HOLOMORPHIC FOCK SPACES FOR POSITIVE LINEAR TRANSFORMATIONS

R. FABEC, G. ÓLAFSSON, and A. N. SENGUPTA*

Abstract

Suppose *A* is a positive real linear transformation on a finite dimensional complex inner product space *V*. The reproducing kernel for the Fock space of square integrable holomorphic functions on *V* relative to the Gaussian measure $d\mu_A(z) = \frac{\sqrt{\det A}}{\pi^n} e^{-\operatorname{Re}(Az,z)} dz$ is described in terms of the linear and antilinear decomposition of the linear operator *A*. Moreover, if *A* commutes with a conjugation on *V*, then a restriction mapping to the real vectors in *V* is polarized to obtain a Segal-Bargmann transform, which we also study in the Gaussian-measure setting.

Introduction

The classical Segal-Bargmann transform is an integral transform which defines a unitary isomorphism of $L^2(\mathbb{R}^n)$ onto the space $F(\mathbb{C}^n)$ of entire functions on C^n which are square integrable with respect to the Gaussian measure $\mu = \pi^{-n} e^{-\|z\|^2} dx dy$, where dx dy stands for the Lebesgue measure on $\mathbb{R}^{2n} \simeq \mathbb{C}^n$, see [1], [3], [4], [5], [11], [12]. There have been several generalizations of this transform, based on the heat equation or the representation theory of Lie groups [6], [10], [13]. In particular, it was shown in [10] that the Segal-Bargmann transform is a special case of the restriction principle, i.e., construction of unitary isomorphisms based on the polarization of a restriction map. This principle was first introduced in [10], see also [9], where several examples were explained from that point of view. In short the restriction principle can be explained in the following way. Let M_{C} be a complex manifold and let $M \subset M_{C}$ be a totally real submanifold. Let $F = F(M_C)$ be a Hilbert space of holomorphic functions on M_{C} such that the evaluation maps $\mathsf{F} \ni F \mapsto F(z) \in \mathsf{C}$ are continuous for all $z \in M_{C}$, i.e., F is a reproducing kernel Hilbert space. There exists a function $K: M_{\mathsf{C}} \times M_{\mathsf{C}} \to \mathsf{C}$ holomorphic in the first variable, anti-holomorphic in the second variable, and such that the following hold:

(a) $K(z, w) = \overline{K(w, z)}$ for all $z, w \in M_{\mathsf{C}}$;

^{*}The research of G. Ólafsson was supported by DMS-0070607, DMS-0139473 and DMS-0402068. The research of A. Sengupta was supported by DMS-0201683. The authors would like to thank the referee for valuable comments and remarks.

Received January 31, 2004; in revised form March 20, 2005

(b) If $K_w(z) := K(z, w)$ then $K_w \in \mathsf{F}$ and

$$F(w) = \langle F, K_w \rangle_{\mathsf{F}}, \quad \forall F \in \mathsf{F}, z \in M_{\mathsf{C}}.$$

The function *K* is the *reproducing kernel* for the Hilbert space F. Let *D* : $M \rightarrow C^*$ be measurable. Then the restriction map $R : F \mapsto RF := DF|_M$ is injective. Assume that there is a measure μ on *M* such that $RF \in L^2(M, \mu)$ for all *F* in a dense subset of F. Assuming that *R* is closeable, Im(*R*) is dense in $L^2(M, \mu)$, and by polarizing R^* , we can write

$$R^* = U|R^*|$$

where $U : L^2(M, \mu) \to F$ is a unitary isomorphism and $|R^*| = \sqrt{RR^*}$. Using the fact that F is a reproducing kernel Hilbert space we get

$$Uf(z) = \langle Uf, K_z \rangle_{\mathsf{F}} = \langle f, U^* K_z \rangle_{L^2} = \int_M f(m) \overline{(U^* K_z)(m)} \, d\mu(m) \, .$$

Thus U is always an integral operator. We notice also that the formula for U shows that the important object in this analysis is the reproducing kernel K(z, w).

We will use the following notation through this article: Let $\langle z, w \rangle = z_1 \overline{w_1} + \cdots + z_n \overline{w_n}$ be the standard inner product on \mathbb{C}^n and let $(z, w) = \operatorname{Re}(\langle z, w \rangle)$ be the corresponding inner product on \mathbb{C}^n viewed as a 2*n*-dimensional *real* vector spaces. Notice that $(x, y) = \langle x, y \rangle = x_1 y_1 + \cdots + x_n y_n$ for $x, y \in \mathbb{R}^n$. We write $z^2 = z_1^2 + \cdots + z_n^2$ for $z \in \mathbb{C}^n$.

The reproducing kernel for the classical Fock space is given by $K(z, w) = e^{\langle z, w \rangle}$, where $z, w \in \mathbb{C}^n$. By taking $D(x) := (2\pi)^{-n/4}e^{-x^2/2}$, for $x \in \mathbb{R}^n$, which is closely related to the heat kernel, we arrive at the classical Segal-Bargmann transform, given as the holomorphic continuation of

$$Ug(x) = (2/\pi)^{n/4} e^{x^2/2} \int_{\mathsf{R}^n} g(y) e^{-(x-y)^2} \, dy \, .$$

Notice that $\mathbb{R}^n \ni x \mapsto Ug(x) \in \mathbb{C}$ has a unique holomorphic extension to \mathbb{C}^n .

The same principle can be used to construct the Hall-transform for compact Lie groups, [6]. In [2], Driver and Hall, motivated by application to quantum Yang-Mills theory, introduced a Fock space and Segal-Bargmann transform depending on two parameters r, s > 0, giving different weights to the x and ydirections, where $z = x + iy \in C^n$ (this was also studied in [13]). Thus F is now the space of holomorphic functions F(z) on C^n which are square-integrable with respect to the Gaussian measure $dM_{r,s}(z) = \frac{1}{(\pi r)^{n/2}(\pi s)^{n/2}} e^{-\frac{x^2}{r} - \frac{y^2}{s}} dx dy$. A Segal-Bargmann transform for this Fock space is given in [13] and in Theorem 3 of [7]. We show this is a very special case of a larger family of Fock spaces and associated Segal-Bargmann tranforms. Indeed, if A is a real linear positive definite matrix A on a complex inner product space V, then

(0.1)
$$d\mu_A(z) = \frac{\sqrt{\det(A)}}{\pi^n} e^{-(Az,z)} |dz|$$

gives rise to a Fock space F_A . We find an expression for the reproducing kernel $K_A(z, w)$. We use the restriction principle to construct a natural generalization of the Segal-Bargmann transform for this space, with a certain natural restriction on A. We study this also in the Gaussian setting, and indicate a generalization to infinite dimensions.

We will fix the following notation for the types of bilinear pairings that we shall be using in this paper:

- (i) ⟨z, w⟩ denotes a Hermitian inner product on a complex vector space V,
 i.e., a pairing which is complex-linear in z, complex-conjugate-linear in w, and ⟨z, z⟩ > 0 if z ≠ 0. We denote by ||z|| = √⟨z, z⟩ the corresponding norm;
- (ii) (x, y) denotes an inner product on V viewed as a *real* vector space. The standard choice is (x, y) = Re⟨x, y⟩;
- (iii) $z \cdot w$ denotes a complex-bilinear pairing. In the standard situation we have $z \cdot w = \langle z, \overline{w} \rangle$. We set $z^2 = z \cdot z$.

1. The Fock space and the restriction principle

In this section we recall some standard facts about the classical Fock space of holomorphic functions on \mathbb{C}^n . We refer to [5] for details and further information. Let μ be the measure $d\mu(z) = \pi^{-n} e^{-||z||^2} dx dy$ and let F be the classical Fock-space of holomorphic functions $F : \mathbb{C}^n \to \mathbb{C}$ such that

$$||F||_{\mathsf{F}}^2 := \int_{\mathsf{C}^n} |F(z)|^2 d\mu(z) < \infty.$$

The space F is a reproducing Hilbert space with inner product

$$\langle F, G \rangle_{\mathsf{F}} = \int_{\mathsf{C}^n} F(z) \overline{G(z)} \ d\mu(z)$$

and reproducing kernel $K(z, w) = e^{\langle z, w \rangle}$.

Thus

$$F(w) = \int_{\mathbf{C}^n} F(z) \overline{K(z,w)} \, d\mu(z) = \langle F, K_w \rangle_{\mathsf{F}}$$

where $K_w(z) = K(z, w)$. The function K(z, w) is holomorphic in the first variable, anti-holomorphic in the second variable, and $K(z, w) = \overline{K(w, z)}$. Notice that $K(z, z) = \langle K_z, K_z \rangle_F$. Hence $||K_z||_F = e^{||z||^2/2}$. Finally the linear space of finite linear combinations $\sum c_j K_{z_j}, z_j \in \mathbb{C}^n, c_j \in \mathbb{C}$, is dense in F. An orthonormal system in F is given by the monomials $e_\alpha(z) = z_1^{\alpha_1} \cdots z_n^{\alpha_n} / \sqrt{\alpha_1! \cdots \alpha_n!}$, $\alpha \in \mathbb{N}_0^n$. If the reference to the Fock space is clear, then we simply write $\langle \cdot, \cdot \rangle$ instead of $\langle \cdot, \cdot \rangle_F$, and similarly for the corresponding norm.

View $\mathbb{R}^n \subset \mathbb{C}^n$ as a totally real submanifold of \mathbb{C}^n . We will now recall the construction of the classical Segal-Bargmann transform using the *restriction principle*, see [9], [10]. For constructing a restriction map as explained in the introduction we need to choose the function D(x). One motivation for the choice of D is the heat kernel, but another one, more closely related to representation theory, is that the restriction map should commute with the action of \mathbb{R}^n on the Fock space and $L^2(\mathbb{R}^n)$. Indeed, take

$$T(x)F(z) = m(x, z)F(z - x)$$

for F in F where m(x, z) has properties sufficient to make $x \mapsto T(x)$ a unitary representation of \mathbb{R}^n on F. Namely, we need a multiplier m satisfying

$$|m(x,z)| = \left(\frac{d\mu(z-x)}{d\mu(z)}\right)^{\frac{1}{2}} = e^{(\operatorname{Re}\langle z,x\rangle - x^2/2)}$$

We take $m(x, z) := e^{\langle z, x \rangle - x^2/2}$. Set

$$D(x) = (2\pi)^{-n/4} m(0, x) = (2\pi)^{-n/4} e^{-x^2/2}$$

and define $R : \mathsf{F} \to C^{\infty}(\mathsf{R}^n)$ by

$$RF(x) := D(x)F(x) = (2\pi)^{-n/4} e^{-x^2/2} F(x).$$

Then

$$RT(y)F(x) = RF(x - y).$$

Since *F* is holomorphic, the map *R* is injective. Furthermore, the holomorphic polynomials $p(z) = \sum a_{\alpha} z^{\alpha}$ are dense in F and obviously $Rp \in L^2(\mathbb{R}^n)$. Thus, we may and will consider *R* as a densely defined operator from F into $L^2(\mathbb{R}^n)$. The Hermite functions $h_{\alpha}(x) = (-1)^{|\alpha|} (D^{\alpha} e^{-||x||^2}) e^{x^2/2}$ are images under *R* of polynomials and thus are in the image of the operator *R*. Hence, Im(*R*) is dense in $L^2(\mathbb{R}^n)$. Using continuity of the evaluation maps $F \mapsto F(z)$, it can be checked that *R* is a closed operator. Hence, *R* has a densely-defined adjoint

 $R^*: L^2(\mathbb{R}^n) \to \mathbb{F}$. For $z, w \in \mathbb{C}^n$, recall that $z \cdot w = \sum z_j w_j$. Then, for any g in the domain of R^* , we have:

$$R^*g(z) = \langle R^*g, K_z \rangle = \langle g, RK_z \rangle = (2\pi)^{-n/4} \int_{\mathbb{R}^n} g(y) e^{-\|y\|^2/2} e^{z \cdot y} \, dy$$
$$= (2\pi)^{-n/4} e^{z^2/2} \int_{\mathbb{R}^n} g(y) e^{-(z-y)^2/2} \, dy$$
$$= (2\pi)^{n/4} e^{z^2/2} g * p(z)$$

where $p(z) = (2\pi)^{-n/2} e^{-z^2/2}$ is holomorphic. Applying the map $R : \mathsf{F} \to C^{\infty}(\mathsf{R}^n)$, we have

(1.1)
$$RR^*g(x) = g * p(x)$$

Since $p \in L^1(\mathbb{R}^n)$ and $g \in L^2(\mathbb{R}^n)$, it follows that $g * p \in L^2(\mathbb{R}^n)$, and so the preceding equation shows that R^*g is in the domain of the operator R, and so g is in the domain of the operator composite RR^* . This argument also shows that RR^* is a bounded operator, on its domain, with operator norm $||RR^*|| ||p||_1$. Moreover, for every g in the domain of R^* , we have

$$\langle R^*g, R^*g \rangle = \langle RR^*g, g \rangle \le ||RR^*|| ||g||_2.$$

Thus R^* is a bounded operator. Being an adjoint, it is also closed. Therefore, the domain of R^* is in fact the full space $L^2(\mathbb{R}^n)$. So for any $f \in D(R)$, we have

$$\langle Rf, Rf \rangle = \langle R^*(Rf), f \rangle \le ||R^*|| \, ||Rf||_2 ||f||_2$$

which implies that the operator R is bounded. Again, being a closed, denselydefined bounded operator, R is, in fact, defined on all of F. In summary,

LEMMA 1.1. The linear operators R and R^* are everywhere defined and continuous.

Let $p_t(x) = (2\pi t)^{-n/2} e^{-x^2/2t}$ be the heat kernel on \mathbb{R}^n . Then $(p_t)_{t>0}$ is a convolution semigroup and $p = p_1$. Hence $\sqrt{RR^*} = p_{1/2}*$ or

$$RUg(x) = |R^*|g(x) = p_{1/2} * g(x) = \pi^{-n/2} \int_{\mathsf{R}^n} g(y) e^{-(x-y)^2} dy.$$

It follows that

$$Ug(x) = (2/\pi)^{n/4} e^{x^2/2} \int_{\mathbf{R}^n} g(y) e^{-(x-y)^2} \, dy$$

for $x \in \mathbb{R}^n$. But the function on the right hand side is holomorphic in x. Analytic continuation gives the following classical Segal-Bargmann tranform.

THEOREM 1.2. The map $U: L^2(\mathbb{R}^n) \to \mathbb{F}$ given by

$$Ug(z) = (2/\pi)^{n/4} \int_{\mathbb{R}^n} g(y) \exp(-y^2 + 2\langle z, y \rangle - z^2/2) \, dy$$

is a unitary isomorphism.

2. Twisted Fock spaces

Let $V \simeq C^n$ be a finite dimensional complex vector space of complex dimension *n* and let $\langle \cdot, \cdot \rangle$ be a complex Hermitian inner-product.

We will also consider V as a real vector space with real inner product defined by $(z, w) = \text{Re}\langle z, w \rangle$. Notice that $(z, z) = \langle z, z \rangle$ for all $z \in \mathbb{C}^n$. Let J be the real linear transformation of V given by Jz = iz. Note that $J^* = -J = J^{-1}$ and thus J is a skew symmetric real linear transformation. Fix a real linear transformation A. Then A = H + K where

$$H := \frac{A + J^{-1}AJ}{2}$$
 and $K := \frac{A - J^{-1}AJ}{2}$

We have $HJ = \frac{1}{2}(AJ - J^{-1}A) = \frac{1}{2}J(J^{-1}AJ + A) = JH$ and $KJ = \frac{1}{2}(AJ + J^{-1}A) = \frac{1}{2}J(J^{-1}AJ - A) = -JK$. Thus *H* is complex linear and *K* is conjugate linear.

We now assume that A is symmetric and positive definite relative to the real inner product (\cdot, \cdot) .

LEMMA 2.1. The complex linear transformation H is self adjoint, positive with respect to the inner product $\langle \cdot, \cdot \rangle$, and invertible.

PROOF. Since A is positive and invertible as a real linear transformation, we have (Az, z) > 0 for all $z \neq 0$. But J is real linear and skew symmetric. Hence $(JAJ^{-1}z, z) > 0$ for all $z \neq 0$. In particular $H = \frac{1}{2}(A + JAJ^{-1})$ is complex linear, symmetric with respect to the real inner product (\cdot, \cdot) , and positive. Consequently $\operatorname{Re}\langle Hiv, w \rangle = \operatorname{Re}\langle iv, Hw \rangle$. This implies $\operatorname{Im}\langle Hv, w \rangle =$ $\operatorname{Im}\langle v, Hw \rangle$ and hence $\langle Hv, w \rangle = \langle v, Hw \rangle$. Thus H is complex self adjoint and $\langle Hz, z \rangle > 0$ for $z \neq 0$.

LEMMA 2.2. Let $w \in V$. Then $\langle Aw, w \rangle = (Aw, w) + i \operatorname{Im} \langle Kw, w \rangle$ and (Aw, w) = (Hw, w) + (Kw, w).

PROOF. The first statement follows from

Taking the real part in the second line gives the second claim, which also follows directly from bilinearity of (\cdot, \cdot) .

Denote by det_R(·) the determinant of a R-linear map on $V \simeq C^n \simeq R^{2n}$ and by det(·) the determinant of a complex linear map of V. Let μ_A be the measure defined by $d\mu_A(z) = \pi^{-n} \sqrt{\det_R A} e^{-(Az,z)} dx dy$ and let F_A be the space of holomorphic functions $F : C^n \to C$ such that

(2.1)
$$||F||_A^2 := \int |F(z)|^2 d\mu_A(z) < \infty.$$

Our normalization of μ is chosen so that $||1||_A = 1$. Just as in the classical case one can show that F_A is a reproducing kernel Hilbert space, but this will also follow from the following Lemma. We notice that all the holomorphic polynomials p(z) are in F. To simplify the notation, we let $T_1 = H^{-1/2}$. Then T_1 is symmetric, positive definite and complex linear. Let $c_A = \sqrt{\det_R(A^{1/2}T_1)} = (\det_R(A)/\det_R(H))^{1/4}$.

LEMMA 2.3. Let $F : V \to \mathsf{C}$ be holomorphic. Then $F \in \mathsf{F}_A$ if and only if $F \circ T_1 \in \mathsf{F}$. Moreover, the map $\Psi : \mathsf{F}_A \to \mathsf{F}$ given by

$$\Psi(F)(w) := c_A \exp\left(-\overline{\langle KT_1w, T_1w \rangle}/2\right) F(T_1w)$$

is a unitary isomorphism. In particular

$$\Psi^* F(w) = \Psi^{-1} F(w) = c_A^{-1} \exp\left(\overline{\langle Kw, w \rangle}/2\right) F(\sqrt{H}w)$$

PROOF. Note *F* is holomorphic if and only if $F \circ T_1$ is holomorphic as T_1 is complex linear and invertible. Moreover, unitarity follows from

$$\begin{split} \|\Psi F\|^{2} &= \pi^{-n} \int_{V} |\Psi F(w)|^{2} e^{-\langle w,w \rangle} dw \\ &= \pi^{-n} \sqrt{\det_{\mathsf{R}} A} \int_{V} |F(w)|^{2} e^{-\langle Kw,w \rangle} e^{-\langle \sqrt{H}w,\sqrt{H}w \rangle} dw \\ &= \pi^{-n} \sqrt{\det_{\mathsf{R}} A} \int_{V} |F(w)|^{2} e^{-\langle Kw,w \rangle} e^{-\langle Hw,w \rangle} dw \\ &= \pi^{-n} \sqrt{\det_{\mathsf{R}} A} \int_{V} |F(w)|^{2} e^{-(\langle H+K \rangle w,w \rangle} dw \\ &= \pi^{-n} \sqrt{\det_{\mathsf{R}} A} \int_{V} |F(w)|^{2} e^{-\langle Aw,w \rangle} dw \\ &= \|F\|_{A}^{2}. \end{split}$$

THEOREM 2.4. The space F_A is a reproducing kernel Hilbert space with reproducing kernel

$$K_A(z,w) = c_A^{-2} e^{\frac{1}{2} \overline{\langle Kz,z \rangle}} e^{\langle Hz,w \rangle} e^{\frac{1}{2} \langle Kw,w \rangle}$$

PROOF. By Lemma 2.3 we get

$$c_A \exp(-\overline{\langle KT_1w, T_1w \rangle}/2)F(T_1w) = \Psi(F)(w)$$

= $(\Psi(F), K_w)_F$
= $(F, \Psi^*(K_w))_{F_A}$

Hence

$$K_A(z,w) = c_A^{-1} \exp\left(\overline{\langle Kw,w \rangle}/2\right) \Psi^*(K_{\sqrt{H}w}) = c_A^{-2} e^{\frac{1}{2}\overline{\langle Kz,z \rangle}} e^{\langle Hz,w \rangle} e^{\frac{1}{2}\langle Kw,w \rangle}$$

3. The Restriction Map

We continue to assume A > 0. We notice that Lemma 2.3 gives a unitary isomorphism $\Psi^*U : L^2(\mathbb{R}^n) \to \mathbb{F}_A$, where U is the classical Segal-Bargmann transform. But this is not the natural transform that we are looking for. As H is positive definite there is an orthonormal basis e_1, \ldots, e_n of V and positive numbers $\lambda_j > 0$ such that $He_j = \lambda_j e_j$. Let $V_{\mathbb{R}} := \sum \mathbb{R}e_k$. Set $\sigma(\sum a_i e_i) =$ $\sum \overline{a}_i e_i$. Then σ is a conjugation with $V_{\mathbb{R}} = \{z : \sigma z = z\}$. For $z \in V$ we will when convenient write \overline{z} for $\sigma(z)$. We say that a vector is *real* if it belongs to $V_{\mathbb{R}}$. As $He_j = \lambda_j e_j$ with $\lambda_j \in \mathbb{R}$ it follows that $HV_{\mathbb{R}} \subseteq V_{\mathbb{R}}$. We note that for the complex linear mapping H that det_R H = (det H)^2 and that det H is equal to the determinant of the real linear transformation $H|_{V_{\mathbb{R}}}$.

LEMMA 3.1. $\langle Kz, w \rangle = \langle Kw, z \rangle$.

PROOF. Note that σK is complex linear. Since $J^* = -J$, $K = \frac{1}{2}(A - JAJ^{-1})$ is real symmetric. Thus (Kw, z) = (w, Kz) = (Kz, w). Also note

$$(iKz, w) = (JKz, w) = -(KJz, w) = -(Jz, Kw) = -(iz, Kw).$$

Hence $\operatorname{Re}\langle iKz, w \rangle = -\operatorname{Re}\langle iz, Kw \rangle$. So $-\operatorname{Im}\langle Kz, w \rangle = \operatorname{Im}\langle z, Kw \rangle$. This gives $\operatorname{Im}\langle Kw, z \rangle = \operatorname{Im}\langle Kz, w \rangle$. Hence $\langle Kz, w \rangle = \langle Kw, z \rangle$.

LEMMA 3.2. $(\sigma K)^* = K\sigma$.

PROOF. We have $\langle \sigma z, \sigma w \rangle = \langle w, z \rangle$. Hence

$$\langle \sigma Kz, w \rangle = \langle \sigma w, \sigma^2 Kz \rangle = \langle \sigma w, Kz \rangle = \langle z, K\sigma w \rangle.$$

COROLLARY 3.3. If $x, y \in V_{\mathsf{R}}$, then $\langle Hx, y \rangle$ is real and $\langle Ax, y \rangle = \langle Ay, x \rangle$.

PROOF. Clearly $\langle \cdot, \cdot \rangle$ is real on $V_{\mathsf{R}} \times V_{\mathsf{R}}$. Since $HV_{\mathsf{R}} \subseteq V_{\mathsf{R}}$, we see $\langle Hx, y \rangle$ is real. Next, $\langle Ax, y \rangle = \langle Hx, y \rangle + \langle Kx, y \rangle$. The term $\langle Hx, y \rangle$ equals $\langle Hy, x \rangle$ because $\langle Hx, y \rangle$ is real and H is self-adjoint. On the other hand, $\langle Kx, y \rangle = \langle Ky, x \rangle$ by Lemma 3.1. So $\langle Ax, y \rangle = \langle Ay, x \rangle$.

As before we would like to have a multiplier $m: V_{\mathsf{R}} \times V \to \mathsf{C}^*$ such that

$$T(x)F(z) = m(x, z)F(z - x)$$

is a unitary representation of F_A that commutes with translation on $L^2(V_R)$. It turns out the multipliers we construct are co-boundaries under translation by elements of V_R on V.

DEFINITION 3.4. A function *m* is a *co-boundary* on $V \cong \mathbb{C}^n$ under translation by V_{R} if there is a nonzero complex valued function *b* on *V* with

$$m(x, z) = b(z - x)b(z)^{-1}$$
 for $x \in V_{\mathsf{R}}$ and $z \in V_{\mathsf{R}}$

It is well known and easy to verify that every co-boundary m on V under translation by V_{R} is a multiplier.

LEMMA 3.5. The function

$$m(x,z) = e^{\langle Hz,x \rangle} e^{\langle K\bar{z},x \rangle} e^{-\langle Ax,x \rangle/2} = e^{\langle Ax,\bar{z} \rangle - \langle Ax,x \rangle/2}$$

is a co-boundary.

PROOF. Define $b(z) = e^{-\langle Hz + K\bar{z}, \bar{z} \rangle/2}$. Then

$$b(z - x)b(z)^{-1} = e^{-\langle H(z - x) + K(\bar{z} - x), \bar{z} - x \rangle/2} e^{\langle Hz + K\bar{z}, \bar{z} \rangle/2}$$
$$= e^{\langle (Hz + Kx, \bar{z}) + \langle Hz + K\bar{z}, x \rangle/2} e^{-\langle Hx + Kx, x \rangle/2}$$
$$= e^{\langle Hz, x \rangle} e^{\langle K\bar{z}, x \rangle} e^{-\langle Ax, x \rangle/2}$$
$$= e^{\langle Hx, \bar{z} \rangle + \langle Kx, \bar{z} \rangle} e^{-\langle Ax, x \rangle/2}$$
$$= e^{\langle Ax, \bar{z} \rangle - \langle Ax, x \rangle/2}$$

since A = H + K, $\langle Hx, \bar{z} \rangle = \langle z, \sigma Hx \rangle = \langle z, Hx \rangle = \langle Hz, x \rangle$, and $\langle Kx, \bar{z} \rangle = \langle \sigma \bar{z}, \sigma Kx \rangle = \langle K\sigma z, x \rangle = \langle K\bar{z}, x \rangle$.

COROLLARY 3.6. Let $m(x, z) = e^{\langle Ax, \overline{z} \rangle - \langle Ax, x \rangle/2}$. Set $T_x F(z) := m(x, z)F(z - x)$ for $x \in V_R$. Then $x \mapsto T_x$ is a representation of the abelian group V_R on F_A . It is unitary if and only if $K V_R \subseteq V_R$, or equivalently $A V_R \subseteq V_R$.

PROOF. Since *m* is a multiplier, we have $T_x T_y = T_{x+y}$. For each T_x to be unitary, we need $|m(x, z)| = e^{(Az,x)-(Ax,x)/2}$. But

$$|m(x, z)| = e^{(Hz,x)} e^{(K\bar{z},x)} e^{-(Ax,x)/2} = e^{(Az,x)-(Ax,x)/2} e^{(K\bar{z}-Kz,x)}.$$

Thus T_x is unitary for all x if and only if the real part of every vector $K\bar{z} - Kz$ is 0. Since $\bar{z} - z$ runs over iV_R as z runs over V, T_x is unitary for all x if and only if $K(iV_R) \subset iV_R$, which is equivalent to $K(V_R) \subset V_R$. But since A = H + Kand H leaves V_R invariant, this is equivalent to V_R being invariant under A.

REMARK. There is no uniqueness in the choice of a real vector space V_R such that $HV_R \subseteq V_R$ and $V = V_R \oplus iV_R$. Indeed, any orthonormal basis e_1, e_2, \ldots, e_n of eigenvectors for H gives such a subspace. But since A is only real linear on V, an interesting question is when one can choose V_R with $AV_R \subseteq V_R$, and in this case how unique is the choice of V_R ? This probably depends on the degree of non complex linearity of the tranformation A.

Recall that det_R $H = (\det H)^2$. To simplify some calculations later on we define $c := (2\pi)^{-n/4} \left(\frac{\det A}{\det H}\right)^{1/4}$. We remark for further reference:

LEMMA 3.7.
$$c_A^{-2}c^2 = \frac{\sqrt{\det H}}{(2\pi)^{n/2}}$$
 and $c^{-1}\frac{\sqrt{\det(H)}}{\pi^{n/2}} = \left(\frac{2}{\pi}\right)^{n/4} \frac{(\det H)^{3/4}}{(\det R A)^{1/4}}.$

Let $D(x) = c m(x, 0) = c e^{-\langle Ax, x \rangle/2}$ and define $R : \mathsf{F}_A \to C^{\infty}(V_{\mathsf{R}})$ by

$$RF(x) := D(x)F(x).$$

Since *m* is holomorphic on V^2 , *D* has a holomorphic extension to *V*.

LEMMA 3.8. The restriction map R intertwines the action of V_R on F_A and the left regular action L on functions on V_R .

PROOF. For all $x, y \in V_{\mathsf{R}}$, we have

$$R(T_{y}F)(x) = c m(x, 0)T_{y}F(x)$$

= $c m(x, 0)m(y, x)F(x - y)$
= $c m(x, 0)m(-y, -x)F(x - y)$
= $c m(x - y, 0)F(x - y)$
= $L_{y}RF(x)$.

4. The Generalized Segal-Bargmann Transform

As for the classical space, R specifies a densely defined closed operator $F_A \rightarrow L^2(V_R)$. It also has dense image in $L^2(V_R)$. To see this, let $\{h_\alpha\}_\alpha$ be the orthonormal basis of $L^2(V_R)$ given by the Hermite functions. Then $\{\det(A)^{\frac{1}{4}}h_\alpha(\sqrt{A}x)\}_\alpha$

is an orthonormal basis of $L^2(V_R)$ which is contained in the image of the set of polynomial functions under *R*. It follows again that *R* has a densely defined adjoint and

$$R^*h(z) = \langle R^*h, K_{A,z} \rangle = \langle h, RK_{A,z} \rangle$$

where $K_{A,z}(w) = K_A(w, z) = c_A^{-2} e^{\frac{1}{2} \langle \overline{Kw,w} \rangle} e^{\langle Hw,z \rangle} e^{\frac{1}{2} \langle Kz,z \rangle}$. Thus

$$R^*h(z) = c \int h(x)e^{-\langle Ax,x \rangle/2} \overline{K_A(x,z)} \, dx$$

$$= c_A^{-2}c \int h(x)e^{-\langle Ax,x \rangle/2} e^{\frac{1}{2} \overline{\langle Kz,z \rangle}} e^{\langle z,Hx \rangle} e^{\frac{1}{2} \langle Kx,x \rangle} \, dx$$

$$= c_A^{-2}c e^{\frac{1}{2} \overline{\langle Kz,z \rangle}} \int h(x)e^{-\langle Hx,x \rangle/2} e^{-\langle Kx,x \rangle/2} e^{\langle z,Hx \rangle} e^{\frac{1}{2} \langle Kx,x \rangle} \, dx$$

$$= c_A^{-1}c e^{\frac{1}{2} \overline{\langle Kz,z \rangle}} \int h(x)e^{-\langle x,Hx \rangle/2} e^{\langle z,Hx \rangle} \, dx$$

$$= c_A^{-2}c e^{\frac{1}{2} \overline{\langle Kz,z \rangle}} e^{\frac{1}{2} \langle z,H\overline{z} \rangle} \int h(x)e^{-(\langle z,H\overline{z} \rangle - \langle z,Hx \rangle - \langle x,H\overline{z} \rangle + \langle x,Hx \rangle)/2} \, dx$$

$$= c_A^{-2}c e^{\frac{1}{2} \overline{\langle Kz,z \rangle}} e^{\frac{1}{2} \langle z,H\overline{z} \rangle} \int h(x)e^{-\langle z-x,H(\overline{z}-\overline{x}) \rangle/2} \, dx$$

for $\langle z, Hx \rangle = \langle \overline{Hx}, \overline{z} \rangle = \langle Hx, \overline{z} \rangle = \langle x, H\overline{z} \rangle$ and $\langle z, Hx \rangle = \langle z, H\overline{x} \rangle$. Thus we finally arrive at

(4.1)
$$R^*h(z) = c_A^{-2}c \ e^{\frac{1}{2}\langle z, H\bar{z}+Kz \rangle} e^{-\frac{1}{2}\langle x, H\bar{x} \rangle} * h(z)$$

Let $P: V_{\mathsf{R}} \to V_{\mathsf{R}}$ be positive. Define $\phi_P(x) = \sqrt{\det(P)}(2\pi)^{-n/2}e^{-\|\sqrt{P_X}\|^2/2}$. For t > 0, let $P(t) = \frac{1}{t}P$.

LEMMA 4.1. Let the notation be as above. Then $0 < t \mapsto \phi_{P(t)}$ is a convolution semigroup, i.e., $\phi_{P(t+s)} = \phi_{P(t)} * \phi_{P(s)}$.

PROOF. This follows by change of parameters $y = \sqrt{Px}$ from the fact that $\phi_{\text{Id}(t)}(x) = (2\pi t)^{-n/2} e^{-x^2/2t}$ is a convolution semigroup.

Define a unitary operator W on $L^2(V_R)$ by

(4.2)
$$Wf(x) = e^{i \operatorname{Im}\langle x, Kx \rangle} f(x) = e^{i \operatorname{Im}\langle x, Ax \rangle} f(x).$$

We see W = I if $AV_{\mathsf{R}} \subseteq V_{\mathsf{R}}$ which is equivalent to the translation operators T(x) being unitary.

LEMMA 4.2. Let h be in the domain of definition of R^* . Then

$$RR^*h = W(\phi_H * h).$$

PROOF. We notice first that $c_A^{-2}c^2 = (2\pi)^{-n/2}\sqrt{\det H}$ by Lemma 3.7. From (4.1) we then have

$$\begin{split} RR^*h(x) &= c \, e^{-\frac{1}{2}\langle Ax,x \rangle} R^*h(x) \\ &= c_A^{-2} c^2 \, e^{-\frac{1}{2}\langle Ax,x \rangle} e^{\frac{1}{2}\langle x,H\bar{x}+Kx \rangle} e^{-\frac{1}{2}\langle y,H\bar{y} \rangle} *h(x) \\ &= (2\pi)^{-n/2} \sqrt{\det(H)} \, e^{-\frac{1}{2}\langle Ax,x \rangle} e^{\frac{1}{2}\langle x,Ax \rangle} e^{-\frac{1}{2}\langle y,H\bar{y} \rangle} *h(x) \\ &= (2\pi)^{-n/2} \sqrt{\det(H)} \, e^{i \, \mathrm{Im}\langle x,Ax \rangle} \int e^{-\frac{1}{2}\langle y,Hy \rangle} h(x-y) \, dy \\ &= (2\pi)^{-n/2} \sqrt{\det(H)} e^{i \, \mathrm{Im}\langle x,Ax \rangle} \int e^{-\frac{\|\sqrt{H}y\|^2}{2}} h(x-y) \, dy \\ &= W(\phi_H *h)(x). \end{split}$$

In the last step, we used the fact that $\phi_H * h \in L^2(V_R)$, which follows from ϕ_H being in $L^1(V_R)$ and $h \in L^2(V_R)$.

Arguing as in the classical case, we see that R and R^* are everywhere defined and continuous.

Lemma 4.1 and Lemma 4.2 leads to the following corollary:

COROLLARY 4.3. Suppose $AV_{R} \subseteq V_{R}$. Then

$$|R^*|h(x) = \phi_{H(1/2)} * h(x) = \frac{\sqrt{\det(H)}}{\pi^{n/2}} \int_{V_{\mathsf{R}}} e^{-\|\sqrt{H}y\|^2} h(x-y) \, dy.$$

THEOREM 4.4 (The Segal-Bargmann Transform). Suppose A leaves V_{R} invariant. Then the operator $U_A : L^2(V_{\mathsf{R}}) \to \mathsf{F}_A$ defined by

$$U_A f(z) = \left(\frac{2}{\pi}\right)^{n/4} \frac{(\det H)^{3/4}}{(\det_{\mathsf{R}} A)^{1/4}} e^{\frac{1}{2}(\langle Hz,\bar{z}\rangle + \langle z,Kz\rangle)} \int e^{(H(z-y))\cdot(z-y)} f(y) \, dy$$

is a unitary isomorphism. We call the map U_A the generalized Segal-Bargmann transform.

PROOF. By polar decomposition, we can write $R^* = U |R^*|$ where $U : L^2(V_R) \to F_A$ is a unitary isomorphism. Taking adjoints gives $|R^*| U^* = R$. Hence $RU = |R^*|$. Thus

$$c m(x)Uh(x) = RUh(x) = (|R^*|h)(x)$$
$$= \frac{\sqrt{\det(H)}}{\pi^{n/2}} \int_{V_{\mathsf{R}}} e^{-\|\sqrt{H}y\|^2} h(x-y) \, dy$$

Since $m(x) = e^{-\frac{1}{2}(\langle x, Hx \rangle + \langle x, Kx \rangle)}$, we have using Lemma 3.7:

$$Uf(x) = \left(\frac{2}{\pi}\right)^{n/4} \frac{(\det H)^{3/4}}{(\det_{\mathsf{R}} A)^{1/4}} e^{\frac{1}{2}(\langle x, Hx \rangle + \langle x, Kx \rangle)} \int e^{(x-y, H(x-y))} f(y) \, dy.$$

Holomorphicity of Uf now implies $Uf = U_A f$.

5. The Gaussian Formulation

In infinite dimensions there is no useful notion of Lebesgue measure but Gaussian measure does make sense. So, with a view to extension to infinite dimensions, we will recast our generalized Segal-Bargmann transform using Gaussian measure instead of Lebesgue measure as the background measure on V_R . Of course, we have already defined the Fock space F_A using Gaussian measure.

As before, V is a finite-dimensional complex vector space with Hermitian inner-product $\langle \cdot, \cdot \rangle$, and $A: V \to V$ is a *real*-linear map which is *symmetric*, *positive-definite* with respect to the real inner-product $(\cdot, \cdot) = \operatorname{Re}\langle \cdot, \cdot \rangle$, i.e. (Az, z) > 0 for all $z \in V$ except z = 0. We assume, furthermore, that there is a real subspace V_{R} for which $V = V_{\mathsf{R}} + iV_{\mathsf{R}}$, the inner-product $\langle \cdot, \cdot \rangle$ is real-valued on V_{R} , and $A(V_{\mathsf{R}}) \subset V_{\mathsf{R}}$. Denote the linear map $v \mapsto iv$ by J. As usual, A is the sum

$$A = H + K$$

where H = (A - JAJ)/2 is complex-linear on V and K = (A + JAJ)/2 is complex-conjugate-linear. The real subspaces V_R and JV_R are (\cdot, \cdot) -orthogonal because for any $x, y \in V_R$ we have (x, Jy) = Re(x, Jy) = -Re(J(x, y)), since $\langle x, y \rangle$ is real, by hypothesis. Since A preserves V_R and is symmetric, it also preserves the orthogonal complement JV_R . Thus A has the block diagonal form:

$$A = \begin{bmatrix} R & 0\\ 0 & T \end{bmatrix} = d(R, T)$$

Here, and henceforth, we use the notation d(X, Y) to mean the real-linear map $V \rightarrow V$ given by $a \mapsto Xa$ and $Ja \mapsto JYa$ for all $a \in V_R$, where X, Y are real-linear operators on V_R . Note that d(X, Y) is complex-linear if and only if X = Y and is complex-conjugate-linear if and only if Y = -X. The operator d(X, X) is the unique complex-linear map $V \rightarrow V$ which restricts to X on V_R , and we denote it:

$$X_V = \begin{bmatrix} X & 0 \\ 0 & X \end{bmatrix}$$

The hypothesis that A is symmetric and positive-definite means that R and T are symmetric, positive definite on V_{R} . Consequently, the real-linear operator S on V_{R} given by

$$S = 2(R^{-1} + T^{-1})^{-1}$$

is also symmetric, positive-definite.

The operators H and K on V are given by

$$H = \frac{1}{2}(R_V + T_V), \qquad K = d\left(\frac{1}{2}(R - T), \frac{1}{2}(T - R)\right).$$

Using the conjugation map

$$\sigma: V \to V: a + ib \mapsto a - ib \qquad \text{for} \quad a, b \in V_{\mathsf{R}}$$

we can also write K as

(5.1)
$$K = \frac{1}{2}(R_V - T_V)o$$

Now consider the holomorphic functions ρ_T and ρ_S on V given by

$$\rho_T(z) = \frac{(\det T)^{1/2}}{(2\pi)^{n/2}} e^{-\frac{1}{2}(T_V z) \cdot z} \qquad \rho_S(z) = \frac{(\det S)^{1/2}}{(2\pi)^{n/2}} e^{-\frac{1}{2}(S_V z) \cdot z}$$

where $n = \dim V_R$. Restricted to V_R , these are density functions for Gaussian probability measures.

The Segal-Bargmann transform in this setting is given by the map

$$S_A: L^2(V_{\mathsf{R}}, \rho_S(x)dx) \to \mathsf{F}_A: f \mapsto S_A f$$

where

(5.2)
$$S_A f(z) = \int_{V_{\mathsf{R}}} f(x) \rho_T(z-x) \, dx = \int_{V_{\mathsf{R}}} f(x) c(x,z) \rho_S(x) \, dx$$

with c(x, z) given, for $x \in V_{\mathsf{R}}$ and $z \in V$, by

$$c(x,z) = \frac{\rho_T(x-z)}{\rho_S(x)} \,.$$

It is possible to take (5.2) as the starting point, with $f \in L^2(V_R, \rho_S(x)dx)$ and prove that: (i) $S_A f(z)$ is well-defined, (ii) $S_A f$ is in F_A , (iii) S_A is a unitary isomorphism onto F_A . However, we shall not work out everything in this approach since we have essentially proven all this in the preceding sections. Full details of a direct approach would be obtained by generalizing the procedure used in [13]. In the present discussion we shall work out only some of the properties of S_A . LEMMA 5.1. Let $w, z \in V$. Then:

- (i) The function $x \mapsto c(x, z)$ belongs to $L^2(V_R, \rho_S(x)dx)$, thereby ensuring that the integral (5.2) defining $S_A f(z)$ is well-defined;
- (ii) The S_A-transform of $c(\cdot, w)$ is $K_A(\cdot, \bar{w})$:

$$[S_A c(\cdot, w)](z) = K_A(z, \bar{w})$$

and so, in particular:

$$K_A(z,w) = \int_{V_{\mathsf{R}}} \frac{\rho_T(x-z)\rho_T(x-\bar{w})}{\rho_S(x)} \, dx$$

(iii) The transform S_A preserves inner-products on the linear span of the functions $c(\cdot, w)$:

$$\langle c(\cdot, w), c(\cdot, z) \rangle_{L^2(V_{\mathsf{R}}, \rho_S(x)dx)} = K_A(w, z) = \langle K_A(\cdot, \bar{w}), K_A(\cdot, \bar{z}) \rangle_{\mathsf{F}_A}$$

PROOF. (i) is equivalent to finiteness of $\int_{V_{\mathsf{R}}} \frac{|\rho_T(x-z)|^2}{\rho_S(x)} dx$, which is equivalent to positivity of the operator 2T - S. To see that 2T - S is positive observe that

$$2T - S = 2T[(R^{-1} + T^{-1}) - T^{-1}](R^{-1} + T^{-1})^{-1}$$

(5.3)
$$= 2TR^{-1}(R^{-1} + T^{-1})^{-1} = TR^{-1}S$$

(5.4)
$$= 2(T^{-1} + T^{-1}RT^{-1})^{-1}$$

and in this last line $T^{-1} > 0$ (since T > 0) and $(T^{-1}RT^{-1}x, x) = (RT^{-1}x, T^{-1}x) \ge 0$ by positivity of *R*. Thus 2T - S is positive, being twice the inverse of the positive operator $T^{-1} + T^{-1}RT^{-1}$.

(ii) Recall $v \cdot w$ for $v, w \in V$ is the symmetric complex bilinear pairing given by $v \cdot w = \langle v, \bar{w} \rangle$, and we write v^2 for $v \cdot v$. We shall denote the complexlinear operator T_V which restricts to T on V_R simply by T. It is readily checked that T continues to be symmetric in the sense that $Tv \cdot w = v \cdot Tw$ for all $v, w \in V$. We start with

$$a \stackrel{\text{def}}{=} [S_A c(\cdot, w)](z)$$

= $\int_{V_{\mathsf{R}}} \frac{\rho_T(x - w)}{\rho_S(x)} \rho_T(z - x) dx$
= $(2\pi)^{-n/2} \frac{\det T}{(\det S)^{1/2}} \int_{V_{\mathsf{R}}} e^{-\frac{1}{2}[T(x - w) \cdot (x - w) + T(x - z) \cdot (x - z) - Sx \cdot x]} dx$
= $(2\pi)^{-n/2} \frac{\det T}{(\det S)^{1/2}} \int_{V_{\mathsf{R}}} e^{-\frac{1}{2}[(2T - S)x \cdot x - 2Tx \cdot (w + z) + Tw \cdot w + Tz \cdot z]} dx.$

Recall from the proof of (i) that 2T - S > 0. For notational simplicity let $L = (2T - S)^{1/2}$ and $M = L^{-1}T$. Then

$$a = (2\pi)^{-n/2} \frac{\det T}{(\det S)^{1/2}} \int_{V_{\mathsf{R}}} e^{-\frac{1}{2}(Lx - M(w+z))^2} dx \, e^{-\frac{1}{2}[Tw \cdot w + Tz \cdot z - M(w+z) \cdot M(w+z)]}$$

= $\frac{\det T}{(\det S)^{1/2}(\det L)} e^{-\frac{1}{2}[Tw \cdot w + Tz \cdot z - M(w+z) \cdot M(w+z)]}.$

To simplify the last exponent observe that by (5.4) and (5.1) we have

$$Tw \cdot w - Mw \cdot Mw = Tw \cdot w - Tw \cdot L^{-2}Tw$$

= $Tw \cdot w - Tw \cdot (2T - S)^{-1}Tw$
= $Tw \cdot w - \frac{1}{2}Tw \cdot (T^{-1} + T^{-1}RT^{-1})Tw$
= $Tw \cdot w - \frac{1}{2}Tw \cdot (w + T^{-1}Rw)$
= $\frac{1}{2}(Tw \cdot w - Rw \cdot w)$
= $-\langle K\bar{w}, \bar{w} \rangle$.

The same holds with z in place of w. For the "cross term" we have

$$Mw \cdot Mz = Tw \cdot L^{-2}Tz$$

= $Tw \cdot (2T - S)^{-1}Tz$
= $\frac{1}{2}Tw \cdot (T^{-1} + T^{-1}RT^{-1})Tz$
= $\frac{1}{2}(Tw \cdot z + w \cdot Rz)$
= $2w \cdot Hz$.

Putting everything together gives

$$[S_A c(\cdot, w)](z) = \frac{\det T}{(\det S)^{1/2} (\det L)} e^{\frac{1}{2} \langle K \bar{w}, \bar{w} \rangle} e^{\langle Hw, \bar{z} \rangle} e^{\frac{1}{2} \langle K \bar{z}, \bar{z} \rangle}.$$

In Lemma 6.2 below we prove that

$$\frac{\det T}{(\det S)^{1/2}(\det L)} = \left(\frac{\det_{\mathsf{R}}(A)}{\det_{\mathsf{R}}(H)}\right)^{-1/2} = c_A^{-2}.$$

So

$$[S_A c(\cdot, w)](z) = K_A(w, \overline{z}).$$

For (iii), we have first:

$$\langle c(\cdot, w), c(\cdot, z) \rangle_{L^2(\rho_S(x)dx)} = [S_A c(\cdot, w)](\bar{z}) = K_A(\bar{z}, \bar{w}) = K_A(w, z).$$

The second equality in (iii) follows since K_A is a reproducing kernel.

6. The evaluation map and determinant relations

Recall

$$K_A(z, w) = c_A^{-2} e^{\frac{1}{2}\langle z, Kz \rangle + \frac{1}{2}\langle Kw, w \rangle + \langle Hz, w \rangle}$$

where

$$c_A^{-2} = \left(\frac{\det_V H}{\det_V A}\right)^2$$

is a reproducing kernel for F_A . Thus

$$f(w) = \langle f, K_A(\cdot, w) \rangle = \pi^{-n} \int_V f(z) K_A(w, z) |dz|$$

where |dz| = dxdy signifies integration with respect to Lebesgue measure on the real inner-product space V. Thus we have

PROPOSITION 6.1. For any $z \in V$, the evaluation map

 $\delta_z : \mathbf{F}_A \to \mathbf{C} : f \mapsto f(z)$

is a bounded linear functional with norm

$$\|\delta_z\| = K_A(z, z)^{1/2} = c_A^{-1} e^{(Az, z)}.$$

PROOF. Note

(6.1) $|\delta_z f| = |f(z)| = |\langle f, K_A(\cdot, z)\rangle| \le ||f||_{\mathsf{F}_A} K_A(z, z)^{1/2}$

follows from the reproducing kernel property

$$\|K_A(\cdot, z)\|_{\mathsf{F}_A}^2 = \left\langle K_A(\cdot, z), K_A(\cdot, z) \right\rangle_{\mathsf{F}_A} = K_A(z, z).$$

This last calculation also shows that the inequality in (6.1) is an equality if $f = K_A(\cdot, z)$ and thereby shows that $\|\delta_z\|$ is actually equal to $K_A(z, z)^{1/2}$. The latter is readily checked to be equal to $c_A^{-1}e^{(Az,z)}$.

We have already used the first of the following two facts about c_A .

LEMMA 6.2. For the constant c_A we have

$$c_A^{-2} = \left(\frac{\det_V H}{\det_V A}\right)^2 = \frac{\det T}{(\det S)^{1/2} \det L}$$

where, as before, $L = (2T - S)^{1/2}$ and $S = 2(R^{-1} + T^{-1})^{-1}$.

PROOF. Recall from (5.3) that $2T - S = TR^{-1}S$. Note also that

$$S^{-1} = \frac{1}{2}(R^{-1} + T^{-1}) = R^{-1}\frac{R+T}{2}T^{-1} = R^{-1}(H|V_{\mathsf{R}})T^{-1}$$

So

$$\left(\frac{\det_V A}{\det_V H}\right)^{1/2} \frac{\det T}{(\det S)^{1/2} \det L}$$

= $\frac{(\det R)^{1/2} (\det T)^{1/2}}{\det S^{-1} \det R \det T} \frac{\det T}{(\det S)^{1/2} \det T^{1/2} \det R^{-1/2} \det S^{1/2}}$
= 1

which implies the desired result.

Next we prove a determinant relation which implies $c_A \ge 1$. (This "determinant AM-GM inequality" could be obtained by reference to standard matrix inequalities, but we include a complete proof.)

LEMMA 6.3. If R and T are positive definite $n \times n$ matrices (symmetric if real) then

$$\sqrt{\det R \det T} \le \det \left(\frac{R+T}{2}\right)$$

with equality if and only if R = T.

PROOF. Noting that $R^{-1/2}TR^{-1/2} \ge 0$ we have, with $D = (R^{-1/2}TR^{-1/2})^{1/4}$,

$$\frac{\det R \det T}{\left(\det \frac{R+T}{2}\right)^2} = \frac{\det R \det(R^{1/2}D^4R^{1/2})}{\left[\det R^{1/2}\left(\frac{1+D^4}{2}\right)R^{1/2}\right]^2}$$
$$= \left[\det\left(\frac{D^2 + D^{-2}}{2}\right)\right]^{-2}$$
$$= \left[\det\left\{I + \left(\frac{1}{\sqrt{2}}D - \frac{1}{\sqrt{2}}D^{-1}\right)^2\right\}\right]^{-2}.$$

Diagonalizing D, it is clear that this last term is less or equal to 1 with equality if and only if $D = D^{-1}$. This is equivalent to $D^4 = I$ which holds if and only if R = T.

As consequence, we have for c_A :

$$c_A = \left(\frac{\det_V A}{\det_V H}\right)^{1/4} = \left(\frac{\det R \det T}{\left(\det \frac{R+T}{2}\right)^2}\right)^{1/4} = \left(\frac{\sqrt{\det R \det T}}{\det \frac{R+T}{2}}\right)^{1/2}$$

and so

(6.2)
$$c_A^{-2} = \frac{\det \frac{R+T}{2}}{\sqrt{\det R \det T}} \ge 1$$

with equality if and only if R = T.

In extending this theory to infinite dimensions, to retain a meaningful notion of evaluation $\delta_z : f \mapsto f(z)$, the constant c_A^{-1} , which appears in the norm $\|\delta_z\|$, must be finite. The expression for c_A^{-2} in (6.2) gives a more explicit condition on R and T for this finiteness to hold.

If R = rI and T = tI then, by (6.2), $c_A^{-1} = [(r + t)/(2\sqrt{rt})]^{n/2}$ which is bounded as $n \nearrow \infty$ if and only if r = t (this was noted in [13]).

7. Remarks on extension to infinite dimensions

The Gaussian formulation permits extension to infinite dimensions with some conditions placed on *A*. Suppose then that *V* is an infinite-dimensional separable complex Hilbert space, V_R a real subspace on which the inner-product is real-valued and for which $V = V_R + iV_R$, and $A : V \to V$ a bounded symmetric, positive-definite real-linear operator carrying V_R into itself. The operators *R*, *T*, *S*, *H* and *K* are defined as before. Assume that *R* and *T* commute and that there is an orthonormal basis e_1, e_2, \ldots of V_R consisting of simultaneous eigenvectors of *R* and *T* (greater generality may be possible but we discuss only this case). Let V_n be the complex linear span of e_1, \ldots, e_n , and $V_{n,R}$ the real linear span of e_1, \ldots, e_n . Then *A* restricts to an operator A_n on V_n , and we have similarly restrictions H_n, K_n on V_n and R_n, T_n, S_n on $V_{n,R}$. The unitary transform S_A may be obtained as a limit of the finite-dimensional transforms S_{A_n} .

The Gaussian kernels ρ_S and ρ_T do not make sense anymore, and nor does the coherent state *c*, but the Gaussian measures $d\gamma_S(x) = \rho_S(x)dx$ and μ_A do have meaningful analogs. There is a probability space V'_R , with a σ algebra \mathscr{F} on which there is a measure γ_S , and there is a linear map $V_R \rightarrow L^2(V'_R, \gamma_A) : x \mapsto G(x) = (x, \cdot)$, such that the σ -algebra \mathscr{F} is generated by the random variables G(x), and each G(x) is real Gaussian with mean 0 and variance $(S^{-1}x, x)$. Similarly, there is probability space V', with a σ algebra \mathscr{F}_1 on which there is a measure μ_A , and there is a real-linear map $V \rightarrow L^2(V', \mu_A) : z \mapsto G_1(z) = (z, \cdot)$, such that the σ -algebra \mathscr{F}_1 is
generated by the random variables $G_1(z)$, and each $G_1(z)$ is (real) Gaussian
with mean 0 and variance $\frac{1}{2}(A^{-1}z, z)$. Then for each $z \in V$, written as z = a + ib with $a, b \in V_R$, we have the complex-valued random variable on V'given by $\tilde{z} = G_1(a) + iG_1(b)$. Suppose g is a holomorphic function of ncomplex variables such that $\int_V |g(\tilde{e}_1, \ldots, \tilde{e}_n)|^2 d\mu_A < \infty$. Define F_A to be
the closed linear span of all functions of the type $g(\tilde{e}_1, \ldots, \tilde{e}_n)$ in $L^2(\mu_A)$ for all $n \ge 1$. We may then define S_A of a function $f(G(e_1), \ldots, G(e_n))$ to
be $(S_{A_n}f)(\tilde{e}_1, \ldots, \tilde{e}_n)$, and then extend S_A by continuity to all of $L^2(\gamma_S)$. In
writing $S_{A_n}f$ we have identified V_n with C^n and $V_{n,\mathsf{R}}$ with R^n using the basis e_1, \ldots, e_n .

A potentially significant application of the infinite-dimensional case would be to situations where V_R is a *path space* and *A* arises from a suitable *differential operator*. For the "classical case" where R = T = tI for some t > 0, this leads to the Hall transform [6] for Lie groups as well as the path-space version on Lie groups considered in [8].

REFERENCES

- Bargmann, V., On a Hilbert space of analytic functions and an associated integral transform, Part I, Comm. Pure. Appl. Math. 14 (1961), 187–214.
- Driver, B., and Hall, B., Yang-Mills theory and the Segal-Bargmann transform, Comm. Math. Phys. 201 (1999), 249–290.
- Fock, V., Verallgemeinerung und Lösung der Diracschen statistischen Gleichung, Z. f
 ür Phys. 49 (1928), 339–357.
- 4. Fock, V., Konfigurationsraum und zweite Quantelung, Z. für Phys 75 (1932), 622–647.
- 5. Folland, G. B., Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122 (1989).
- Hall, B. C., The Segal-Bargmann "coherent state" transform for compact Lie groups, J. Funct. Anal. 112 (1994), 103–151.
- 7. Hall, B. C., The range of the heat operator, Preprint, 2004.
- Hall, B. C., and Sengupta, A. N., *The Segal-Bargmann transform for path spaces in groups*, J. Funct. Anal. 152 (1998).
- Ólafsson, G., Analytic continuation in representation theory and harmonic analysis, in J. P. Bourguignon, T. Branson, and O. Hijazi (eds.), Seminares et Congr. Vol. 4 (2000), 201– 233, The French Math. Soc.
- Ólafsson, G., and Ørsted, B., *Generalizations of the Bargmann transform*, Lie theory and its applications in physics, Clausthal 1995 (H.-D. Doebner, V. K. Dobrev and J. Hilgert, eds.), World Scientific, River Edge, New Jersey, 1996.
- 11. Segal, I. E., Foundations of the theory of dynamical systems of infinitely many degrees of freedom I, Mat. Medd. Danske Vid. Selsk. 31 (1959), no. 12.
- 12. Segal, I. E., Mathematical Problems of Relativistic Physics, Amer. Math. Soc., 1963.

R. FABEC, G. ÓLAFSSON, AND A. N. SENGUPTA

13. Sengupta, A. N., *The two-parameter Segal-Bargmann transform*, Preprint (1999) at http://www.mpim-bonn.mpg.de/html/preprints/preprints.html.

DEPARTMENT OF MATHEMATICS LOUISIANA STATE UNIVERSITY BATON ROUGE, LA 70803 USA *E-mail:* fabec@math.lsu.edu, olafsson@math.lsu.edu,sengupta@math.lsu.edu *URL:* www.math.lsu.edu/~fabec, www.math.lsu.edu/~olafsson, www.math.lsu.edu/~sengupta

282