) = ρ(1− |z|2)ν (⊗sBt (z, z)

)1/2
F(z),

where |ρ| = 1, so that (24) becomes∣∣∣〈F(z), (⊗sBt (z, z)
)1/2

v
〉∣∣∣2 ≤ C‖Hs

F‖2
∥∥∥(⊗sBt (z, z)

)−1/2
v

∥∥∥2

z
(1− |z|2)−2ν .

Observe that〈
F(z),

(⊗sBt (z, z)
)1/2

v
〉 = 〈

F(z),
(⊗sBt (z, z)

)−1/2
v
〉
z

so the result follows from Riesz lemma, for the inner product 〈·, ·〉z.
6. Compactness and Hilbert-Schmidt properties

6.1. Compactness

In this subsection we prove Theorem 1.1 (b).

Remark 6.1. Let {e1, . . . , ed} be a basis for V ′. Then we can write

F(z) =
∑

i1+···+id=s
Fi(z) e

i1
1 � · · · � eidd

where i = (i1, . . . , id) and Fi : B → C are holomorphic. Also

Fi(z) =
∞∑
m=0

p(i)m (z)
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where p(i)m are homogeneous holomorphic polynomials of degree m.

To prove the sufficiency of Theorem 1.1(b) we need the following result.

Lemma 6.2. Let F : B →�sV ′ be holomorphic with the property〈
(1− |z|2)2ν ⊗s Bt (z, z)F (z), F (z)

〉→ 0 if |z| ↗ 1.

Let ε > 0 be given. Then there exists a number r ′ with 0 < r ′ < 1 and a
natural number N such that

‖F − PN‖ν,s,∞ < ε

where

PN(z) =
∑
|i|=s

N∑
m=0

p(i)m (r
′z) ei11 � · · · � eidd .

Remark 6.3. Remember that we have already defined

‖F‖ν,s,∞ = sup
z∈B

〈
(1− |z|2)2ν ⊗s Bt (z, z)F (z), F (z)

〉1/2
for holomorphic F : B →�sV ′.

Remark 6.4. Let H1 and H2 be Hilbert spaces and let A1, B1 : H1 → H1

and A2, B2 : H2 → H2 be positive operators. Then

(25) (A1 − B1)⊗ (A2 + B2)+ (A1 + B1)⊗ (A2 − B2)

= 2(A1 ⊗ A2 − B1 ⊗ B2).

Thus it follows from (25) that

(26) A1 ≥ B1, A2 ≥ B2 �⇒ A1 ⊗ A2 ≥ B1 ⊗ B2.

Proof of Lemma 6.2. Let ε > 0 be given. Then there exists 0 < r0 < 1
such that

sup
r0<|z|<1

〈
(1− |z|2)2ν ⊗s Bt (z, z)F (z), F (z)

〉
<
ε2

32
.

Define Fr(z) = F(rz) where 0 < r < 1. Since Prz̄ = Pz̄ then

Bt(rz, rz) = (1− r2|z|2)(I − r2|z|2Prz̄) ≥ Bt(z, z)
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for all 0 < r < 1. By (26) it then follows that

⊗sBt (rz, rz) ≥ ⊗sBt (z, z)

for all 0 < r < 1. Hence,〈
(1− |z|2)2ν ⊗s Bt (z, z)Fr(z), Fr(z)

〉
≤ 〈
(1− |rz|2)2ν ⊗s Bt (rz, rz)F (rz), F (rz)

〉
.

Then it follows from the inequalities〈⊗sBt (z, z) (F (z)− Fr(z)) , F (z)− Fr(z)
〉

≤ 〈⊗sBt (z, z)F (z), F (z)
〉+ 〈⊗sBt (z, z)Fr(z), Fr(z)

〉
+ 2

∣∣〈⊗sBt (z, z)F (z), Fr(z)
〉∣∣

and∣∣〈⊗sBt (z, z)F (z), Fr(z)
〉∣∣

≤ 〈⊗sBt (z, z)F (z), F (z)
〉1/2 〈⊗sBt (z, z)Fr(z), Fr(z)

〉1/2
that, if 1 > r > r1 = 2r0/(1+ r0) and R0 = (1+ r0)/2,

sup
R0<|z|<1

〈
(1− |z|2)2ν ⊗s Bt (z, z) (F (z)− Fr(z)) , F (z)− Fr(z)

〉
<
ε2

8
,

since, if r1 < r < 1,

sup
R0<|z|<1

〈
(1− |z|2)2ν ⊗s Bt (z, z)F (rz), F (rz)

〉
≤ sup

R0r<|rz|<r

〈
(1− |rz|2)2ν ⊗s Bt (rz, rz)F (rz), F (rz)

〉
≤ sup

r0<|rz|<1

〈
(1− |rz|2)2ν ⊗s Bt (rz, rz)F (rz), F (rz)

〉
<
ε2

32
.

AsFr → F uniformly, r → 1, on every compact subset of B, there is a number
r2 such that if r2 < r < 1, then

sup
|z|≤R0

〈F(z)− Fr(z), F (z)− Fr(z)〉 < ε2

8
.
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Since Bt(z, z) ≤ (1 − |z|2)I ≤ I then (26) yields ⊗sBt (z, z) ≤ ⊗sI so that
if r2 < r < 1, then

sup
|z|≤R0

〈
(1− |z|2)2ν ⊗s Bt (z, z) (F (z)− Fr(z)) , F (z)− Fr(z)

〉
≤ sup
|z|≤R0

〈F(z)− Fr(z), F (z)− Fr(z)〉 < ε2

8
.

Hence for max(r1, r2) < r < 1 it holds that

‖F − Fr‖2
ν,s,∞

≤ sup
|z|≤R0

〈
(1− |z|2)2ν ⊗s Bt (z, z) (F (z)− Fr(z)) , F (z)− Fr(z)

〉
+ sup

R0<|z|<1

〈
(1− |z|2)2ν ⊗s Bt (z, z) (F (z)− Fr(z)) , F (z)− Fr(z)

〉
<
ε2

4
.

Now, take r ′ such that max(r1, r2) < r ′ < 1. The sum
∑
|i|=s

∞∑
m=0

p(i)m (r
′z)ei11 �

· · · � e
id
d converges uniformly to Fr ′(z) on B. Hence there exists a natural

number N such that

‖Fr ′ − PN‖2
ν,s,∞ ≤ sup

z∈B
〈Fr ′(z)− PN(z), Fr ′(z)− PN(z)〉 < ε2

4

where PN(z) =∑
|i|=s

∑N
m=0 p

(i)
m (r

′z) ei11 � · · · � eidd . This yields

‖F − PN‖ν,s,∞ ≤ ‖F − Fr ′ ‖ν,s,∞ + ‖Fr ′ − PN‖ν,s,∞ < ε

which completes the proof of the lemma.

Now we can prove the sufficiency of Theorem 1.1(b).

Proof of sufficiency. Let ε > 0 be given. Then it follows from Lem-
ma 6.2 that there is aPN such that ‖F−PN‖ν,s,∞ < ε. Then the bilinear Hankel
formHs

F−PN = Hs
F −Hs

PN
with F −PN is bounded. In fact, the operator norm

‖·‖ satisfies ‖Hs
F −Hs

PN
‖ ≤ C‖F − PN‖ν,s,∞ < Cε.

If we can prove that Hs
PN

is compact then we are done. Actually we shall
find that Hs

PN
is of Hilbert-Schmidt class S2 and thus especially compact. By

construction (see Lemma 6.2) PN is a linear combination of terms zγ
′
eγ =

zγ
′
e
γ1
1 � · · · � eγdd so it is enough to prove that Hs

zγ
′
eγ
∈ S2. Consider

Hs

zγ
′
eγ
(zα, zβ) =

∫
B

〈⊗sBt (w,w)Ts(z
α, zβ)(w),wγ ′e

γ1
1 � · · · � eγdd

〉
dι2ν(w).
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First we observe that〈⊗sBt (w,w)Ts

(
zα, zβ

)
(w),wγ ′e

γ1
1 � · · · � eγdd

〉
is a linear combination of terms

(27)
〈
⊗sBt (w,w)

(
∂
i1
1 · · · ∂idd

)
(wα)

(
∂
j1
1 · · · ∂jdd

)
(wβ) u1 ⊗ u2 ⊗ · · · ⊗ us,

wγ ′v1 ⊗ v2 ⊗ · · · ⊗ vs
〉

where u1⊗ · · ·⊗us and v1⊗ · · ·⊗ vs contains ik + jk copies and γk copies of
ek respectively. We may assume that αk ≥ ik and βk ≥ jk for k = 1, 2, . . . d.
Denote i = (i1, . . . , id) and j = (j1, . . . , jd). Then the term (27) equals

Ci,j (1− |w|2)sw(α+β)−(i+j)w̄γ ′
s∏

m=1

(〈um, vm〉 − 〈um, w̄〉〈w̄, vm〉).
But this term yields a nonzero integral only for those α and β with |α + β| ≤
|γ ′| + s. In fact, this proves that the form Hs

zγ
′
eγ

has finite rank. Thus

∥∥Hs

zγ
′
eγ

∥∥2
S2
=

∑
α,β

∣∣Hs

zγ
′
eγ
(zα, zβ)

∣∣2

‖zα‖2
ν‖zβ‖2

ν

with a finite sum. Hence Hs

zγ
′
eγ
∈ S2 so that Hs

PN
∈ S2.

Now we prove the necessity of Theorem 1.1(b).

Proof of the necessity. Let F be a symbol such that Hs
F is compact.

Since �sV ′ is a finite dimensional Hilbert space we need only to prove that
〈un, v〉 → 0 as n→∞ where

un =
(
(1− |zn|2)2ν ⊗s Bt (zn, zn)

)1/2
F(zn)

and |zn| ↗ 1 as n→ ∞, for any v ∈ �sV ′. As in the proof of the necessity
of Theorem 1.1 (a) we write

v =
∑
|i|=s

vi e
i1
1 � ei22 � · · · � eidd

and let
f (w) =

∑
|i|=s

w
i1
1 · · ·wis

d · vi and g(w) = 1.
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So for any symbol S we have

|〈S(0), v〉| = Cν,s |Hs
S(f, g)|,

by the same arguments as for (22) in the proof of the necessity of The-
orem 1.1(a). Let

S(w) = πν,s((ϕzn)F )(w)⊗s ϕ′zn (w)
tF (ϕzn(w))

(
Jϕzn (w)

)2ν/(d+1)

so that

(28) S(0) = ⊗sϕ′zn (0)
tF (zn)

(
Jϕzn (0)

)2ν/(d+1)
.

By Proposition 2.2,

Jϕzn (0) = (−1)d(1− |zn|2)(d+1)/2 and Bt(zn, zn)
1/2 = −ϕ′zn (0)t

so that

(29) |〈S(0), v〉| = |〈un, v〉|.
On the other hand

Hs
S(f, g) = Hs

F

(
f ◦ ϕzn · J ν/(d+1)

ϕzn
, kzn

)
where

kzn(w) = (g ◦ ϕzn)(w)
(
Jϕzn (w)

)ν/(d+1) = ρ · (1− |zn|
2)ν/2

(1− 〈w, zn〉)ν , |ρ| = 1,

so that kzn(w)→ 0 weakly as n→∞ and ‖kzn‖ν = 1. Since Hs
F is compact

then there is a sequence {cn}∞n=0 of positive numbers such that cn → 0 and

|Hs
F (h, kzn)| ≤ cn‖h‖ν

for all h ∈ L2
a(dιν). Let h = f ◦ ϕzn · J ν/(d+1)

ϕzn = πν
(
ϕzn

)
f which yields

‖h‖2
ν = ‖f ‖2

ν .

Then |〈un, v〉| ≤ Cν,scn‖f ‖ν ≤ C ′ν,scn‖v‖
so that 〈un, v〉 → 0 as n→∞, which, combined with the equalities (28) and
(29), implies that〈

(1− |zn|2)2ν ⊗s Bt (zn, zn)F (zn), F (zn)
〉→ 0 as |zn| ↗ 1.
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6.2. Hilbert-Schmidt properties

In this subsection we prove Theorem 1.2. Denote by H ′
ν,s the space of all

holomorphic functions F : B → �sV ′ such that the corresponding bilinear
Hankel form on L2

a(dιν)⊗ L2
a(dιν)

H s
F (f, g) =

∫
B

〈⊗sBt (z, z)Ts(f, g)(z), F (z)
〉
dι2ν(z)

is of Hilbert-Schmidt class S2. By Lemma 6.5, it is a Hilbert space with an
inner product 〈F, S〉′ν,s = 〈Hs

F ,H
s
S 〉S2 where

〈Hs
F ,H

s
S 〉S2 =

∞∑
|α|=0

∞∑
|β|=0

Hs
F (eα, eβ)H

s
S (eα, eβ)

and eα = zα/‖zα‖ν .
Lemma 6.5. The space H ′

ν,s is a Hilbert space.

Proof. Let {Fn}∞n=0 be a Cauchy sequence in H ′
ν,s . Then {Hs

Fn
}∞n=0 is Cauchy

in operator norm so that {Fn}∞n=0 is Cauchy in ‖·‖ν,s,∞. Then there is aF ∈ H∞
ν,s

such thatFn → F in ‖·‖ν,s,∞. ThusHs
Fn
→ Hs

F in operator norm. On the other
hand, the space of all bilinear forms of Hilbert-Schmidt class S2 is a Hilbert
space so that Hs

Fn
→ H ∈ S2 in ‖·‖S2 . Then Hs

Fn
→ H in operator norm so

that H = Hs
F . Thus F ∈ H ′

ν,s and Fn → F in H ′
ν,s .

We now shall see that H ′
ν,s = H 2

ν,s , namely they are equal as sets and the
norms are equivalent, as is shown below. Actually, Theorem 1.2 is a direct
consequence of Theorem 6.6.

Theorem 6.6. There is a constant Cν,s > 0 such that

‖F‖′ν,s = Cν,s‖F‖ν,s,2
for all holomorphic F : B →�sV ′.

To prove Theorem 6.6 we need some lemmas.

Lemma 6.7. Let {e1, . . . , ed} be an orthonormal basis for V ′. Then the
spaces H ′

ν,s and H 2
ν,s contains the element es1 = e1 ⊗ · · · ⊗ e1.

Proof. Clearly es1 ∈ H 2
ν,s . The fact that es1 ∈ H ′

ν,s follows from (27), letting
γ ′ = 0 and γj = s · δ1j for j = 1, . . . , d.

Lemma 6.8. The action πν,s , defined in (15), is unitary on both H ′
ν,s and

H 2
ν,s .
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Proof. Clearly, πν,s is unitary on H 2
ν,s . That πν,s is also unitary on H ′

ν,s

follows from Lemma 3.2 and the fact that πν , defined in (13), is unitary on
L2
a(dιν).

Lemma 6.9. The space H 2
ν,s is irreducible with respect to the action πν,s ,

defined in (15).

Proof. Let H0 ⊂ H 2
ν.s be invariant under the action πν,s(g), g ∈ G, and

assume that h ∈ H0 for some h �= 0. We may assume, by replacing h by an
action of πν,s(g) on h if necessary, that h(0) �= 0. We need to prove

(30) f ∈ H 2
ν,s , f ⊥ H0 �⇒ f = 0.

Take such an f ∈ H 2
ν,s . Since eiθ : z→ eiθ z is in G and

H0 !
(
πν,s(e

iθ )h
)
(z) = (

e−iθd
)2ν/(d+1) · e−iθs · h(eiθ z)

then h(eiθ z) ∈ H0. Hence, by the mean value property,

h(0) =
∫ 2π

0
h(eiθ z) dθ ∈ H0.

Then we have found a nonzero element in �sV ′ which is also contained in
H0. Then v ∈ H0 for any v ∈ �sV ′ (by Theorem 12.2.8 in [20]). Then
[πν,s(ϕw)v](z) = c · K(z,w)v is in H0, for any v ∈ �sV ′, where K(·, w) is
the reproducing kernel for H 2

ν,s and c is a nonzero constant. Hence

f ⊥ K(·, w)v
so that

f (w) = 0 for all w ∈ B

by the reproducing property. This proves (30).

Now we can prove Theorem 6.6.

Proof of Theorem 6.6. As a consequence of Theorem VI.23 in [16] we
can make the following identification of the space S2(L

2
a(dιν), L

2
a(dιν)) of

Hilbert-Schmidt bilinear forms on L2
a(dιν) with the tensor product, that is,

S2
(
L2
a(dιν), L

2
a(dιν)

) = L2
a(dιν)⊗ L2

a(dιν).

Moreover L2
a(dιν) ⊗ L2

a(dιν) can be decomposed into irreducible subspaces
H̃ ν,s of Hankel forms of weight s with an intertwining operator T : H 2

ν,s →
H̃ ν,s , (see [15]). Also, Hs

F defined in (7) is a Hankel form of weight s and by
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Lemma 6.7 there is a nonzero element in H 2
ν,s which yields a nonzero element

in H ′
ν,s . Thus

H ′
ν,s = H 2

ν,s

whose norms are the same up to a constant, by Corollary 8.13 in [9].

7. Matrix-valued Bergman type projections

To prove Theorem 1.3 we need certain interpolation results for the spaces
H

p
ν,s , which will then be derived from certain Lp-boundedness properties of

some matrix-valued Bergman projections. The results in this section might be
of independent interests. We refer to Zhu [22] for the study of boundedness
property of scalar Bergman projections.

We start with a technical lemma.

Lemma 7.1. Let s be a positive integer. Then∥∥⊗sBt (w,w)1/2 ⊗s
(
Bt(w, z)

)−1 ⊗s Bt (z, z)1/2
∥∥

≤ Cs · (1− |w|
2)s/2(1− |z|2)s/2

|1− 〈w, z〉|s
for all w, z ∈ B.

Proof. First we shall prove the lemma for s = 1 by using the following
identities (see (10) and (4)):

Bt(z, z)1/2 = sz(szPz̄ +Qz̄) where sz = (1− |z|2)1/2

and
Bt(w, z)−1 = (1− 〈w, z〉)−2

(
(1− 〈w, z〉)I + z̄⊗ w̄∗).

Note that

Bt(w,w)1/2Bt(w, z)−1Bt(z, z)1/2

= swsz(1− 〈w, z〉)−1(swPw̄ +Qw̄)(szPz̄ +Qz̄)

+ swsz(1− 〈w, z〉)−2(swPw̄ +Qw̄)(z̄⊗ w̄∗)(szPz̄ +Qz̄).

Thus, by the inequality

(1− |z|2)(1− |w|2)
|1− 〈w, z〉|2 ≤ 1 for all z,w ∈ B,

it is enough to show that

(31)
∥∥(swPw̄ +Qw̄)(z̄⊗ w̄∗)(szPz̄ +Qz̄)

∥∥ ≤ C|1− 〈w, z〉|.
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To this end, we may assume |z| ≥ 1/2 and |w| ≥ 1/2. Expand the product
(·)(·)(·) as a sum of four terms. First we note that

(32) ‖swPw̄(z̄⊗ w̄∗)szPz̄‖ ≤ swsz ≤ |1− 〈w, z〉|.
There are three parts left to consider. Let v ∈ V ′. The first part to estimate is

swPw̄(z̄⊗ w̄∗)Qz̄v = sw

〈
v, w̄ − 〈z,w〉|z|2 z̄

〉 〈z,w〉
|w|2 w̄.

We use Cauchy-Schwarz’ inequality. Note that∥∥∥∥w̄ − 〈z,w〉|z|2 z̄

∥∥∥∥2

= |w|2|z|2 − |〈z,w〉|2
|z|2 ≤ 8|1− 〈z,w〉|.

Thus the inequalities 1 − |w|2 ≤ 2|1 − 〈z,w〉| and |w| ≥ 1/2 yield the
estimation

(33)
∥∥swPw̄(z̄⊗ w̄∗)Qz̄v

∥∥ ≤ 16|1− 〈z,w〉|‖v‖
Since

Qw̄(z̄⊗ w̄∗)szPz̄ =
(
szPz̄(w̄ ⊗ z̄∗)Qw̄

)∗
we have an estimation of the second part

(34)
∥∥Qw̄(z̄⊗ w̄∗)szPz̄v

∥∥ ≤ 16|1− 〈z,w〉|‖v‖.
Finally consider

Qw̄(z̄⊗ w̄∗)Qz̄v =
〈
v, w̄ − 〈z,w〉|z|2 z̄

〉 (
z̄− 〈w, z〉|w|2 w̄

)
.

The same estimates as above yield

(35)
∥∥Qw̄(z̄⊗ w̄∗)Qz̄v

∥∥ ≤ 8|1− 〈z,w〉|‖v‖.
Thus the four estimations (32), (33), (34) and (35) yields (31). We have proved
the lemma for s = 1. Now, consider the case where s = 2, 3, . . . and let

Aw,z = Bt(w,w)1/2
(
Bt(w, z)

)−1
Bt(z, z)1/2

and
tw,z = szsw

|1− 〈z,w〉| .

We have proved that
A∗w,zAw,z ≤ C2t2w,zI
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so that
(⊗sAw,z)

∗ ⊗s Aw,z = ⊗s(A∗w,zAw,z) ≤ C2s t2sw,z ⊗s I

which proves the lemma.

Theorem 7.2. Let α > d and let Pν,s : L2
ν,s → H 2

ν,s be the orthogonal
projection operator. If max {(α − d)/(2ν + s/2− d), 1} < p <∞, then∫

B

∥∥⊗sBt (z, z)1/2Pν,sf (z)
∥∥p(1− |z|2)α dι(z)
≤ C

∫
B

∥∥⊗sBt (w,w)1/2f (w)
∥∥p(1− |w|2)α dι(w).

Remark 7.3. By Lemma 3.5 the orthogonal projection operator Pν,s , such
that for any f ∈ L2

ν,s and any v ∈ �sV ′ we have that
(36)

〈Pν,sf (z), v〉 = c

∫
B

〈
(1− |w|2)2ν ⊗s Bt (w,w)f (w),Kν,s(w, z)v

〉
dι(w)

where
Kν,s(w, z) = ⊗s

(
Bt(w, z)

)−1
(1− 〈w, z〉)−2ν,

is well-defined.

Proof of Theorem 7.2. The formula (36) can be rewritten as

Pν,sf (z) = c

∫
B
Kν,s(w, z)

∗ ⊗s Bt (w,w)f (w)(1− |w|2)2ν dι(w).

Now let
T (z,w) = (1− |z|2)s/2(1− |w|2)2ν+s/2−α

|1− 〈z,w〉|2ν+s .

By the equality Kν,s(w, z)
∗ = Kν,s(z, w) and Lemma 7.1 it follows that∥∥⊗sBt (z, z)1/2Pν,sf (z)
∥∥

≤ C
∫

B
T (z,w)

∥∥⊗sBt (w,w)1/2f (w)
∥∥ (1− |w|2)α dι(w).

We claim that there exists a real number t such that

(37)
∫

B
T (z,w)(1− |w|2)qt (1− |w|2)α dι(w) ≤ M(1− |z|2)qt

and

(38)
∫

B
T (z,w)(1− |z|2)pt (1− |z|2)α dι(z) ≤ M(1− |w|2)pt
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holds for some constant M , where q is given by 1 = 1/p + 1/q. Accepting
temporarily the claim, using Hölder’s inequality and (37),∥∥⊗sBt (z, z)1/2Pν,sf (z)

∥∥
≤ C

(∫
B
T (z,w)(1− |w|2)qt (1− |w|2)αdι(w)

)1/q

·(∫
B
T (z,w)(1− |w|2)−pt ∥∥⊗sBt (w,w)1/2f (w)

∥∥p (1− |w|2)αdι(w))1/p

≤ CM1/q(1− |z|2)t ·(∫
B
T (z,w)(1− |w|2)−pt ∥∥⊗sBt (w,w)1/2f (w)

∥∥p (1− |w|2)αdι(w))1/p

.

Thus, by Fubini-Tonelli’s theorem and (38), we have that∫
B

∥∥⊗sBt (z, z)1/2Pν,sf (z)
∥∥p (1− |z|2)α dι(z)

≤ CpMp/q

∫
B
(1−|z|2)pt

(∫
B
T (z,w)(1−|w|2)−pt ∥∥⊗sBt (w,w)1/2f (w)

∥∥p ·
(1− |w|2)α dι(w)

)
(1− |z|2)α dι(z)

= CpMp/q

∫
B
(1− |w|2)−pt ∥∥⊗sBt (w,w)1/2f (w)

∥∥p (1− |w|2)α ·(∫
B
(1− |z|2)ptT (z, w)(1− |z|2)α dι(z)

)
dι(w)

≤ CpMp

∫
B

∥∥⊗sBt (w,w)1/2f (w)
∥∥p (1− |w|2)α dι(z),

namely our theorem.
Now we go back to (37) and (38) which, by Lemma 2.4, holds if

(39)
d − 2ν − s/2

q
< t <

s

2q

and

(40)
d − s/2− α

p
< t <

2ν + s/2− α
p

respectively. Actually, by simple computations,(
d − 2ν − s/2

q
,
s

2q

) ⋂ (
d − s/2− α

p
,

2ν + s/2− α
p

)
�= ∅
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if max {(α − d)/(2ν + s/2− d), 1} < p <∞.

Corollary 7.4. If 1 < p <∞, then

Pν,sL
p
ν,s = H p

ν,s,

namely Pν,s : Lpν,s → H
p
ν,s is bounded.

8. Application of the boundedness of Pν,s

8.1. Some interpolation results

In this subsection we use the complex interpolation method of Banach spaces to
prove Theorem 8.2, which we will use to prove Theorem 1.3 in subsection 8.2.

The spaces A1 = L2
ν,s + L∞ν,s and A2 = H 2

ν,s + H∞
ν,s are Banach spaces

with the norms

‖F‖Ai
= inf

{‖F2‖ν,s,2 + ‖F∞‖ν,s,∞ : F = F2 + F∞ ∈ Ai

}
,

i = 1, 2, respectively, by Lemma 2.3.1 in [1]. Denote by Fi = F (Ai ),
i = 1, 2, the space of all functions with values in Ai , which are bounded and
continuous on the strip

S = {z ∈ C : 0 ≤ �z ≤ 1}
and holomorphic on the open strip

S0 = {z ∈ C : 0 < �z < 1}
and moreover, the functions t → f (j + it) are continuous functions from the
real line such that f (it) ∈ L2

ν,s (resp. H 2
ν,s) and f (1+ it) ∈ L∞ν,s (resp. H∞

ν,s ),
which tends to zero as |t | → ∞. Then Fi , i = 1, 2, are Banach spaces with
the same norm

‖f ‖F = max
(
sup ‖f (it)‖ν,s,2, sup ‖f (1+ it)‖ν,s,∞

)
,

by Lemma 4.1.1 in [1]. Now let 0 < θ < 1 and denote by
(
L2
ν,s , L

∞
ν,s

)
[θ ]

and(
H 2
ν,s ,H∞

ν,s

)
[θ ]

the space of all S ∈ Ai such that

‖S‖i,[θ ] = inf
{‖f ‖F : f (θ) = S, f ∈ Fi

}
<∞,

i = 1, 2, respectively.

Lemma 8.1. If 2 < p <∞, then

Pν,s
(
L2
ν,s , L

∞
ν,s

)
[1−2/p]

= (
H 2
ν,s ,H∞

ν,s

)
[1−2/p]

,



312 marcus sundhäll

namely Pν,s :
(
L2
ν,s , L

∞
ν,s

)
[1−2/p]

→ (
H 2
ν,s ,H∞

ν,s

)
[1−2/p]

is bounded.

Proof. As a direct consequence of Lemma 7.1 we have that Pν,s : L∞ν,s →
H∞
ν,s is bounded. Indeed, for any f ∈ L∞ν,s ,∥∥⊗sBt (z, z)1/2Pν,sf (z)

∥∥
≤ C(1− |z|2)s/2

∫
B

∥∥⊗sBt (w,w)1/2f (w)
∥∥ · (1− |w|2)2ν+s/2|1− 〈w, z〉|2ν dι(w)

≤ C(1− |z|2)s/2‖f ‖ν,s,∞
∫

B

(1− |w|2)ν+s/2
|1− 〈w, z〉|2ν dι(w)

≤ C ′‖f ‖ν,s,∞(1− |z|2)−ν

where the last inequality follows from Lemma 2.4. Hence, the result follows
from Riesz-Thorin’s interpolation theorem.

If we claim that

(41)
(
L2
ν,s , L

∞
ν,s

)
[1−2/p]

= Lpν,s, 2 < p <∞,
then we have the following theorem.

Theorem 8.2. If 2 < p <∞, then

H p
ν,s =

(
H 2
ν,s ,H∞

ν,s

)
[1−2/p]

.

Proof. If 2 < p <∞, then by the identity (41) we have that

Lpν,s =
(
L2
ν,s , L

∞
ν,s

)
[1−2/p]

.

Thus, by Corollary 7.4 and Lemma 8.1, if 2 < p <∞ then

H p
ν,s = Pν,sL

p
ν,s = Pν,s

(
L2
ν,s , L

∞
ν,s

)
[1−2/p]

= (
H 2
ν,s ,H∞

ν,s

)
[1−2/p]

.

The identity (41) can be proved by slightly modifying Theorem 5.1.1 in [1]
using

(42) ‖F‖ν,s,p = sup

{∣∣∣∣
∫

B

〈
(1− |z|2)2ν ⊗s Bt (z, z)F (z), S(z)

〉
dι(z)

∣∣∣∣ :

S bounded with compact support, ‖S‖ν,s,q = 1

}
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where 1/p+1/q = 1. Indeed, to prove (42) letF : B →�sV ′ be measurable.
Then

H = (
(1− |·|2)2ν ⊗s Bt (·, ·))1/2

F : B →�sV ′

is measurable and we may writeH = (H1, . . . , HN), where dim
(�sV ′

) = N .

For 1 ≤ j ≤ N we can find bounded functions bjn with compact support in B
such that |bjn| ↗ |Hj |. Let

sjn = |bjn| · eiArgHj .

Then sjn are bounded with compact support and

Hj · sjn = |Hj | · |bjn|.

Let sn = (s1
1 , . . . , s

N
n ) and put

tn(z) =
(
(1− |z|2)2ν ⊗s Bt (z, z)

)−1/2
sn(z).

Then tn : B →�sV ′ is measurable and〈
(1− |z|2)2ν ⊗s Bt (z, z)tn(z), tn(z)

〉
(43)

=
N∑
j=1

sjn(z) · sjn(z) =
N∑
j=1

|bjn(z)| · |bjn(z)| ≤
N∑
j=1

|Hj(z)| · |bjn(z)|

=
N∑
j=1

Hj(z) · sjn(z) =
〈
(1− |z|2)2ν ⊗s Bt (z, z)F (z), tn(z)

〉
.

Now, let

Sn(z) =
〈
(1− |z|2)2ν ⊗s Bt (z, z)tn(z), tn(z)

〉(q−2)/2 · tn(z)
‖tn‖q−1

ν,s,q

.

Then Sn : B →�sV ′ is measurable,

‖Sn‖ν,s,q = 1

and ∫
B

〈
(1− |z|2)2ν ⊗s Bt (z, z)Sn(z), tn(z)

〉
dι(z) = ‖tn‖ν,s,p
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so by (43)

‖F‖ν,s,p ≤ lim‖tn‖ν,s,p = lim
∫

B

〈
(1− |z|2)2ν ⊗s Bt (z, z)Sn(z), tn(z)

〉
dι(z)

≤ lim
∫

B

〈
(1− |z|2)2ν ⊗s Bt (z, z)Sn(z), F (z)

〉
dι(z) ≤ Mp(F)

where

Mp(F) = sup

{∣∣∣∣
∫

B

〈
(1− |z|2)2ν ⊗s Bt (z, z)F (z), S(z)

〉
dι(z)

∣∣∣∣ :

S bounded with compact support, ‖S‖ν,s,q = 1

}
.

On the other hand∣∣∣∣
∫

B

〈
(1− |z|2)2ν ⊗s Bt (z, z)F (z), S(z)

〉
dι(z)

∣∣∣∣ ≤ ‖F‖ν,s,p · ‖S‖ν,s,q
which proves (42). The rest is almost the same as in [1] loc. cit., only re-
placing the usual absolute value |g(z)| of scalar functions g(z) by the norm
‖S(z)‖z = ‖ (

(1− |z|2)2ν ⊗s Bt (z, z)
)1/2

S(z)‖ of vector-valued functions
S(z), also E(z) = 〈f (z), g(z)〉 by

H(z) =
∫

B

〈
(1− |z|2)2ν ⊗s Bt (z, z)F (z), S(z)

〉
dι(z).

8.2. Schatten-von Neumann properties

In this subsection we prove Theorem 1.3.

Proof of sufficiency of Theorem 1.3. By Theorem 1.2 and Theorem 1.1
the operator F → Hs

F is bounded from H 2
ν,s into S2 and from H∞

ν,s into S∞
respectively. Then it follows from Theorem 8.2 and Riesz-Thorin interpolation
theorem that F → Hs

F is bounded from H
p
ν,s into (S2,S∞)[1−2/p] if 2 < p <

∞. By Theorem 2.10 in [21] we have that

Sp = (S2,S∞)[1−2/p],

so that the operator F → Hs
F is bounded from H

p
ν,s into Sp if 2 < p <∞.

The necessity of Theorem 1.3 is a direct consequence of Lemma 8.6 below.
This Lemma states some boundedness properties for an operator T̃s closely
related to the Transvectant defined in (6) viewed as an operator from bilinear
forms to vector-valued holomorphic functions, see also [4] and [15]. We need
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to construct T̃s . Let A ∈ S∞
(
L2
a(dιν), L

2
a(dιν)

)
. Then there is a conjugate

linear operator T : L2
a(dιν)→ L2

a(dιν) such that

A(Kz,Kw) = 〈Kz, TKw〉ν = 〈Kw, T
∗Kz〉ν = T ∗Kz(w).

Also,

A(f, g) = 〈f, T g〉ν =
∫

B
f (z)(T g)(z) dιν(z)

=
∫

B
f (z)〈T g,Kz〉ν dιν(z)

=
∫

B
f (z)〈T ∗Kz, g〉ν dιν(z)

=
∫

B

∫
B
T ∗Kz(w)f (z)g(w) dιν(z) dιν(w).

Define G(z,w) := GA(z,w) = A(Kz,Kw). Then G(z,w) is holomorphic in
z and in w and

A(f, g) =
∫

B

∫
B
G(z,w)f (z)g(w) dιν(z) dιν(w).

Now, define

(44) T̃s(A)(z) = (TsG) (z, z)

where

(TsG) (z,w) =
s∑
k=0

(−1)s−k
(
s

k

)
∂kz � ∂s−kw G(z,w)

(ν)k(ν)s−k
.

Remark 8.3. If G(z,w) = f (z)g(w) where f, g ∈ L2
a(dιν) then

Ts(G)(z, z) = Ts(f, g)(z) where Ts(f, g)(z) is the Transvectant defined
in (6).

Lemma 8.4. Let T̃s be defined on S∞ as in (44). Then T̃s : S∞ → H∞
ν,s

is bounded.

Proof. Let A ∈ S∞. Let G(z,w) = GA(z,w). First we note that
(TsG)(z,w) is a linear combination of terms

∂kz ∂
s−k
w G(z,w) =

∑
|I |=k,|J |=s−k

∂Iz ∂
J
w A(Kz,Kw) dzI ⊗ dwJ



316 marcus sundhäll

where i1, . . . , ik ∈ {1, . . . , d}, I = (i1, . . . , ik), dzI = dzi1 ⊗ · · · ⊗ dzik and
∂Iz = ∂i1∂i2 · · · ∂ik . By the identity

∂i1 · · · ∂ik ∂j1 · · · ∂js−kA(Kz,Kw) = A(Ez,Ew)

where

Ez(ζ ) = (ν)keI (ζ )(1− 〈ζ, z〉)−ν−k, eI (ζ ) = ζi1 · · · ζik ,
Ew(ζ ) = (ν)s−keJ (ζ )(1− 〈ζ,w〉)−ν+s−k, eJ (ζ ) = ζj1 · · · ζjs−k ,

it follows that(
∂kz ∂

s−k
w G

)
(0, 0) = (ν)k(ν)s−k

∑
|I |=k,|J |=s−k

A(eI , eJ ) dzI ⊗ dwJ .

Since A is bounded then

(45)
∥∥(
∂kz ∂

s−k
w G

)
(0, 0)

∥∥ ≤ C‖A‖.
Let z ∈ B and define a bilinear form Az on L2

a(dιν) such that

Az(f, g) = A (πν (ϕz) f, πν (ϕz) g) ,

where ϕz is the linear fractional mapping (8) and πν is the action (13). Then
it holds that ‖Az‖ = ‖A‖ and by the same transformation property as in
Lemma 3.2, see also [15], it follows that T̃s(Az) = πν,s(ϕz)T̃s(A). Hence,
replacing A by Az in (45) yields∥∥T̃s(Az)(0)

∥∥ ≤ C‖Az‖ = C‖A‖
and

T̃s(Az)(0) =
(
πν,s(ϕz)T̃s(A)

)
(0) = ⊗sϕ′z(0)

tT̃s(A)(z)Jϕz(0)
2ν/(d+1)

so that ∥∥⊗sBt (z, z)1/2T̃s(A)(z)(1− |z|2)ν
∥∥ ≤ C‖A‖.

This proves the lemma.

Lemma 8.5. Let T̃s be defined on S2 as in (44). Then T̃s : S2 → H 2
ν,s is

bounded.

Proof. By Theorem 6.6 it follows thatσ : H 2
ν,s → S2, σ(F ) = Hs

F defines
an isometry. Thus σ ∗ : S2 → H 2

ν,s is a partial isometry and therefore bounded.

We claim that σ ∗ = T̃s , which actually follows by an identification. Indeed
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let A be a bilinear form of finite rank. We shall prove that σ ∗(A) = T̃s(A),
which gives the general case. LetHs

F be a Hilbert-Schmidt Hankel form. Then

〈
Hs
F ,A

〉
S2
=

N∑
i,j=1

Hs
F (ei, ej ) A(ei, ej )

where {ei}Ni=1 is an orthonormal set in H 2
ν,s . Since

Hs
F (ei, ej ) =

∫
B

〈⊗sBt (z, z)Ts(ei, ej )(z), F (z)
〉
dι2ν(z)

then

N∑
i,j=1

Hs
F (ei, ej ) A(ei, ej )

=
∫

B

〈
⊗sBt (z, z)

N∑
i,j=1

Ts(ei, ej )(z)A(ei, ej ), F (z)

〉
dι2ν(z).

On the other hand〈
Hs
F ,A

〉
S2
= 〈σ(F ),A〉S2

= 〈
σ ∗(A), F

〉
ν,s,2 .

Thus, it remains to prove that

(46) T̃s(A)(z) =
N∑

i,j=1

Ts(ei, ej )(z)A(ei, ej ).

Since A(f, g) = 0 if f or g is in span{e1, . . . , eN }⊥ and since {ēi ⊗ ēj } is an
orthonormal set in S2, where ēi ⊗ ēj (f, g) = 〈f, ei〉ν〈g, ej 〉ν , then

A =
N∑

i,j=1

〈
A, ēi ⊗ ēj

〉
S2
ēi ⊗ ēj =

N∑
i,j=1

A(ei, ej ) ēi ⊗ ēj .

Hence

G(z,w) = A(Kz,Kw) =
N∑

i,j=1

A(ei, ej ) ei(z)ej (w)

so that

T̃s(A)(z) = (TsG) (z, z) =
N∑

i,j=1

A(ei, ej )Ts(ei, ej )(z)
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which proves (46).

Lemma 8.6. Let T̃s be defined on Sp as in (44), 2 < p < ∞. Then
T̃s : Sp → H

p
ν,s is bounded and T̃s(H

s
F ) = F if Hs

F ∈ Sp.

Proof. It follows from Lemma 8.4, Lemma 8.5 and Riesz-Thorin’s inter-
polation theorem that T̃s : Sp → H

p
ν,s is bounded for 2 < p < ∞. Also,

T̃s(H
s
F ) = F if Hs

F ∈ S2. Now define Fr(z) = F(rz) for 0 < r < 1. Then
Hs
Fr
∈ S2 so that T̃s(H

s
Fr
) = Fr . Since Hs

F is compact then Fr → F in H∞
ν,s ,

by the necessity of Theorem 1.1(b) and the proof of Lemma 6.2. On one hand
Fr → F pointwise. On the other hand, by Theorem 1.1(a) and Lemma 8.4, it
follows that T̃ (H s

Fr
)→ T̃ (H s

F ). Thus T̃s(H
s
F ) = F if Hs

F ∈ Sp.
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