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HOLOMORPHIC FOCK SPACES FOR POSITIVE
LINEAR TRANSFORMATIONS

R. FABEC, G. ÓLAFSSON, and A. N. SENGUPTA∗

Abstract
Suppose A is a positive real linear transformation on a finite dimensional complex inner product
space V . The reproducing kernel for the Fock space of square integrable holomorphic functions

on V relative to the Gaussian measure dµA(z) =
√

detA
πn

e− Re〈Az,z〉 dz is described in terms of
the linear and antilinear decomposition of the linear operator A. Moreover, if A commutes with
a conjugation on V , then a restriction mapping to the real vectors in V is polarized to obtain a
Segal-Bargmann transform, which we also study in the Gaussian-measure setting.

Introduction

The classical Segal-Bargmann transform is an integral transform which defines
a unitary isomorphism of L2(Rn) onto the space F(Cn) of entire functions
on Cn which are square integrable with respect to the Gaussian measure
µ=π−ne−‖z‖2

dxdy, where dxdy stands for the Lebesgue measure on R2n � Cn,
see [1], [3], [4], [5], [11], [12]. There have been several generalizations of this
transform, based on the heat equation or the representation theory of Lie groups
[6], [10], [13]. In particular, it was shown in [10] that the Segal-Bargmann
transform is a special case of the restriction principle, i.e., construction of
unitary isomorphisms based on the polarization of a restriction map. This prin-
ciple was first introduced in [10], see also [9], where several examples were
explained from that point of view. In short the restriction principle can be ex-
plained in the following way. LetMC be a complex manifold and letM ⊂ MC

be a totally real submanifold. Let F = F(MC) be a Hilbert space of holo-
morphic functions on MC such that the evaluation maps F 
 F �→ F(z) ∈ C
are continuous for all z ∈ MC, i.e., F is a reproducing kernel Hilbert space.
There exists a function K : MC ×MC → C holomorphic in the first variable,
anti-holomorphic in the second variable, and such that the following hold:

(a) K(z,w) = K(w, z) for all z,w ∈ MC;
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(b) If Kw(z) := K(z,w) then Kw ∈ F and

F(w) = 〈F,Kw〉F, ∀F ∈ F, z ∈ MC .

The function K is the reproducing kernel for the Hilbert space F. Let D :
M → C∗ be measurable. Then the restriction map R : F �→ RF := DF |M is
injective. Assume that there is a measure µ on M such that RF ∈ L2(M,µ)

for all F in a dense subset of F. Assuming that R is closeable, Im(R) is dense
in L2(M,µ), and by polarizing R∗, we can write

R∗ = U |R∗|
whereU : L2(M,µ)→ F is a unitary isomorphism and |R∗| = √

RR∗. Using
the fact that F is a reproducing kernel Hilbert space we get

Uf (z) = 〈Uf,Kz〉F = 〈f,U ∗Kz〉L2 =
∫
M

f (m)(U ∗Kz)(m) dµ(m) .

Thus U is always an integral operator. We notice also that the formula for
U shows that the important object in this analysis is the reproducing kernel
K(z,w).

We will use the following notation through this article: Let 〈z,w〉 = z1w1 +
· · ·+ znwn be the standard inner product on Cn and let (z, w) = Re(〈z,w〉) be
the corresponding inner product on Cn viewed as a 2n-dimensional real vector
spaces. Notice that (x, y) = 〈x, y〉 = x1y1 + · · · + xnyn for x, y ∈ Rn. We
write z2 = z2

1 + · · · + z2
n for z ∈ Cn.

The reproducing kernel for the classical Fock space is given byK(z,w) =
e〈z,w〉, where z,w ∈ Cn. By takingD(x) := (2π)−n/4e−x2/2, for x ∈ Rn, which
is closely related to the heat kernel, we arrive at the classical Segal-Bargmann
transform, given as the holomorphic continuation of

Ug(x) = (2/π)n/4ex2/2
∫

Rn
g(y)e−(x−y)

2
dy .

Notice that Rn 
 x �→ Ug(x) ∈ C has a unique holomorphic extension to Cn.
The same principle can be used to construct the Hall-transform for compact

Lie groups, [6]. In [2], Driver and Hall, motivated by application to quantum
Yang-Mills theory, introduced a Fock space and Segal-Bargmann transform
depending on two parameters r, s > 0, giving different weights to the x and y
directions, where z = x+iy ∈ Cn (this was also studied in [13]). Thus F is now
the space of holomorphic functions F(z) on Cn which are square-integrable

with respect to the Gaussian measure dMr,s(z) = 1
(πr)n/2(πs)n/2

e−
x2

r
− y2

s dxdy. A
Segal-Bargmann transform for this Fock space is given in [13] and inTheorem 3
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of [7]. We show this is a very special case of a larger family of Fock spaces
and associated Segal-Bargmann tranforms. Indeed, ifA is a real linear positive
definite matrix A on a complex inner product space V , then

(0.1) dµA(z) =
√

det(A)

πn
e−(Az,z) |dz|

gives rise to a Fock space FA. We find an expression for the reproducing kernel
KA(z,w). We use the restriction principle to construct a natural generaliza-
tion of the Segal-Bargmann transform for this space, with a certain natural
restriction on A. We study this also in the Gaussian setting, and indicate a
generalization to infinite dimensions.

We will fix the following notation for the types of bilinear pairings that we
shall be using in this paper:

(i) 〈z,w〉 denotes a Hermitian inner product on a complex vector space V ,
i.e., a pairing which is complex-linear in z, complex-conjugate-linear in
w, and 〈z, z〉 > 0 if z �= 0. We denote by ‖z‖ = √〈z, z〉 the correspond-
ing norm;

(ii) (x, y) denotes an inner product on V viewed as a real vector space. The
standard choice is (x, y) = Re〈x, y〉;

(iii) z · w denotes a complex-bilinear pairing. In the standard situation we
have z · w = 〈z,w〉. We set z2 = z · z.

1. The Fock space and the restriction principle

In this section we recall some standard facts about the classical Fock space of
holomorphic functions on Cn. We refer to [5] for details and further informa-
tion. Let µ be the measure dµ(z) = π−ne−‖z‖2

dxdy and let F be the classical
Fock-space of holomorphic functions F : Cn → C such that

‖F‖2
F :=

∫
Cn

|F(z)|2 dµ(z) <∞ .

The space F is a reproducing Hilbert space with inner product

〈F,G〉F =
∫

Cn
F (z)G(z) dµ(z)

and reproducing kernel K(z,w) = e〈z,w〉.
Thus

F(w) =
∫

Cn
F (z)K(z,w) dµ(z) = 〈F,Kw〉F
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whereKw(z) = K(z,w). The functionK(z,w) is holomorphic in the first vari-
able, anti-holomorphic in the second variable, andK(z,w) = K(w, z). Notice
that K(z, z) = 〈Kz,Kz〉F. Hence ‖Kz‖F = e‖z‖2/2. Finally the linear space of
finite linear combinations

∑
cjKzj , zj ∈ Cn, cj ∈ C, is dense in F. An orthonor-

mal system in F is given by the monomials eα(z) = z
α1
1 · · · zαnn /

√
α1! · · ·αn!,

α ∈ Nn0. If the reference to the Fock space is clear, then we simply write 〈·, ·〉
instead of 〈·, ·〉F, and similarly for the corresponding norm.

View Rn ⊂ Cn as a totally real submanifold of Cn. We will now recall the
construction of the classical Segal-Bargmann transform using the restriction
principle, see [9], [10]. For constructing a restriction map as explained in
the introduction we need to choose the function D(x). One motivation for
the choice of D is the heat kernel, but another one, more closely related to
representation theory, is that the restriction map should commute with the
action of Rn on the Fock space and L2(Rn). Indeed, take

T (x)F (z) = m(x, z)F (z− x)

for F in F wherem(x, z) has properties sufficient to make x �→ T (x) a unitary
representation of Rn on F. Namely, we need a multiplier m satisfying

|m(x, z)| =
(
dµ(z− x)
dµ(z)

) 1
2

= e(Re〈z,x〉−x2/2) .

We take m(x, z) := e〈z,x〉−x2/2. Set

D(x) = (2π)−n/4m(0, x) = (2π)−n/4e−x2/2

and define R : F → C∞(Rn) by

RF(x) := D(x)F (x) = (2π)−n/4e−x2/2F(x).

Then
RT (y)F (x) = RF(x − y).

Since F is holomorphic, the mapR is injective. Furthermore, the holomorphic
polynomialsp(z) = ∑

aαz
α are dense in F and obviouslyRp ∈ L2(Rn). Thus,

we may and will consider R as a densely defined operator from F into L2(Rn).
The Hermite functions hα(x) = (−1)|α|

(
Dαe−‖x‖2)

ex
2/2 are images under R

of polynomials and thus are in the image of the operator R. Hence, Im(R) is
dense in L2(Rn). Using continuity of the evaluation maps F �→ F(z), it can
be checked that R is a closed operator. Hence, R has a densely-defined adjoint
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R∗ : L2(Rn)→ F. For z,w ∈ Cn, recall that z ·w = ∑
zjwj . Then, for any g

in the domain of R∗, we have:

R∗g(z) = 〈R∗g,Kz〉 = 〈g,RKz〉 = (2π)−n/4
∫

Rn
g(y)e−‖y‖2/2ez·y dy

= (2π)−n/4ez2/2
∫

Rn
g(y)e−(z−y)

2/2 dy

= (2π)n/4ez2/2g ∗ p(z)

where p(z) = (2π)−n/2e−z2/2 is holomorphic. Applying the map R : F →
C∞(Rn), we have

(1.1) RR∗g(x) = g ∗ p(x) .
Since p ∈ L1(Rn) and g ∈ L2(Rn), it follows that g ∗ p ∈ L2(Rn), and so the
preceding equation shows thatR∗g is in the domain of the operatorR, and so g
is in the domain of the operator compositeRR∗. This argument also shows that
RR∗ is a bounded operator, on its domain, with operator norm ‖RR∗‖‖p‖1.
Moreover, for every g in the domain of R∗, we have

〈R∗g,R∗g〉 = 〈RR∗g, g〉 ≤ ‖RR∗‖ ‖g‖2 .

Thus R∗ is a bounded operator. Being an adjoint, it is also closed. Therefore,
the domain of R∗ is in fact the full space L2(Rn). So for any f ∈ D(R), we
have

〈Rf,Rf 〉 = 〈R∗(Rf ), f 〉 ≤ ‖R∗‖ ‖Rf ‖2‖f ‖2,

which implies that the operator R is bounded. Again, being a closed, densely-
defined bounded operator, R is, in fact, defined on all of F. In summary,

Lemma 1.1. The linear operators R and R∗ are everywhere defined and
continuous.

Let pt(x) = (2πt)−n/2e−x2/2t be the heat kernel on Rn. Then (pt )t>0 is a
convolution semigroup and p = p1. Hence

√
RR∗ = p1/2∗ or

RUg(x) = ∣∣R∗∣∣ g(x) = p1/2 ∗ g(x) = π−n/2
∫

Rn
g(y)e−(x−y)

2
dy .

It follows that

Ug(x) = (2/π)n/4ex2/2
∫

Rn
g(y)e−(x−y)

2
dy
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for x ∈ Rn. But the function on the right hand side is holomorphic in x. Analytic
continuation gives the following classical Segal-Bargmann tranform.

Theorem 1.2. The map U : L2(Rn)→ F given by

Ug(z) = (2/π)n/4
∫

Rn
g(y) exp(−y2 + 2〈z, y〉 − z2/2) dy

is a unitary isomorphism.

2. Twisted Fock spaces

Let V � Cn be a finite dimensional complex vector space of complex dimen-
sion n and let 〈·, ·〉 be a complex Hermitian inner-product.

We will also considerV as a real vector space with real inner product defined
by (z, w) = Re〈z,w〉. Notice that (z, z) = 〈z, z〉 for all z ∈ Cn. Let J be the
real linear transformation of V given by Jz = iz. Note that J ∗ = −J = J−1

and thus J is a skew symmetric real linear transformation. Fix a real linear
transformation A. Then A = H +K where

H := A+ J−1AJ

2
and K := A− J−1AJ

2
.

We have HJ = 1
2 (AJ − J−1A) = 1

2J (J
−1AJ + A) = JH and KJ =

1
2 (AJ + J−1A) = 1

2J (J
−1AJ − A) = −JK . Thus H is complex linear and

K is conjugate linear.
We now assume thatA is symmetric and positive definite relative to the real

inner product (·, ·).
Lemma 2.1. The complex linear transformation H is self adjoint, positive

with respect to the inner product 〈·, ·〉, and invertible.

Proof. Since A is positive and invertible as a real linear transformation,
we have (Az, z) > 0 for all z �= 0. But J is real linear and skew symmetric.
Hence (JAJ−1z, z) > 0 for all z �= 0. In particular H = 1

2 (A + JAJ−1) is
complex linear, symmetric with respect to the real inner product (·, ·), and pos-
itive. Consequently Re〈Hiv,w〉 = Re〈iv,Hw〉. This implies Im〈Hv,w〉 =
Im〈v,Hw〉 and hence 〈Hv,w〉 = 〈v,Hw〉. Thus H is complex self adjoint
and 〈Hz, z〉 > 0 for z �= 0.

Lemma 2.2. Let w ∈ V . Then 〈Aw,w〉 = (Aw,w) + i Im〈Kw,w〉 and
(Aw,w) = (Hw,w)+ (Kw,w).

Proof. The first statement follows from

〈Aw,w〉 = 〈Hw,w〉 + 〈Kw,w〉 = (Hw,w)+ (Kw,w)+ i Im〈Kw,w〉
= (Aw,w)+ i Im〈Kw,w〉.
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Taking the real part in the second line gives the second claim, which also
follows directly from bilinearity of (·, ·).

Denote by detR(·) the determinant of a R-linear map on V � Cn � R2n

and by det(·) the determinant of a complex linear map of V . Let µA be the
measure defined by dµA(z) = π−n√detRAe

−(Az,z)dxdy and let FA be the
space of holomorphic functions F : Cn → C such that

(2.1) ‖F‖2
A :=

∫
|F(z)|2 dµA(z) <∞ .

Our normalization of µ is chosen so that ‖1‖A = 1. Just as in the classical
case one can show that FA is a reproducing kernel Hilbert space, but this will
also follow from the following Lemma. We notice that all the holomorphic
polynomialsp(z) are in F. To simplify the notation, we letT1 = H−1/2. ThenT1

is symmetric, positive definite and complex linear. Let cA = √
detR(A1/2T1) =

(detR(A)/ detR(H))
1/4.

Lemma 2.3. Let F : V → C be holomorphic. Then F ∈ FA if and only if
F ◦ T1 ∈ F. Moreover, the map - : FA → F given by

-(F)(w) := cA exp
(−〈KT1w, T1w〉/2)F(T1w)

is a unitary isomorphism. In particular

-∗F(w) = -−1F(w) = c−1
A exp

( 〈Kw,w〉/2)F(√Hw) .
Proof. Note F is holomorphic if and only if F ◦ T1 is holomorphic as T1

is complex linear and invertible. Moreover, unitarity follows from

‖-F‖2 = π−n
∫
V

|-F(w)|2 e−〈w,w〉 dw

= π−n√det RA

∫
V

|F(w)|2e−(Kw,w)e−〈√Hw,√Hw〉 dw

= π−n√det RA

∫
V

|F(w)|2e−(Kw,w)e−〈Hw,w〉 dw

= π−n√det RA

∫
V

|F(w)|2e−((H+K)w,w) dw

= π−n√det RA

∫
V

|F(w)|2e−(Aw,w) dw
= ‖F‖2

A.
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Theorem 2.4. The space FA is a reproducing kernel Hilbert space with
reproducing kernel

KA(z,w) = c−2
A e

1
2 〈Kz,z〉e〈Hz,w〉e

1
2 〈Kw,w〉 .

Proof. By Lemma 2.3 we get

cA exp(−〈KT1w, T1w〉/2)F (T1w) = -(F)(w)
= (-(F ),Kw)F
= (F,-∗(Kw))FA .

Hence

KA(z,w) = c−1
A exp

( 〈Kw,w〉/2)-∗(K√
Hw) = c−2

A e
1
2 〈Kz,z〉e〈Hz,w〉e

1
2 〈Kw,w〉.

3. The Restriction Map

We continue to assume A > 0. We notice that Lemma 2.3 gives a unitary
isomorphism -∗U : L2(Rn)→ FA, where U is the classical Segal-Bargmann
transform. But this is not the natural transform that we are looking for. As H
is positive definite there is an orthonormal basis e1, . . . , en of V and positive
numbers λj > 0 such that Hej = λjej . Let VR := ∑

Rek . Set σ(
∑
aiei) =∑

āiei . Then σ is a conjugation with VR = {z : σz = z}. For z ∈ V we will
when convenient write z̄ for σ(z). We say that a vector is real if it belongs to
VR. As Hej = λjej with λj ∈ R it follows that HVR ⊆ V R. We note that for
the complex linear mappingH that detRH = (detH)2 and that detH is equal
to the determinant of the real linear transformation H |VR .

Lemma 3.1. 〈Kz,w〉 = 〈Kw, z〉.
Proof. Note that σK is complex linear. Since J ∗ = −J , K = 1

2 (A −
JAJ−1) is real symmetric. Thus (Kw, z) = (w,Kz) = (Kz,w). Also note

(iKz,w) = (JKz,w) = −(KJz,w) = −(J z,Kw) = −(iz,Kw).
Hence Re〈iKz,w〉 = − Re〈iz,Kw〉. So − Im〈Kz,w〉 = Im〈z,Kw〉. This
gives Im〈Kw, z〉 = Im〈Kz,w〉. Hence 〈Kz,w〉 = 〈Kw, z〉.

Lemma 3.2. (σK)∗ = Kσ .

Proof. We have 〈σz, σw〉 = 〈w, z〉. Hence

〈σKz,w〉 = 〈σw, σ 2Kz〉 = 〈σw,Kz〉 = 〈z,Kσw〉 .
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Corollary 3.3. If x, y ∈ VR, then 〈Hx, y〉 is real and 〈Ax, y〉 = 〈Ay, x〉.
Proof. Clearly 〈·, ·〉 is real on VR ×VR. SinceHVR ⊆ VR, we see 〈Hx, y〉

is real. Next, 〈Ax, y〉 = 〈Hx, y〉+〈Kx, y〉. The term 〈Hx, y〉 equals 〈Hy, x〉
because 〈Hx, y〉 is real and H is self-adjoint. On the other hand, 〈Kx, y〉 =
〈Ky, x〉 by Lemma 3.1. So 〈Ax, y〉 = 〈Ay, x〉.

As before we would like to have a multiplier m : VR × V → C∗ such that

T (x)F (z) = m(x, z)F (z− x)
is a unitary representation of FA that commutes with translation on L2(VR). It
turns out the multipliers we construct are co-boundaries under translation by
elements of VR on V .

Definition 3.4. A function m is a co-boundary on V ∼= Cn under transla-
tion by VR if there is a nonzero complex valued function b on V with

m(x, z) = b(z− x)b(z)−1 for x ∈ VR and z ∈ V.

It is well known and easy to verify that every co-boundary m on V under
translation by VR is a multiplier.

Lemma 3.5. The function

m(x, z) = e〈Hz,x〉e〈Kz̄,x〉e−〈Ax,x〉/2 = e〈Ax,z̄〉−〈Ax,x〉/2

is a co-boundary.

Proof. Define b(z) = e−〈Hz+Kz̄,z̄〉/2. Then

b(z− x)b(z)−1 = e−〈H(z−x)+K(z̄−x),z̄−x〉/2e〈Hz+Kz̄,z̄〉/2

= e(〈Hx+Kx,z̄〉+〈Hz+Kz̄,x〉)/2e−〈Hx+Kx,x〉/2

= e〈Hz,x〉e〈Kz̄,x〉e−〈Ax,x〉/2

= e〈Hx,z̄〉+〈Kx,z̄〉e−〈Ax,x〉/2

= e〈Ax,z̄〉−〈Ax,x〉/2

sinceA = H+K , 〈Hx, z̄〉 = 〈z, σHx〉 = 〈z,Hx〉 = 〈Hz, x〉, and 〈Kx, z̄〉 =
〈σ z̄, σKx〉 = 〈Kσz, x〉 = 〈Kz̄, x〉.

Corollary 3.6. Letm(x, z) = e〈Ax,z̄〉−〈Ax,x〉/2. Set TxF (z) := m(x, z)F (z
− x) for x ∈ VR. Then x �→ Tx is a representation of the abelian group VR on
FA. It is unitary if and only if KVR ⊆ VR, or equivalently AVR ⊆ VR.
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Proof. Since m is a multiplier, we have TxTy = Tx+y . For each Tx to be
unitary, we need |m(x, z)| = e(Az,x)−(Ax,x)/2. But

|m(x, z)| = e(Hz,x)e(Kz̄,x)e−(Ax,x)/2 = e(Az,x)−(Ax,x)/2e(Kz̄−Kz,x).
Thus Tx is unitary for all x if and only if the real part of every vectorKz̄−Kz
is 0. Since z̄−z runs over iVR as z runs overV , Tx is unitary for all x if and only
if K(iVR) ⊂ iVR, which is equivalent to K(VR) ⊂ VR. But since A = H +K
and H leaves VR invariant, this is equivalent to VR being invariant under A.

Remark. There is no uniqueness in the choice of a real vector space VR

such that HVR ⊆ VR and V = VR ⊕ iVR. Indeed, any orthonormal basis
e1, e2, . . . , en of eigenvectors for H gives such a subspace. But since A is
only real linear on V , an interesting question is when one can choose VR with
AVR ⊆ VR, and in this case how unique is the choice of VR? This probably
depends on the degree of non complex linearity of the tranformation A.

Recall that detRH = (detH)2. To simplify some calculations later on we

define c := (2π)−n/4 ( detR A
detH

)1/4
. We remark for further reference:

Lemma 3.7. c−2
A c

2 =
√

detH
(2π)n/2 and c−1

√
det(H)
πn/2

= (
2
π

)n/4 (detH)3/4

(detR A)1/4
.

Let D(x) = c m(x, 0) = c e−〈Ax,x〉/2 and define R : FA → C∞(VR) by

RF(x) := D(x)F (x).
Since m is holomorphic on V 2, D has a holomorphic extension to V .

Lemma 3.8. The restriction map R intertwines the action of VR on FA and
the left regular action L on functions on VR.

Proof. For all x, y ∈ VR, we have

R(TyF )(x) = c m(x, 0)TyF (x)
= c m(x, 0)m(y, x)F (x − y)
= c m(x, 0)m(−y,−x)F (x − y)
= c m(x − y, 0)F (x − y)
= LyRF(x).

4. The Generalized Segal-Bargmann Transform

As for the classical space, R specifies a densely defined closed operator FA →
L2(VR). It also has dense image inL2(VR). To see this, let {hα}α be the orthonor-
mal basis ofL2(VR)given by the Hermite functions. Then

{
det(A)

1
4 hα(

√
Ax)

}
α
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is an orthonormal basis of L2(VR) which is contained in the image of the set
of polynomial functions underR. It follows again thatR has a densely defined
adjoint and

R∗h(z) = 〈R∗h,KA,z〉 = 〈h,RKA,z〉
where KA,z(w) = KA(w, z) = c−2

A e
1
2 〈Kw,w〉e〈Hw,z〉e 1

2 〈Kz,z〉. Thus

R∗h(z) = c
∫
h(x)e−〈Ax,x〉/2KA(x, z) dx

= c−2
A c

∫
h(x)e−〈Ax,x〉/2e

1
2 〈Kz,z〉e〈z,Hx〉e

1
2 〈Kx,x〉 dx

= c−2
A c e

1
2 〈Kz,z〉

∫
h(x)e−〈Hx,x〉/2e−〈Kx,x〉/2e〈z,Hx〉e

1
2 〈Kx,x〉 dx

= c−1
A c e

1
2 〈Kz,z〉

∫
h(x)e−〈x,Hx〉/2e〈z,Hx〉 dx

= c−2
A c e

1
2 〈Kz,z〉e

1
2 〈z,H z̄〉

∫
h(x)e−(〈z,H z̄〉−〈z,Hx〉−〈x,H z̄〉+〈x,Hx〉)/2 dx

= c−2
A c e

1
2 〈Kz,z〉e

1
2 〈z,H z̄〉

∫
h(x)e−〈z−x,H(z̄−x̄)〉/2 dx

for 〈z,Hx〉 = 〈Hx, z̄〉 = 〈Hx, z̄〉 = 〈x,H z̄〉 and 〈z,Hx〉 = 〈z,H x̄〉. Thus
we finally arrive at

(4.1) R∗h(z) = c−2
A c e

1
2 〈z,H z̄+Kz〉e−

1
2 〈x,H x̄〉 ∗ h(z).

Let P : VR → VR be positive. Define φP (x) = √
det(P )(2π)−n/2e−‖√Px‖2/2.

For t > 0, let P(t) = 1
t
P .

Lemma 4.1. Let the notation be as above. Then 0 < t �→ φP(t) is a
convolution semigroup, i.e., φP(t+s) = φP(t) ∗ φP(s).

Proof. This follows by change of parameters y = √
Px from the fact that

φId(t)(x) = (2πt)−n/2e−x2/2t is a convolution semigroup.

Define a unitary operatorW on L2(VR) by

(4.2) Wf (x) = ei Im〈x,Kx〉f (x) = ei Im〈x,Ax〉f (x).

We see W = I if AVR ⊆ VR which is equivalent to the translation operators
T (x) being unitary.

Lemma 4.2. Let h be in the domain of definition of R∗. Then

RR∗h = W(φH ∗ h).
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Proof. We notice first that c−2
A c

2 = (2π)−n/2√detH by Lemma 3.7. From
(4.1) we then have

RR∗h(x) = c e− 1
2 〈Ax,x〉R∗h(x)

= c−2
A c

2 e−
1
2 〈Ax,x〉e

1
2 〈x,H x̄+Kx〉e−

1
2 〈y,H ȳ〉 ∗ h(x)

= (2π)−n/2√det(H) e−
1
2 〈Ax,x〉e

1
2 〈x,Ax〉e−

1
2 〈y,H ȳ〉 ∗ h(x)

= (2π)−n/2√det(H) ei Im〈x,Ax〉
∫
e−

1
2 (y,Hy)h(x − y) dy.

= (2π)−n/2√det(H)ei Im〈x,Ax〉
∫
e−

‖√Hy‖2

2 h(x − y) dy

= W(φH ∗ h)(x).
In the last step, we used the fact that φH ∗ h ∈ L2(VR), which follows from
φH being in L1(VR) and h ∈ L2(VR).

Arguing as in the classical case, we see that R and R∗ are everywhere
defined and continuous.

Lemma 4.1 and Lemma 4.2 leads to the following corollary:

Corollary 4.3. Suppose AVR ⊆ VR. Then

|R∗|h(x) = φH(1/2) ∗ h(x) =
√

det(H)

πn/2

∫
VR

e−‖√Hy‖2
h(x − y) dy.

Theorem 4.4 (The Segal-Bargmann Transform). Suppose A leaves VR

invariant. Then the operator UA : L2(VR)→ FA defined by

UAf (z) =
(

2

π

)n/4
(detH)3/4

(detRA)
1/4 e

1
2 (〈Hz,z̄〉+〈z,Kz〉)

∫
e(H(z−y))·(z−y)f (y) dy

is a unitary isomorphism. We call the mapUA the generalized Segal-Bargmann
transform.

Proof. By polar decomposition, we can write R∗ = U |R∗| where U :
L2(VR) → FA is a unitary isomorphism. Taking adjoints gives |R∗|U ∗ = R.
Hence RU = |R∗|. Thus

c m(x)Uh(x) = RUh(x) = (|R∗|h)(x)

=
√

det(H)

πn/2

∫
VR

e−‖√Hy‖2
h(x − y) dy.



274 r. fabec, g. ólafsson, and a. n. sengupta

Since m(x) = e− 1
2 (〈x,Hx〉+〈x,Kx〉), we have using Lemma 3.7:

Uf (x) =
(

2

π

)n/4
(detH)3/4

(detRA)1/4
e

1
2 (〈x,Hx〉+〈x,Kx〉)

∫
e(x−y,H(x−y))f (y) dy.

Holomorphicity of Uf now implies Uf = UAf .

5. The Gaussian Formulation

In infinite dimensions there is no useful notion of Lebesgue measure but Gaus-
sian measure does make sense. So, with a view to extension to infinite dimen-
sions, we will recast our generalized Segal-Bargmann transform using Gaus-
sian measure instead of Lebesgue measure as the background measure on VR.
Of course, we have already defined the Fock space FA using Gaussian measure.

As before, V is a finite-dimensional complex vector space with Hermitian
inner-product 〈·, ·〉, and A : V → V is a real-linear map which is symmetric,
positive-definite with respect to the real inner-product (·, ·) = Re〈·, ·〉, i.e.
(Az, z) > 0 for all z ∈ V except z = 0. We assume, furthermore, that there
is a real subspace VR for which V = VR + iVR, the inner-product 〈·, ·〉 is
real-valued on VR, and A(VR) ⊂ VR. Denote the linear map v �→ iv by J . As
usual, A is the sum

A = H +K
where H = (A− JAJ)/2 is complex-linear on V and K = (A+ JAJ)/2 is
complex-conjugate-linear. The real subspacesVR and JVR are (·, ·)-orthogonal
because for any x, y ∈ VR we have (x, Jy) = Re〈x, Jy〉 = − Re(J 〈x, y〉),
since 〈x, y〉 is real, by hypothesis. Since A preserves VR and is symmetric, it
also preserves the orthogonal complement JVR. ThusA has the block diagonal
form:

A =
[
R 0
0 T

]
= d(R, T )

Here, and henceforth, we use the notation d(X, Y ) to mean the real-linear map
V → V given by a �→ Xa and Ja �→ JYa for all a ∈ VR, where X, Y are
real-linear operators on VR. Note that d(X, Y ) is complex-linear if and only if
X = Y and is complex-conjugate-linear if and only if Y = −X. The operator
d(X,X) is the unique complex-linear map V → V which restricts to X on
VR, and we denote it:

XV =
[
X 0
0 X

]

The hypothesis thatA is symmetric and positive-definite means thatR andT
are symmetric, positive definite on VR. Consequently, the real-linear operator
S on VR given by

S = 2(R−1 + T −1)−1
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is also symmetric, positive-definite.
The operators H and K on V are given by

H = 1

2
(RV + TV ), K = d

(
1

2
(R − T ), 1

2
(T − R)

)
.

Using the conjugation map

σ : V → V : a + ib �→ a − ib for a, b ∈ VR

we can also write K as

(5.1) K = 1

2
(RV − TV )σ

Now consider the holomorphic functions ρT and ρS on V given by

ρT (z) = (det T )1/2

(2π)n/2
e−

1
2 (TV z)·z ρS(z) = (det S)1/2

(2π)n/2
e−

1
2 (SV z)·z

where n = dim VR. Restricted to VR, these are density functions for Gaussian
probability measures.

The Segal-Bargmann transform in this setting is given by the map

SA : L2(VR, ρS(x)dx)→ FA : f �→ SAf

where

(5.2) SAf (z) =
∫
VR

f (x)ρT (z− x) dx =
∫
VR

f (x)c(x, z)ρS(x) dx

with c(x, z) given, for x ∈ VR and z ∈ V , by

c(x, z) = ρT (x − z)
ρS(x)

.

It is possible to take (5.2) as the starting point, with f ∈ L2(VR, ρS(x)dx)

and prove that: (i) SAf (z) is well-defined, (ii) SAf is in FA, (iii) SA is a
unitary isomorphism onto FA. However, we shall not work out everything
in this approach since we have essentially proven all this in the preceding
sections. Full details of a direct approach would be obtained by generalizing
the procedure used in [13]. In the present discussion we shall work out only
some of the properties of SA.
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Lemma 5.1. Let w, z ∈ V . Then:

(i) The function x �→ c(x, z) belongs toL2(VR, ρS(x)dx), thereby ensuring
that the integral (5.2) defining SAf (z) is well-defined;

(ii) The SA-transform of c(·, w) is KA(·, w̄):
[SAc(·, w)](z) = KA(z, w̄)

and so, in particular:

KA(z,w) =
∫
VR

ρT (x − z)ρT (x − w̄)
ρS(x)

dx

(iii) The transform SA preserves inner-products on the linear span of the
functions c(·, w):

〈c(·, w), c(·, z)〉L2(VR,ρS(x)dx) = KA(w, z) = 〈KA(·, w̄),KA(·, z̄)〉FA

Proof. (i) is equivalent to finiteness of
∫
VR

|ρT (x−z)|2
ρS(x)

dx, which is equivalent
to positivity of the operator 2T −S. To see that 2T −S is positive observe that

2T − S = 2T [(R−1 + T −1)− T −1](R−1 + T −1)−1

= 2T R−1(R−1 + T −1)−1 = T R−1S(5.3)

= 2(T −1 + T −1RT −1)−1(5.4)

and in this last line T −1 > 0 (since T > 0) and (T −1RT −1x, x) = (RT −1x,

T −1x) ≥ 0 by positivity ofR. Thus 2T −S is positive, being twice the inverse
of the positive operator T −1 + T −1RT −1.

(ii) Recall v · w for v,w ∈ V is the symmetric complex bilinear pairing
given by v ·w = 〈v, w̄〉, and we write v2 for v ·v. We shall denote the complex-
linear operator TV which restricts to T on VR simply by T . It is readily checked
that T continues to be symmetric in the sense that T v · w = v · Tw for all
v,w ∈ V . We start with

a
def= [SAc(·, w)](z)

=
∫
VR

ρT (x − w)
ρS(x)

ρT (z− x) dx

= (2π)−n/2 det T

(det S)1/2

∫
VR

e−
1
2 [T (x−w)·(x−w)+T (x−z)·(x−z)−Sx·x] dx

= (2π)−n/2 det T

(det S)1/2

∫
VR

e−
1
2 [(2T−S)x·x−2T x·(w+z)+Tw·w+T z·z] dx.
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Recall from the proof of (i) that 2T − S > 0. For notational simplicity let
L = (2T − S)1/2 andM = L−1T . Then

a = (2π)−n/2 det T

(det S)1/2

∫
VR

e−
1
2 (Lx−M(w+z))2 dx e−

1
2 [Tw·w+T z·z−M(w+z)·M(w+z)]

= det T

(det S)1/2(detL)
e−

1
2 [Tw·w+T z·z−M(w+z)·M(w+z)].

To simplify the last exponent observe that by (5.4) and (5.1) we have

Tw · w −Mw ·Mw = Tw · w − Tw · L−2Tw

= Tw · w − Tw · (2T − S)−1Tw

= Tw · w − 1

2
Tw · (T −1 + T −1RT −1)T w

= Tw · w − 1

2
Tw · (w + T −1Rw)

= 1

2
(T w · w − Rw · w)

= −〈Kw̄, w̄〉.
The same holds with z in place of w. For the “cross term” we have

Mw ·Mz = Tw · L−2T z

= Tw · (2T − S)−1T z

= 1

2
Tw · (T −1 + T −1RT −1)T z

= 1

2
(T w · z+ w · Rz)

= 2w ·Hz.
Putting everything together gives

[SAc(·, w)](z) = det T

(det S)1/2(detL)
e

1
2 〈Kw̄,w̄〉e〈Hw,z̄〉e

1
2 〈Kz̄,z̄〉.

In Lemma 6.2 below we prove that

det T

(det S)1/2(detL)
=
(

detR(A)

detR(H)

)−1/2

= c−2
A .

So
[SAc(·, w)](z) = KA(w, z̄).
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For (iii), we have first:

〈c(·, w), c(·, z)〉L2(ρS(x)dx) = [SAc(·, w)](z̄) = KA(z̄, w̄) = KA(w, z).
The second equality in (iii) follows since KA is a reproducing kernel.

6. The evaluation map and determinant relations

Recall
KA(z,w) = c−2

A e
1
2 〈z,Kz〉+ 1

2 〈Kw,w〉+〈Hz,w〉

where

c−2
A =

(
detV H

detV A

)2

is a reproducing kernel for FA. Thus

f (w) = 〈f,KA(·, w)〉 = π−n
∫
V

f (z)KA(w, z) |dz|

where |dz| = dxdy signifies integration with respect to Lebesgue measure on
the real inner-product space V . Thus we have

Proposition 6.1. For any z ∈ V , the evaluation map

δz : FA → C : f �→ f (z)

is a bounded linear functional with norm

‖δz‖ = KA(z, z)1/2 = c−1
A e

(Az,z).

Proof. Note

(6.1) |δzf | = |f (z)| = |〈f,KA(·, z)〉| ≤ ‖f ‖FAKA(z, z)
1/2

follows from the reproducing kernel property

‖KA(·, z)‖2
FA = 〈

KA(·, z),KA(·, z)
〉
FA

= KA(z, z).
This last calculation also shows that the inequality in (6.1) is an equality if
f = KA(·, z) and thereby shows that ‖δz‖ is actually equal to KA(z, z)1/2.
The latter is readily checked to be equal to c−1

A e
(Az,z).

We have already used the first of the following two facts about cA.
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Lemma 6.2. For the constant cA we have

c−2
A =

(
detV H

detV A

)2

= det T

(det S)1/2 detL

where, as before, L = (2T − S)1/2 and S = 2(R−1 + T −1)−1.

Proof. Recall from (5.3) that 2T − S = T R−1S. Note also that

S−1 = 1

2
(R−1 + T −1) = R−1R + T

2
T −1 = R−1(H |VR)T

−1

So (
detV A

detV H

)1/2 det T

(det S)1/2 detL

= (detR)1/2(det T )1/2

det S−1 detR det T

det T

(det S)1/2 det T 1/2 detR−1/2 det S1/2

= 1

which implies the desired result.

Next we prove a determinant relation which implies cA ≥ 1. (This “determ-
inant AM-GM inequality” could be obtained by reference to standard matrix
inequalities, but we include a complete proof.)

Lemma 6.3. If R and T are positive definite n × n matrices (symmetric if
real) then √

detR det T ≤ det

(
R + T

2

)

with equality if and only if R = T .

Proof. Noting thatR−1/2TR−1/2 ≥ 0 we have, withD= (R−1/2TR−1/2)1/4,

detR det T(
det R+T

2

)2 = detR det(R1/2D4R1/2)[
detR1/2

(
1+D4

2

)
R1/2

]2

=
[

det

(
D2 +D−2

2

)]−2

=
[

det

{
I +

(
1√
2
D − 1√

2
D−1

)2}]−2

.
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DiagonalizingD, it is clear that this last term is less or equal to 1 with equality
if and only ifD = D−1. This is equivalent toD4 = I which holds if and only
if R = T .

As consequence, we have for cA:

cA =
(

detV A

detV H

)1/4

=
(

detR det T(
det R+T

2

)2

)1/4

=
(√

detR det T

det R+T
2

)1/2

and so

(6.2) c−2
A = det R+T

2√
detR det T

≥ 1

with equality if and only if R = T .
In extending this theory to infinite dimensions, to retain a meaningful notion

of evaluation δz : f �→ f (z), the constant c−1
A , which appears in the norm ‖δz‖,

must be finite. The expression for c−2
A in (6.2) gives a more explicit condition

on R and T for this finiteness to hold.
If R = rI and T = tI then, by (6.2), c−1

A = [(r + t)/(2√
rt)]n/2 which is

bounded as n↗ ∞ if and only if r = t (this was noted in [13]).

7. Remarks on extension to infinite dimensions

The Gaussian formulation permits extension to infinite dimensions with some
conditions placed on A. Suppose then that V is an infinite-dimensional separ-
able complex Hilbert space, VR a real subspace on which the inner-product is
real-valued and for which V = VR + iVR, andA : V → V a bounded symmet-
ric, positive-definite real-linear operator carrying VR into itself. The operators
R, T , S, H and K are defined as before. Assume that R and T commute and
that there is an orthonormal basis e1, e2, . . . of VR consisting of simultaneous
eigenvectors of R and T (greater generality may be possible but we discuss
only this case). Let Vn be the complex linear span of e1, . . . , en, and Vn,R the
real linear span of e1, . . . , en. ThenA restricts to an operatorAn on Vn, and we
have similarly restrictions Hn,Kn on Vn and Rn, Tn, Sn on Vn,R. The unitary
transform SA may be obtained as a limit of the finite-dimensional transforms
SAn .

The Gaussian kernels ρS and ρT do not make sense anymore, and nor
does the coherent state c, but the Gaussian measures dγS(x) = ρS(x)dx and
µA do have meaningful analogs. There is a probability space V ′

R, with a σ -
algebra F on which there is a measure γS , and there is a linear map VR →
L2(V ′

R, γA) : x �→ G(x) = (x, ·), such that the σ -algebra F is generated
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by the random variables G(x), and each G(x) is real Gaussian with mean
0 and variance (S−1x, x). Similarly, there is probability space V ′, with a σ -
algebra F1 on which there is a measure µA, and there is a real-linear map
V → L2(V ′, µA) : z �→ G1(z) = (z, ·), such that the σ -algebra F1 is
generated by the random variables G1(z), and each G1(z) is (real) Gaussian
with mean 0 and variance 1

2 (A
−1z, z). Then for each z ∈ V , written as z =

a + ib with a, b ∈ VR, we have the complex-valued random variable on V ′
given by z̃ = G1(a) + iG1(b). Suppose g is a holomorphic function of n
complex variables such that

∫
V

|g(ẽ1, . . . , ẽn)|2 dµA < ∞. Define FA to be
the closed linear span of all functions of the type g(ẽ1, . . . , ẽn) in L2(µA)

for all n ≥ 1. We may then define SA of a function f
(
G(e1), . . . ,G(en)

)
to

be (SAnf )(ẽ1, . . . , ẽn), and then extend SA by continuity to all of L2(γS). In
writing SAnf we have identified Vn with Cn and Vn,R with Rn using the basis
e1, . . . , en.

A potentially significant application of the infinite-dimensional case would
be to situations whereVR is a path space andA arises from a suitable differential
operator. For the “classical case” where R = T = tI for some t > 0, this
leads to the Hall transform [6] for Lie groups as well as the path-space version
on Lie groups considered in [8].
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