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INFINITE DIMENSIONAL ANALYSIS OF PURE
JUMP LÉVY PROCESSES ON THE

POISSON SPACE

ARNE LØKKA and FRANK NORBERT PROSKE∗

Abstract

We develop a white noise calculus for pure jump Lévy processes on the Poisson space. This theory
covers the treatment of Lévy processes of unbounded variation. The starting point of the theory
is the construction of a distribution space. This space has many of the same nice properties as the
classical Schwartz space, but is modified in a certain way in order to be more suitable for pure jump
Lévy processes. We apply Minlos’s theorem to this space and obtain a white noise measure which
satisfies the first condition of analyticity, and which is non-degenerate. Furthermore, we obtain
generalized Charlier polynomials for all Lévy measures. We introduce Kondratiev test function
and distribution spaces, the S -transform and the Wick product. We proceed by using a transfer
principle on Poisson spaces to establish a differential calculus.

1. Introduction

The main objective of this paper is to construct a suitable white noise framework
for pure jump Lévy processes. There are several papers dealing with white noise
analysis and pure jump Lévy processes (see, e.g., [14], [13]), but to the best of
our knowledge, none of these present a framework that is suitable for all pure
jump Lévy processes. Some restrictions, typically integrability conditions, are
put on the Lévy measure. This paper presents a framework which works for
all pure jump Lévy processes.

A pure jump Lévy process L with no drift, is a martingale with independent
and stationary increments, continuous in probability and with no Brownian
motion part. The Lévy-Khintchine formula provides an expression for the
characteristic function of such a process in terms of a measure ν, called the
Lévy measure of the Lévy process. Thus, pure jump Lévy processes with no
drift can be characterized as Lévy processes with characteristic triplet (0, 0, ν)
(see, e.g., [18] for more details). The Poisson space is a natural space for dealing
with Lévy processes for several reasons. One of them is that Lévy processes,
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in general, do not possess the chaos representation property with respect to
the Lévy process itself. However, every square integrable functional of the
path of a pure jump Lévy process, has according to [9], a chaos representation
with respect to Poisson random measures. By viewing a Lévy process as an
element in an appropriate Poisson space, we therefore obtain a more unified
and tractable framework. In addition, every functional on the Poisson space
has a chaos expansion in terms of generalized Charlier polynomials.

There are several papers on infinite dimensional analysis on the Poisson
space, with varying degrees of generality regarding the intensity measure.
However, as far as the authors know, the existing literature contain no explicit
construction which works for intensities that are the product of the Lebesgue
measure and an arbitrary Lévy measure. A usual starting point in white noise
analysis is to apply the Bochner-Minlos theorem, which guarantees the exist-
ence of a probability measure on the space of tempered distributions S ′(Rd).
For instance [11] deals with infinite dimensional analysis for Poisson measures
based on the classical Schwartz space. However, it turns out that the classical
Schwartz space S ′(Rd) is not the most appropriate distribution space for deal-
ing with arbitrary pure jump Lévy processes on the Poisson space, since this
choice requires restrictive conditions to be put on the Lévy measure. This is
due to the fact that the Lévy measure, in general, has a singularity at zero.
Therefore, the corresponding characteristic Poisson functional is not neces-
sarily continuous on S (Rd). Section two is devoted to the construction of a
nuclear algebra S̃ (X), which is a variation of the Schwartz space on the space
X, but which is more suitable for our purpose. Within this framework, we show
that any Lévy measure has a Radon-Nikodym derivative with respect to the
Lebesgue measure in a generalized sense. We denote this derivative by ν̇. The
Bochner-Minlos theorem is then used to prove the existence of a probability
measure µπ , with Poissonian characteristic functional with intensity of the
form πν = λ×d × ν (λ being the Lebesgue measure), such that∫

S̃ ′(X)

ei〈ω,φ〉 dµπ(ω) = exp

(∫
X

(eiφ(x) − 1) π(dx)

)
,

for all φ ∈ S̃ (X). The continuity of the functional on the right hand side of
(1) follows from the existence of a generalized Radon-Nikodym derivative of
the Lévy measure with respect to the Lebesgue measure. By using an idea of
Us [21], we can prove that µπ satisfies the first condition of analyticity (See
Lemma 2.6). Furthermore, we show that the measure µπ is non-degenerate
in the sense of [12]. Roughly speaking the non-degeneracy is due to the fact
that in the construction of S̃ (X), we have identified all functions which are
equal on πν-null sets. We then have all we need in order to have a well defined
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system of orthogonal generalized Charlier polynomials. The construction and
existence of such polynomials is the topic of section 3 and is similar to the
constructions in [1] and [13].

We proceed in section 4 by extending the chaos expansion in terms of
Charlier polynomials. This is done by a construction of stochastic test func-
tions and stochastic distributions of the Kondratiev type. Our construction is a
variation of the construction in [11] and corresponds to the (S (J ))−1 distri-
bution space in [21].

In section 5 we define the S -transform and the Wick product. This is in-
cluded since we believe that the S -transform and the Wick product are useful
mathematical tools. It was proved in [1] that the image of the Kondratiev dis-
tributions under the S -transform is equal to a certain space of holomorphic
functionals. This characterization is valid also in our case, and we can define
the Wick product of two distributions as the inverse image of the S -transform
of the product of the S -transform of the distributions.

The measure µπ does not admit a satisfactory construction of a differential
calculus on S̃ ′(X). In section 6 we show how we can circumvent this prob-
lem by transporting analytical structures from configuration spaces by using a
unitary isomorphism in a similar fashion as in [13] and [11]. This yields a Pois-
son measure µ�

π on the configuration space (�,B(�)), such that L2(�, µ�
π) is

unitary isomorphic to L2(µπ).
Section 7 deals with the Poissonian gradient and Skorohod integration. We

start by proving that the Poissonian gradient ∇P and the operator D defined
by its action on chaos expansions in terms of Charlier polynomials, essentially
are equal. The Skorohod integral is then defined by its action on the chaos
expansions of parametrized families of stochastic distributions. We show that
Skorohod integration is the dual of the Poissonian gradient∇P . Hence, Skoro-
hod integration is equal to (∇P )∗ and we can link the Skorohod integral with
results for (∇P )∗ in [13]. These results can be viewed as generalizations of
some of the results in [17]. By using the duality between ∇P and the Skoro-
hod integral, we can also prove relations between the S -transform, ordinary
derivation and the Skorohod integral. Finally, we prove a relationship between
the Skorohod integral, the Wick product and the Lebesgue integral.

2. Construction of the probability space

We start with a review of some well known facts about the classical Schwartz
space. Let ξn denote the n’th Hermite function. The set of Hermite functions
{ξn}n∈N is an orthonormal basis for L2(R). The (countably Hilbertian) nuclear
topology on the classical Schwartz space S (Rd) is induced by the compatible



240 arne løkka and frank norbert proske

system of norms

‖φ‖2
β :=

∑
α∈Nd

(1+ α)2β(φ, ξα)
2
L2(Rd ),

for α = (α1, . . . , αd) ∈ Nd and β = (β1, . . . , βd) ∈ Nd
0 , where

ξα :=
d∏

i=1

ξαi
, (1+ α)2β :=

d∏
i=1

(1+ αi)
2βi .

The topology on S (Rd) is also induced by the smaller system of pre-Hilbertian
norms

‖ · ‖p := ‖ · ‖β, p ∈ N0, β = (p, . . . , p) ∈ Nd
0 .

It is well known (see, e.g., [19]) that the system of norms ‖ · ‖p is equivalent
to the system of norms

‖φ‖q,∞ := sup
α≥0,|β|≤q

sup
x∈Rd

∣∣(1+ |x|α)(Dβφ)(x)
∣∣, q ∈ N0,

for β = (β1, . . . , βd) ∈ Nd
0 , where |β| := β1 + · · · + βd and

Dβ := ∂ |β|

∂x
β1
1 · · · ∂xβd

d

.

An important property of ‖ · ‖p is that for every p ∈ N0 there exists a constant
Mp, such that for every φ,ψ ∈ S (Rd),

(2.1) ‖φψ‖p ≤ Mp‖φ‖p‖ψ‖p
(see, e.g., [10]). It follows from (2.1) that the Schwartz space S (Rd) is not
only a nuclear space, but also a nuclear algebra.

Set X := Rd × R0, where R0 := R \ {0}. Define the space

S (X) :=
{
φ ∈ S (Rd+1) : φ(x1, . . . , xd, 0) = ∂φ

∂xd+1
(x1, . . . , xd, 0) = 0

}
.

It follows that S (X) is a closed subspace of S (Rd+1). Thus, S (X) is a count-
ably Hilbertian nuclear algebra endowed with the topology induced by the
norms ‖ · ‖p. Moreover, let S ′(X) denote the dual of S (X). Since S (X) ⊂
S (Rd+1), it follows that we have the inclusion S ′(Rd+1) ⊂ S ′(X). For
� ∈ S ′(X) and φ ∈ S (X), the action �(φ) is given by

�(φ) := 〈�,φ〉 :=
∫
X

�(x)φ(x) dλ×(d+1)(x),
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where λ×d denote the Lebesgue measure on Rd . In the sequel, we will con-
sequently let ν denote a Lévy measure on R0 and let πν denote the measure on
X given by πν := λ×d × ν. When there is no ambiguity, we will frequently
write π instead of πν .

Lemma 2.1. For every Lévy measure ν there exists an element, denoted by
1⊗ ν̇, in S ′(X) such that

〈1⊗ ν̇, φ〉 =
∫
X

φ(x) πν(dx),

for all φ ∈ S (X).

Proof. Without loss of generality, we consider the case d = 1. Set L(φ) =∫
X
φ(x) πν(dx). If we can prove that L is a continuous linear functional on

S (X), then L ∈ S ′(X) and the result follows. First note that L is linear. We
want to prove that L is continuous. For every ψ ∈ S (X), it follows from
Taylor’s formula that

ψ(y, z) = ψ(y, 0)+ ∂ψ

∂z
(y, 0) · z+ 1

2

∂2ψ

∂z2
(y, ξ) · z2

= 1

2

∂2ψ

∂z2
(y, ξ) · z2,(2.2)

for every y ∈ R, z ∈ R0 and some ξ = ξ(y, z) ∈ R0 between 0 and z. Now
let {φn}n∈N be a sequence of functions in S (X) converging to φ ∈ S (X) with
respect to the topology of S (X). From (2.2) and the fact that ‖φn−φ‖q,∞ → 0
as n→∞,∣∣L(φn)− L(φ)

∣∣ = ∣∣L(φn − φ)
∣∣

≤
∫

R

∫
R0

∣∣φn(y, z)− φ(y, z)
∣∣ ν(dz) λ(dy)

=
∫

R

∫
R0

1

2
z2

∣∣∣∣∂2(φn − φ)

∂ξ 2

(
y, ξ(y, z)

)∣∣∣∣ ν(dz) λ(dy)
= 1

2

∫
R

∫
R0

∣∣∣∣(1+ y2 + ξ 2(y, z)
)∂2(φn − φ)

∂ξ 2

(
y, ξ(y, z)

)∣∣∣∣
× z2

1+ y2 + ξ 2(y, z)
ν(dz) λ(dy)

≤ 1

2

∥∥φn − φ
∥∥

2,∞

∫
R

∫
R0

z2

1+ y2 + ξ 2(y, z)
ν(dz) λ(dy)
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≤ 1

2

∥∥φn − φ
∥∥

2,∞

∫
R

∫
R0

z2

1+ y2
ν(dz) λ(dy) −→ 0(2.3)

as n→∞ since
∫

R0

z2

1+z2 ν(dz) <∞, for every Lévy measure ν. From (2.3),
it follows that L is continuous on S (X).

We use the notation 1⊗ν̇ in order to indicate that ν̇ is, in a generalized sense,
the Radon-Nikodym derivative of πν with respect to the Lebesgue measure.
Moreover, ν̇ is, in a generalized sense, the Radon-Nikodym derivative of ν

with respect to Lebesgue measure.
Denote by L2(Xn, π×n) the space of all functions on Xn which are square

integrable with respect toπ×n. Let (·, ·)π denote the inner product onL2(X, π)

and | · |π the corresponding norm on this space.
Define a space Nπ by

Nπ := {
φ ∈ S (X) : |φ|π = 0

}
.

By the same arguments as in the proof of Lemma 2.1, one can show that Nπ is
a closed ideal of S (X). Introduce another space denoted by S̃ (X). This space
will be our starting point for the construction of the white noise measure.

Definition 2.2. We denote by S̃ (X) the space

S̃ (X) := S (X)/Nπ ,

endowed with the topology induced by the family of norms

(2.4) ‖φ̂‖p,π := inf
ψ∈Nπ

‖φ + ψ‖p.

The following result states that S̃ (X) have similar nice properties as the
classical Schwartz space.

Theorem 2.3. The space S̃ (X) is a nuclear algebra with a compatible
system of norms given by (2.4). Moreover the Cauchy-Bunjakowski inequality
holds, that is for all p ∈ N there exists an Mp such that for all φ,ψ ∈ S̃ (X)

we have ‖φψ‖p,π ≤ Mp‖φ‖p,π‖ψ‖p,π .

Proof. It follows from [7, p. 72] that S̃ (X) is a nuclear space with a
compatible system of norms given by (2.4). Thus the only thing left to prove is
the Cauchy-Bunjakowski inequality. First, note that S (X) is a nuclear algebra
which satisfies (2.1). Now, choose φ,ψ ∈ S (X) and ρ1, ρ2 ∈ Nπ . Then,

(2.5) ‖(φ + ρ1)(ψ + ρ2)‖p ≤ Mp‖φ + ρ1‖p‖ψ + ρ2‖p



infinite dimensional analysis of pure jump lévy processes . . . 243

and

(2.6) ‖(φ + ρ1)(ψ + ρ2)‖p = ‖φψ + ρ3‖p ≥ ‖φ̂ψ̂‖p,π ,
where ρ3 ∈ Nπ . The result then follows from (2.5) and (2.6).

Let S̃ ′(X) denote the topological dual of S̃ (X), which is isomorphic to the
orthogonal complement of Nπ (see, e.g., [20]). For every p ∈ N let S̃p(X)

denote the completion of S̃ (X) with respect to the norm ‖ · ‖p,π . Moreover,
let S̃−p(X) denote the dual of S̃p(X).

Lemma 2.4. There exists a p0 ∈ N such that the functional L(φ̂) :=∫
X
φ(x)π(dx) satisfies

|L(φ̂)| ≤ Mp‖φ̂‖p,π ,
for all p ≥ p0. Thus, the functional L is continuous on S̃ (X).

Proof. Let ψ ∈ Nπ . It follows from Lemma 2.1 that there exists a p0 ∈ N
such that

|L(φ̂)| =
∣∣∣∣
∫
X

(φ + ψ)(x) π(dx)

∣∣∣∣ ≤ Mp‖φ + ψ‖p,

for all p ≥ p0. By taking the infimum over all ψ ∈ Nπ , the result follows.

Theorem 2.5. There exists a probability measure µπ on S̃ ′(X) such that
for all φ ∈ S̃ (X),

(2.7)
∫

S̃ ′(X)

ei〈ω,φ〉 dµπ(ω) = exp

(∫
X

(eiφ − 1) dπ

)
.

Moreover, there exists a p0 ∈ N such that 1 ⊗ ν̇ ∈ S̃−p0(X), and a natural
number q0 > p0 such that the embedding operator S̃ q0(X) ↪→ S̃p0(X) is
Hilbert-Schmidt and

µπ(S̃−q0(X)) = 1.

Proof. Consider the functional � given by

�(φ) := exp

(∫
X

(eiφ(x) − 1) π(dx)

)
,

which is positive definite and satisfies �(0) = 1. Set F(φ) = ln(�(φ)). We
have that

|F(φ)− F(φk)| =
∣∣∣∣
∫
X

(eiφ(x) − 1)π(dx)−
∫
X

(eiφk(x) − 1) π(dx)

∣∣∣∣
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=
∣∣∣∣
∫
X

(eiφ(x) − eiφk(x)) π(dx)

∣∣∣∣
≤

∫
X

∣∣φ(x)− φk(x)
∣∣π(dx).(2.8)

From (2.8) and Lemma 2.4, it follows that F , and hence �, is continuous
on S̃ (X). The result then follows from the Bochner-Minlos theorem for co-
nuclear spaces (see, e.g., [8, Thm. 1.1, pp. 2]).

From now on, denote by p0 and q0 the numbers described in Theorem 2.5.

Lemma 2.6 (1. condition of analyticity). µπ satisfies the first condition of
analyticity, that is there exists ε > 0 such that∫

S̃ ′(X)

exp
(
ε‖ω‖−q0,π

)
dµπ(ω) <∞.

Proof. The proof follows the argument of [21, Lemma 3]. Define,

)(φ) = exp

(∫
X

(eφ(x) − 1) π(dx)

)
,

for φ ∈ S (X). Introduce the moment functions of µπ , which by a criterion of
Cramer [3] can be expressed by

Mn(φ) :=
∫

S̃ ′(X)

〈ω, φ〉ndµπ(ω) = dn)(tφ)

dtn

∣∣∣∣
t=0

,

for every φ ∈ S̃ (X), t ∈ R and n ∈ N. Denote by +k
n the set

+k
n :=

{
(α1, . . . , αk) ∈ Nk : αi ≥ 1,

k∑
i=1

αi = n

}
.

We can then deduce the following expression for Mn,

(2.9) Mn(φ) =
n∑

k=1

n!

k!

∑
α∈+k

n

k∏
j=1

〈1⊗ ν̇, φαj 〉
αj !

.

Observe that

(2.10) |〈1⊗ ν̇, φ〉| ≤ ‖1⊗ ν̇‖−q0,π‖φ‖q0,π <∞.
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By Theorem 2.3, there exists a constant Cq0 such that

(2.11) ‖φψ‖q0,π ≤ Cq0‖φ‖q0,π‖ψ‖q0,π for all φ,ψ ∈ S̃ (X).

From (2.10), (2.11) and the expression for Mn given by (2.9),

|Mn(φ)| ≤
n∑

k=1

n!

k!

∑
α∈+k

n

k∏
j=1

‖1⊗ ν̇‖−q0,π‖φαj ‖q0,π

αj !

≤
n∑

k=1

n!

k!

∑
α∈+k

n

k∏
j=1

‖1⊗ ν̇‖−q0,π

αj !
Cn

q0
‖φ‖nq0,π

= Fn

(‖1⊗ ν̇‖−q0,π

)
Cn

q0
‖φ‖nq0,π

,

where Fn(x) is the n’th moment of the Poisson distribution with intensity
x. We know that for the Poisson distribution with intensity parameter x =
‖1⊗ ν̇‖−q0,π <∞ there exists a constant Cx such that for all n ∈ N,∣∣Fn(‖1⊗ ν̇‖−q0,π )

∣∣ ≤ n!Cn
‖1⊗ν̇‖−q0 ,π

.

Hence there is a constant C > 0, such that for all n ∈ N and φ ∈ S̃ (X) and

|Mn(φ)| ≤ n!Cn‖φ‖nq0,π
,

from which the claimed result follows (see, [12, Lemma 3]).

Set . := S̃ (X) and let µπ be the measure given by Theorem 2.5. This
provides us with a well defined Poisson white noise probability space that is
suitable for an infinite dimensional calculus for every pure jump Lévy process.

3. Chaos expansion and orthogonal polynomials

In section 2 we constructed a probability measure µπ on . = S̃ ′(X), which
by Lemma 2.6 satisfies the first condition of analyticity. According to [1], this
is all we need in order to have a chaos expansion of functionals in terms of
Charlier polynomials. Our chaos expansion is a generalization of the chaos
expansion in [13] to Poisson measures with a more general intensity measure
than considered in [13].

Let Y,Z be linear topological spaces. For a mapping f : Y → Z, we define
the directional derivative in the direction φ ∈ Y at the point y ∈ Y by

∇φf (y) = d

dε
f (y + εφ)

∣∣∣∣
ε=0

.
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We say that this mapping is differentiable along a subspace + ⊂ Y , if the
derivative ∇φf (y) exists for any φ ∈ + and ∇φf (y) = f ′(y)φ, where f ′(y)
is a linear continuous mapping of + into Y . Let ∇ denote this linear mapping,
that is ∇φ = 〈∇, φ〉. For higher order differentials we introduce the notation

∇φ1 · · · ∇φn
= 〈∇, φ1〉 · · · 〈∇, φn〉 = 〈∇ ⊗ · · · ⊗ ∇, φn ⊗ · · · ⊗ φn〉.

Define the function l(x) := ln(1+x), which is analytic in a neighbourhood
of zero and satisfies l(0) = 0. Therefore the function

ẽ(φ, ω) := (
e(·, ω) ◦ l)(φ) = exp

(〈ω, ln(1+ φ)〉 − 〈1⊗ ν̇, φ〉),
is analytic as a function of φ ∈ S̃ q0(X) for functions φ ∈ S̃ q0(X) satisfying
φ(x) > −1, for all x ∈ X. For φ1, . . . , φn ∈ S̃ (X) and ω ∈ S̃ ′(X), define

P(φ1, . . . , φn;ω) := ∇θ
φ1
· · · ∇θ

φn
ẽ(θ, ω)

∣∣
θ=0.

From the analyticity at zero of ẽ(θ, ω), we obtain the following expansion

ẽ(tθ, ω) =
∞∑
n=0

tn

n!
P(θ, . . . , θ;ω),

which is convergent in a neighbourhood of zero. Moreover,

P(φ1, . . . , φn;ω) = 〈∇θ ⊗ · · · ⊗ ∇θ ẽ(θ, ω)
∣∣
θ=0, φ1 ⊗ · · · ⊗ φn

〉
= 〈

Pn(ω), φ1 ⊗ · · · ⊗ φn

〉
,

where

(3.1) Pn(ω) := ∇θ ⊗ · · · ⊗ ∇θ ẽ(θ, ω)
∣∣
θ=0.

We see that 〈Pn(ω), φ(n)〉 is well defined for all functions φ(n) ∈ S̃ (X)⊗̂n,
where S̃ (X)⊗̂n is the symmetric tensor product of S̃ (X) with itself taken n

times. We remark that this function space is equal to the space of all functions
f ∈ S̃ (Xn) that satisfies f = f (x1, . . . , xn) is symmetric π×n-almost every-
where in the variables x1, . . . , xn ∈ X (see, (3.5) for more details). According
to [1] and [13],{〈Pn(ω), φ(n)〉 : n ∈ N ∪ {0}, φ(n) ∈ S̃ (X)⊗̂n

}
,

forms a total set in L2(µπ) and

(3.2) ẽ(φ, ω) =
∞∑
n=0

1

n!
〈Pn(ω), φ⊗n〉.
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From the form of ẽ(·) we see that the polynomials Pn are generalized Charlier
polynomials. In order to emphasise this, we will in the sequel write Cn(·) :=
Pn(·).

Proposition 3.1. For anym, n ∈ N, φ(n) ∈ S̃ (X)⊗̂n andψ(m) ∈ S̃ (X)⊗̂m,∫
S̃ ′(X)

〈Cn(ω), φ(n)〉〈Cm(ω), ψ(m)〉 dµπ(ω) = δn,mn!(φ(n), ψ(n))π .

Proof. The proof is similar to the proof of [13, Prop. 2.3]. Choose φ,ψ ∈
S̃ (X) and z1, z2 ∈ C. Then∫

S̃ ′(X)

ẽ(z1φ, ω)̃e(z2ψ,ω) dµπ(ω)

= exp
(−〈1⊗ ν̇, z1φ + z2ψ〉

)
∫

S̃ ′(X)

exp
(〈ω, ln(1+ z1φ)+ ln(1+ z2ψ)〉) dµπ(ω)

= exp
(−〈1⊗ ν̇, z1φ + z2ψ〉

)
∫

S̃ ′(X)

exp
(〈ω, ln((1+ z1φ)(1+ z2ψ))〉) dµπ(ω)

= exp
(
z1z2〈1⊗ ν̇, φψ〉)

= exp
(
z1z2(φ, ψ)π

)
=

∞∑
n=0

z1z2

n!
(φ⊗n, ψ⊗n)π .(3.3)

On the other hand, we can use (3.2) to get∫
S̃ ′(X)

ẽ(z1φ, ω)̃e(z2ψ,ω) dµπ(ω)

=
∞∑

n,m=0

zn1z
m
2

n!m!

∫
S̃ ′(X)

〈Cn(ω), φ⊗n〉〈Cm(ω), ψ⊗m〉 dµπ(ω).(3.4)

By comparing the coefficients in the expressions (3.3) and (3.4), we see that
the result holds for φ(n) = (z1φ)

⊗n and ψ(m) = (z2ψ)⊗m. The proof now
follows by linearity and the polarization identity, which enables us to extend
the result to φ(n) ∈ S̃ (X)⊗̂n and ψ(m) ∈ S̃ (X)⊗̂m.
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Definition 3.2. A function F : S̃ ′(X)→ C of the form

F(ω) =
N∑

n=0

〈ω⊗n, φ(n)〉, ω ∈ S̃ (X),N ∈ N,

is called a continuous polynomial if φ(n) ∈ S̃ C(X)⊗̂n (the complexification of
S̃ (X)⊗̂n). We denote the space of such continuous polynomials by P(S̃ ′(X)).

Corollary 3.3 (non-degeneracy of µπ ). For all F ∈ P(S̃ ′(X)) for which
F = 0, µπ -almost everywhere, we have F(ω) = 0 for all ω ∈ S̃ ′(X).

Proof. It can be shown that each continuous polynomial F admits a rep-
resentation of the form

F(ω) =
N∑

n=0

〈Cn(ω), φ̂n〉,

where φ̂n ∈ S̃ (X)⊗̂n. Without loss of generality, take F(ω) = 〈Cn(ω), φ̂n〉.
By Proposition 3.1,

0 = Eµπ

[〈Cn(ω), φ̂n〉2
] = ∫

X

φ2
n(x) π(dx).

Hence, φn ∈ Nπ , which implies that φ̂n is the null element in S̃ (X). Therefore
F is identically zero.

Remark 3.4. A probability measure with the property in Corollary 3.3 is
called non-degenerate (see [12]). We will make use of this property for the
construction of stochastic test function and distribution spaces.

For functions f : Xn → R define the symmetrization f̃ of f by

(3.5) f̃ (x1, . . . , xn) := 1

n!

∑
σ

f (xσ1 , . . . , xσn
),

for all permutations σ of {1, . . . , n}. We call a function f : Xn → R symmetric
if f̃ = f , that is a function is symmetric if it is equal to its symmetrization.
Denote by L2

s (X
n, π×n) the space of all symmetric functions on Xn which are

square integrable with respect to π×n. Let fn be a function in L2
s (X

n, π×n).
Since S (X) is dense in L2(π), we can find a sequence of functions f (m)

n ∈
S̃ (X)⊗̂n such that f (m)

n converges to fn in L2
s (X

n, π×n) as m → ∞. Define
〈Cn(ω), fn〉 by

(3.6) 〈Cn(ω), fn〉 = lim
m→∞〈Cn(ω), f (m)

n 〉, (limit in L2(µπ)).
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We remark that this limit exists by Proposition 3.1. Moreover, let f
(j)
n ∈

S̃ (X)⊗̂n be another sequence converging to fn. Then by Proposition 3.1,∫
S̃ ′(X)

(〈Cn(ω), f (m)
n 〉 − 〈Cn(ω), f (j)

n 〉)2
dµπ(ω) = n!

∣∣f (m)
n − f (j)

n

∣∣2
π
,

which shows that the definition of 〈Cn(ω), fn〉 is independent of the choice of
approximating sequence {f (m)

n }∞m=1. From the calculation,

∇φẽ(η, ω)
∣∣
η=0 =

d

dε
exp

(〈ω, ln(1+ η + εφ)〉 − 〈1⊗ ν̇, η + εφ〉)∣∣∣
ε=0,η=0

= 〈ω − 1⊗ ν̇, φ〉,
it follows that the first Charlier polynomial C1 is given by C1(ω) = ω−1⊗ ν̇.
From Proposition 3.1, we therefore obtain the following well known isometry.

Lemma 3.5. Let f ∈ L2(X, π). Then∫
S̃ ′(X)

〈ω − 1⊗ ν̇, f 〉2 dµπ(ω) = |f |2π .

For any Borel sets +1 ⊂ Rd and +2 ⊂ R0 such that 0 is not in the closure
of +2, we define the random measures

N(+1,+2) := 〈ω, 1+1×+2〉 and Ñ(+1,+2) := 〈ω − 1⊗ ν̇, 1+1×+2〉.
From the characteristic function of µπ it is clear that N is a Poisson random
measure, and Ñ the corresponding compensated Poisson random measure.
Moreover, the compensator of N(+1,+2) is given by 〈1⊗ ν̇, 1+1×+2〉, which
is equal to π(+1,+2). We have therefore justified the following identity

(3.7)
∫
X

φ(x) Ñ(dx) = 〈ω − 1⊗ ν̇, φ〉, φ ∈ L2(X, π).

So, in a generalized sense, the compensated Poisson random measure Ñ has a
Radon-Nikodym derivative with respect to the Lebesgue measure on X, which
is given by ω− 1⊗ ν̇. Every square integrable pure jump Lévy process L has
a representation

Lt = αt +
∫ t

0

∫
R0

z Ñ(dt, dz)

From (3.7) we see that such Lévy processes L admits the representation

Lt = αt + 〈ω − 1⊗ ν̇, ft 〉, ft (x, z) = z1x≤t .
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As a stochastic distribution, this representation is valid also when L is not
square integrable.

4. Stochastic test and distribution functions

In this section we will define spaces of test functions and distributions as
pairs of dual spaces with respect to the inner product (·, ·)π , and stochastic test
functions and stochastic distributions as pairs of dual spaces with respect to the
inner product on L2(µπ). Our approach is a variation of the approach taken
in [11], and our system of generalized Charlier polynomials coincides with
the generalized Appell systems in [12], which provides in the same manner
stochastic test function and distribution spaces (compare, [12, Example 27]).

Observe that for φ ∈ S̃ (X), we have by Theorem 2.3, that
(4.1)
(φ, φ)π = 〈1⊗ ν̇, φ2〉 ≤ ‖1⊗ ν̇‖−q0,π‖φ2‖q0,π ≤ Mq0‖1⊗ ν̇‖−q0,π‖φ‖2

q0,π
,

from which it follows that S̃ (X) is contained in L2(X, π). Define S̃ ′(X) as
the dual of S̃ (X). It follows that the topology on S̃ ′(X) is induced by the
following compatible system of norms

(4.2) |φ|−p,π := ‖(1⊗ ν̇)φ‖−p,π , for p ≥ p0.

We will now construct the Kondratiev type stochastic test function space
and the Kondratiev stochastic distribution space. Let f ∈ P(S̃ ′(X)). By
Corollary 3.3, f has a unique representation

f (ω) =
N∑

n=0

〈Cn(ω), fn〉, fn ∈ S̃ (X)⊗̂n.

For any natural number p ≥ q0, define the Hilbert space (S )1
p as the comple-

tion of P := P(S̃ ′(X)) with respect to the norm

‖f ‖2
p,1,K =

∞∑
n=0

(n!)2‖fn‖2
p,π , f ∈ P .

The corresponding inner product is

((f, g))p,1,K =
∞∑
n=0

(n!)2(fn, gn)p,

where (·, ·)p denotes the inner product on S̃p(X)⊗̂n. Obviously, (S )1
p+1 ⊂

(S )1
p. We define the space (S )1 as the projective limit of (S )1

p. By [1, Thm. 4],
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(S )1 is a nuclear Fréchet space which is densely topologically embedded in
L2(µπ).

For every natural number p define the space (S )−1
−p as the dual of (S )1

p. We

have the inclusion (S )−1
−p ⊂ (S )−1

−(p+1). Denote by (S )−1 the inductive limit

of (S )−1
−p, which is equal to the dual of (S )1. Let 〈〈·, ·〉〉 denote the dual pairing

between (S )1 and (S )−1. Moreover, for any F(ω) =∑∞
n=0〈Cn(ω), Fn〉 with

kernels Fn ∈ S̃ ′(X)⊗̂n, define the norm

‖F‖2
−p,−1,K :=

∞∑
n=0

|Fn|2−p,π .

We equip (S )−1 with the inductive limit topology induced by the norms
‖F‖2

−p,−1,K . The next results provide a characterization of F ∈ (S )−1 and the
dual pairing 〈〈·, ·〉〉. The proof is standard, so it is omitted.

Lemma 4.1. F ∈ (S )−1 if and only if F admits an expansion F(ω) =∑∞
n=0〈Cn(ω), Fn〉, where Fn ∈ S̃ ′(X)⊗̂n and ‖F‖−p,−1,K < ∞, for some

p > q0. If f (ω) =∑∞
n=0〈Cn(ω), fn〉 ∈ (S )1, then

(4.3) 〈〈F, f 〉〉 =
∞∑
n=0

n!(Fn, fn)π .

Moreover, 〈〈·, ·〉〉 is an extension of the inner product on L2(µπ).

5. The S -transform and Wick products

There are several transformations from spaces of stochastic distributions to
spaces of deterministic functionals. In this paper we will focus on the S -
transform. Our approach is based on the results in [1], [12], [13] and [21].

Let F ∈ (S )−1. Then there exists a natural number p(F) > 0 such that
F ∈ (S )−1

−p(F). Denote by Up the set

Up := {
φ ∈ S̃ (X) : ‖φ‖p,π < 1

}
.

For any φ ∈ S̃ (X), it follows from the chaos expansion of ẽ(φ) given by
equation (3.2) that

(5.1) ‖̃e(φ, ω)‖2
p,1,K =

∞∑
n=0

‖φ‖2n
p,π .

Hence, ẽ(φ) ∈ (S )1
p if and only if φ ∈ Up.
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Definition 5.1. Let F ∈ (S )−1
−p and ξ ∈ Up. We define the S -transform

of F by
S (F )(ξ) := 〈〈F(ω), ẽ(ξ, ω)〉〉.

Observe that since F ∈ (S )−1
−p and ẽ(ξ) ∈ (S )1

p, it follows that |S (F )(ξ)| <
∞.

Lemma 5.2. Let F =∑∞
n=0〈Cn(ω), Fn〉 ∈ (S )−1

−p. Then

S (F )(ξ) =
∞∑
n=0

(Fn, ξ
⊗n)π , ξ ∈ Up.

Proof. Let ξ ∈ Up. By Proposition 3.1 and the chaos expansion of ẽ(ξ)

given by (3.2),

S (F )(ξ) =
〈〈 ∞∑

n=0

〈Cn(ω), Fn〉,
∞∑

m=0

〈
Cm(ω),

1

m!
ξ⊗m

〉〉〉
=

∞∑
n=0

(Fn, ξ
⊗n)π .

Denote by l−1 the inverse of the function l(x) = ln(1+x), that is l−1(x) =
ex − 1. Define another transform denoted SP (F ) by:

SP (F )(ξ) := 〈〈F(ω), e(ξ, ω)〉〉,
where

e(φ, ω) := exp
(〈ω, φ〉 − 〈1⊗ ν̇, eφ − 1〉).

For every ξ such that eξ − 1 ∈ Up and F = ∑∞
n=0〈Cn(ω), Fn〉 ∈ (S )−1

−p, we
have that

(5.2) SP (F )(ξ) =
∞∑
n=0

(
Fn, (e

ξ − 1)⊗n
)
π
= (

S (F ) ◦ l−1
)
(ξ).

Denote by U = Hol(θ0), the algebra of germs of functions that are holo-
morphic in a neighbourhood of θ0 (See, [1], [4] and [16] for more details). We
equip U with the inductive limit topology induced by the norms

|g|p,l,∞ := sup
‖φ‖p,π≤2−l

|g(φ)|, p, l ∈ N,

(see, [4]). A characterization of the image of (S )−1 under the SP -transform
was proved in [1]. Note that the function l−1 is analytic in a neighbourhood of
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zero. By equation (5.2) and the analyticity of l−1, we deduce that the character-
ization of the image of the SP -transform in [1] also is valid for the S -transform.
Therefore, by [1, Thm. 5],

Theorem 5.3. If F ∈ (S )−1 then S (F ) ∈ Hol(0). Conversely, if G ∈
Hol(0) there is a uniquely defined distribution F ∈ (S )−1 such that S (F ) =
G on some neighbourhood of zero in (S )1

C (the complexification of (S )1).

By Theorem 5.3, the S -transform is an isomorphism between (S )−1 and U.
Moreover, if f, g ∈ Hol(0) then fg ∈ Hol(0). Hence the following definition
is well defined,

Definition 5.4 (Wick product). Let F,G ∈ (S )−1. Define the wick
product, denoted by F �G, of F and G, by

F �G := S−1
(
S (F )S (G)

)
.

It follows directly from the properties of the S -transform and the defini-
tion of the Wick product that Wick multiplication is a continuous operation.
Moreover, we have the following characterization of the Wick product in terms
of chaos expansions.

Proposition 5.5. Let F(ω) = ∑∞
n=0〈Cn(ω), Fn〉 and let G(ω) =∑∞

n=0〈Cn(ω),Gn〉 be elements in (S )−1. Then F �G ∈ (S )−1 and

(F �G)(ω) =
∞∑
k=0

( ∑
n+m=k

〈Ck(ω), Fn⊗̂Gm〉
)
.

Proof. The proof is similar to proof for the Brownian motion case provided
in [8], so it is omitted.

For F ∈ (S )−1, define F �n := F � · · · � F (the Wick product taken n

times). Moreover, define the Wick exponential of F , denoted exp�(F ), by

exp�(F ) :=
∞∑
n=0

1

n!
F �n,

whenever
∑∞

n=0
1
n!F

�n ∈ (S )−1. If φ ∈ S̃ ′(X), it follows from Lemma 4.3
that 〈C1(ω), φ〉 ∈ (S )−1. By Proposition 5.5,

〈C1(ω), φ〉�n = 〈Cn(ω), φ⊗n〉.
From the chaos expansion of ẽ(φ, ω) given by (3.2), we therefore have that

(5.3) ẽ(φ, ω) = exp�
(〈ω − 1⊗ ν̇, φ〉),
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for all φ ∈ S̃ ′(X) that satisfies φ(x) > −1, for all x ∈ X.

6. A unitary isomorphism and configuration spaces

In this section we will establish a unitary isomorphism between L2(µπ) and
the classical Poisson space with intensity π = πν defined via the configuration
space. This isomorphism can be used to transfer analytical structures from the
Poisson space to L2(µπ).

We need the definition of a configuration space. As in [13] and [11], we
introduce the configuration space � over X = Rd × R0 by

� := {
γ ⊂ X : card(γ ∩K) <∞ for any compact K ⊂ X

}
.

Denote by εx the Dirac measure at the point x ∈ X. The correspondence

(6.1) � � γ �−→ dγ :=
∑
x∈γ

εx ∈ M+(X),

provides a one-to-one mapping � from � into the space of positive integer
valued measures M+(X) over B(X). We endow �, as a closed subset of
M+(X), with the relative vague topology. That is, a sequence of measures σn

converges to σ in �, if and only if for every f ∈ Cc(X), (i.e. the space of
continuous functions with compact support) we have∫

X

f (x) dσn(x) −→
∫
X

f (x) dσ(x), as n −→∞.

Then the continuous functionals

(6.2) � � γ �−→ 〈γ, f 〉 :=
∫
X

f (x) dγ (x) =
∑
x∈γ

f (x), f ∈ Cc(X),

induce the topology of �. We need the following key observation regarding
the support of µπ .

Proposition 6.1.

(6.3) µπ

({∑
x∈γ

εx ∈ S̃ ′(X) : γ ∈ �

})
= 1,

where the Dirac measure εx is naturally identified with the corresponding delta
function in S̃ ′(X).

Proof. Relation (6.3) follows from the path properties of Lévy processes
(see, e.g. [15]). More specifically, almost all the paths of a pure jump Lévy
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process are right-continuous step functions with existing left limits (càdlàg),
whose jumps are contained in the support of the Lévy measure (see [13]).

Furthermore, we define the Poisson measure µ�
π , with intensity measure π ,

on the Borel σ -algebra B(�) as follows.

Definition 6.2. The Laplace transform of µ�
π is given by

(6.4) lµ�
π
(φ) =

∫
�

exp(〈γ, φ〉) dµ�
π(γ ) = exp

(∫
X

(eφ(x) − 1) dπ(x)

)
,

where φ ∈ S̃ (X). The existence of µ�
π follows from Proposition 6.1 and the

identification in relation (6.1).

Taking into account that we have∫
S̃ ′(X)

e〈ω,φ〉 dµπ(ω) =: lµπ
(φ) = lµ�

π
(φ),

for all φ ∈ S̃ (X), we conclude that the measure µπ is the image of µ�
π under

the mapping � : � → �(�) =: . in (6.1). That is for all B ∈ B(S̃ ′(X)),

(6.5) µπ(B) = µπ(B ∩.) = µ�
π(�

−1(B ∩.)).

From relation (6.5), together with the change of variable formula for the Le-
besgue integral, it follows that for all f ∈ L1(�, µ�

π), the function f ◦�−1 is
in L1(.,µπ) and∫

�

f (γ ) dµ�
π(γ ) =

∫
.

f ◦�−1(ω) dµπ(ω).

Thus, we have proved the following result.

Theorem 6.3. The map U� : L2(µπ)→ L2(µ�
π) given by

(6.6) g �−→ g ◦�,

is a unitary isomorphism.

Remark 6.4. It is important to note that the measure µπ does not ad-
mit the construction of a satisfactory differential calculus on S̃ ′(X). Since
µπ(ξ + φ) ⊥ µπ(ξ) (see, e.g., [6]), integration by parts and adjoint oper-
ators are not available. We overcome this circumstance by using the unitary
isomorphism of Theorem 6.3 to transport analytical structures from L2(µ�

π)

to L2(µπ) (compare, [13]). We will make use of this principle in Section 7,
where we introduce the Poissonian gradient for Lévy processes.
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7. The Poissonian gradient and the Skorohod integral

In this section we explore some properties of the Poissonian gradient and the
Skorohod integral on the Poisson space. Most of the results in this regard are
extensions of results obtained in [17]. We proceed to show how the Skorohod
integral behaves under the S -transform.

Define a space D ⊂ L2(µπ) by

D :=
{
f (ω) =

∞∑
n=0

〈Cn(ω), fn〉 :
∞∑
n=0

nn!|fn|2π <∞
}
,

and a linear operator D : D → L2(π × µπ) by

(7.1) Dxf (ω) :=
∞∑
n=1

〈
Cn−1(ω), nfn(·, x)

〉
,

for f (ω) = ∑∞
n=0〈Cn(ω), fn〉 ∈ D, where fn(·, x) is the function fn with the

last argument x = (x1, . . . , xd+1) ∈ X held fixed. It can be seen from a direct
calculation that

‖Df ‖2
L2(π×µπ )

=
∞∑
n=1

nn!|fn|2π .

Thus, Df ∈ L2(π × µπ) whenever f ∈ D. Note that (S )1 ⊆ D. Define
another linear operator, called the Poissonian gradient, denoted by ∇P ,

(∇P f )(γ, x) = f (γ + εx)− f (γ ), γ ∈ �, x ∈ X,

for all variables of the form f (γ ) = g(〈γ, φ1〉, . . . , 〈γ, φN 〉), where the func-
tion g ∈ C∞b (RN) and φ1, . . . , φN ∈ S̃ (X). Notice that ∇P is defined on
L2(µ�

π). We define the operator ∇̃P on L2(µπ) by

∇̃P = U−1
� ∇PU�.

Lemma 7.1. The operatorsD and ∇̃P coincide on a dense subset ofL2(µπ),
hence the closure of D equals the closure of ∇̃P .

Proof. From the The chaos expansion of ẽ(φ, ω) given by (3.2) and the
definition of D,

Dxẽ(φ, ω) = Dx

( ∞∑
n=0

〈
Cn(ω),

φ⊗n

n!

〉)

=
∞∑
n=1

〈
Cn−1(ω),

nφ⊗n−1φ(x)

n!

〉
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= φ(x)

∞∑
n=0

〈
Cn(ω),

φ⊗n

n!

〉

= φ(x)̃e(φ, ω).(7.2)

On the other hand, ∇̃P applied to ẽ(φ, ω) gives(∇̃P ẽ(φ, ω)
)
(x) = (

U−1
� ∇PU�ẽ(φ, ω)

)
(x)

= U−1
�

(̃
e(φ, γ + εx)− ẽ(φ, γ )

)
= U−1

�

(̃
e(φ, γ )(e〈εx ,ln(1+φ)〉 − 1)

)
= U−1

�

(̃
e(φ, γ )φ(x)

)
= ẽ(φ, ω)φ(x).(7.3)

By comparing (7.2) and (7.3), we see that Dxẽ(φ, ω) = (∇̃P ẽ(φ, ω))(x), for
all x ∈ X and φ ∈ S̃ (X). Since both operators are closable and the linear
span of variables of the form ẽ(φ) is dense in L2(µπ) the result follows.

We will now consider generalized random fields F : X → (S )−1. Observe
that the chaos expansion of such fields may be written as

F(x) =
∞∑
n=0

〈Cn(ω), Fn(·, x)〉,

where Fn(·, x) ∈ S̃ ′(X)⊗̂n for every x = (x1, . . . , xd+1) ∈ X and
‖F(x)‖−p,−1,K < ∞, for some natural number p > 0. Let L be the set of
all F : X → (S )−1 such that F̃n ∈ S̃ ′(X)⊗̂(n+1) and

∞∑
n=0

|F̃n|2−p,π <∞,

for some natural number p > 0.

Definition 7.2. For F ∈ L, define the Skorohod integral, denoted δ(·), by

δ(F ) :=
∞∑
n=0

〈Cn+1(ω), F̃n〉,

where F̃n denotes the symmetrization of Fn.

From the definition of the Skorohod integral conjoint with the assumption
on elements of L, it follows that δ(F ) ∈ (S )−1.
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In [2], it was proved that for predictable integrands the Skorohod integral
coincides with the usual Itô-type integral with respect to the compensated
Poisson random measure Ñ .

The next result shows that the operator D, which by Lemma 7.1 is equal to
∇̃P , is the dual of the Skorohod integral δ.

Theorem 7.3. Let F ∈ L and f ∈ (S )1. Then

(7.4)
∫
X

〈〈F(x),Dxf 〉〉π(dx) = 〈〈δ(F ), f 〉〉.

Proof. Set F(x) = ∑∞
n=0〈Cn(ω), Fn(·, x)〉 and f = ∑∞

m=0〈Cm(ω), fm〉,
where F ∈ L and f ∈ (S )1. Then δ(F ) ∈ (S )−1. Choose a natural number
p > 0 such that δ(F ) ∈ (S )−1

−p. By the Cauchy-Schwartz inequality,

∫
X

∣∣(Fn(·, x), fn+1(·, x)
)
π

∣∣π(dx) ≤
∫
Xn+1

|Fnfn+1|dπ×(n+1)

=
∫
Xn+1

∣∣Fn(1⊗ ν̇)⊗(n+1)fn+1

∣∣dλ×(n+1)

≤ ‖Fn(1⊗ ν̇)⊗(n+1)‖−p,π‖fn+1‖p,π
= |Fn|−p,π‖fn+1‖p,π .(7.5)

By first changing the order of integration and summation using [5, Thm. 2.15],
then inequality (7.5) and finally the Cauchy-Schwartz inequality, we get

∫
X

∞∑
n=0

(n+ 1)!
∣∣(Fn(·, x), fn+1(·, x)

)
π

∣∣π(dx)

=
∞∑
n=0

(n+ 1)!
∫
X

∣∣(Fn(·, x), fn+1(·, x)
)
π

∣∣π(dx)

≤
∞∑
n=0

|Fn|−p,π (n+ 1)!‖fn‖p,π

≤
( ∞∑

n=0

|Fn|2−p,π

)1/2( ∞∑
n=0

(
(n+ 1)!

)2‖fn‖2
p,π

)1/2

= ‖δ(F )‖−p,−1,K‖f ‖p,1,K <∞.
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By the dominated convergence theorem,∫
X

〈〈F(x),Dxf 〉〉π(dx) =
∫
X

∞∑
n=0

(n+ 1)!
(
Fn(·, x), fn+1(·, x)

)
π
π(dx)

=
∞∑
n=0

(n+ 1)!(Fn, fn+1)π

(∗)=
∞∑
n=0

(n+ 1)!(F̃n, fn+1)π

= 〈〈δ(F ), f 〉〉,
where (∗) is due to the fact that fn+1 is symmetric, and hence (Fn, fn+1)π is
equal to (F̃n, fn+1)π .

We remark that if δ(F ) ∈ L2(µπ) and f ∈ D ⊂ L2(µπ), then equation
(7.4) reads

E
[∫

X

(
F(x)Dxf

)
π(dx)

]
= E

[
δ(F )f

]
.

According to Theorem 7.3, δ = (∇̃P )∗. By using the Mecke identity, one
can show that (see, e.g., [13])

((∇P )∗F)(γ ) =
∫
X

F(γ − εx, x) dγ (x)−
∫
X

F(γ, x) π(dx).

Hence,

U�(δ(F ))(γ ) =
∫
X

F(γ − εx, x) dγ (x)−
∫
X

F(γ, x) π(dx).

Corollary 7.4. Let F ∈ L. Then δ(F ) ∈ (S )−1
−p for some p ∈ N, and

S (δ(F ))(ξ) =
∫
X

(
S (F (x))(ξ) · ξ(x)

)
π(dx),

for all ξ ∈ Up.

Proof. By equation (7.2), we have that Dxẽ(ξ, ω) = ẽ(ξ, ω)ξ(x). Hence,
by Theorem 7.3,

S (δ(F ))(ξ) = 〈〈δ(F ), ẽ(ξ)〉〉
=

∫
X

〈〈F(x), ẽ(ξ)ξ(x)〉〉π(dx)

=
∫
X

S (F (x))(ξ) · ξ(x) π(dx).
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Remark 7.5. Corollary 7.4 provides a powerful tool for solving certain
types of stochastic differential equations by S -transforming the stochastic
differential equations into deterministic differential functional equations.

Define the process W : X ×.→ R by

W(x)(ω) := 〈C1(ω), εx〉,
where εx denotes the Dirac delta function with mass at the point x ∈ X.
We have the following relationship between the Skorohod integral, the Wick
product and the Lebesgue integral.

Proposition 7.6. For all F ∈ L,

δ(F ) =
∫
X

(
F(x) �W(x)

)
dλ×(d+1)(x).

Proof. By Corollary 7.4 and the definition of the Wick product,

S

(∫
X

F(x) �W(x) dλ×(d+1)(x)

)
(ξ)

=
∫
X

S (F (x) �W(x))(ξ) dλ×(d+1)(x)

=
∫
X

S (F (x))(ξ) ·S (W(x))(ξ) dλ×(d+1)(x)

=
∫
X

S (F (x))(ξ) · (εx, ξ)π dλ×(d+1)(x)

=
∫
X

S (F (x))(ξ) · ξ(x)(1⊗ ν̇)(x) dλ×(d+1)(x)

=
∫
X

S (F (x))(ξ) · ξ(x) π(dx)

= S (δ(F ))(ξ).

The result then follows from Theorem 5.3.
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