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AN INTEGRAL DUALITY FORMULA

BOGDAN C. GRECU and RAYMOND A. RYAN

Abstract

We establish an integral formula for the duality between multilinear forms/homogeneous poly-
nomials and tensor products for dual spaces with the approximation property and for which the
injective tensor products of their preduals is separable and does not contain a copy of �1. We
deduce some multilinear Bishop-Phelps-type results.

Introduction

Although spaces of multilinear forms and homogeneous polynomials are dual
spaces, multilinear analogues of the linear Bishop-Phelps Theorem [6] do
not hold in general [2], [14]. However, positive results exist. See [5] for a
complete account and a detailed description of the problem. For an n-linear
form defined on a product of Banach spaces X1 × · · · × Xn, two (in general
different) types of norm attainment can be considered: as a linear functional
defined on the projective tensor product X1⊗̂π · · · ⊗̂πXn or as an n-linear form
on X1 × · · · × Xn. Under certain conditions, the duality between multilinear
forms and tensor products can be expressed by means of an integral formula
which will establish the equivalence of the two types of norm attainment and
thus yield some multilinear Bishop-Phelps-type results. We note that the same
formula, for Hilbert spaces, has already been applied to the study of other
geometrical properties of spaces of tensors [11].

1. Notation and terminology

(see [10] and [19] for details). Given n (real or complex) Banach spaces
X1, . . . , Xn, we denote by X1 ⊗ · · · ⊗ Xn their tensor product and by π

and ε the projective and injective norms respectively. If X1⊗̂π · · · ⊗̂πXn is
the completion of X1 ⊗ · · · ⊗ Xn under the projective norm, then we have
(X1⊗̂π · · · ⊗̂πXn)

∗ = L (nX1, . . . , Xn), the space of continuous n-linear
forms on X1 × · · · × Xn endowed with the supremum norm. We denote by
LI (

nX1, . . . , Xn) = (X1⊗̂ε · · · ⊗̂εXn)
∗ and LN(

nX1, . . . , Xn) the spaces of
integral and nuclear n-linear forms on X1 × · · · × Xn respectively. Let ⊗n,sX
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be the n-fold symmetric tensor product of X. If we endow it with the topology
inherited from X⊗π · · · ⊗πX and denote its completion by (⊗̂n,s,πX) then we
have (⊗̂n,s,πX)∗ = Ls(

nX), the space of continuous symmetric n-linear forms
on X × · · · × X endowed with the supremum norm.

We denote by P (nX) the space of all continuous n-homogeneous polyno-
mials on X endowed with the natural supremum norm. The space ⊗n,s,πX can
be renormed such that P(nX) becomes its dual [10]. Indeed, denote by xn the
tensor x ⊗· · ·⊗ x. Every element u of ⊗n,sX can be expressed as a finite sum∑k

j=1 λjx
n
j . Define the symmetric projective norm of u by

‖u‖πs
= inf

{ k∑
j=1

|λj |‖xj‖n : u =
k∑

j=1

λjx
n
j

}
.

We denote by ⊗̂n,s,πs
X the completed tensor product endowed with this norm.

Then P(nX) is the dual space of ⊗̂n,s,πs
X, the duality being given by 〈u, P 〉 =∑k

j=1 λjP (xj ).
The symmetric injective norm of u is

‖u‖εs = sup

{∣∣∣∣
k∑

j=1

ϕ(xj )
n

∣∣∣∣ : ϕ ∈ BX∗

}
.

Because of the polarization formula, the norms πs and εs on ⊗n,sX are equi-
valent to π and ε respectively. We have (⊗̂n,s,εsX)∗ = PI (

nX), the space of
n-homogeneous integral polynomials. If the n-homogeneous polynomial P is
nuclear, then it is integral and ‖P ‖I ≤ ‖P ‖N .

2. The problem

Since (⊗̂n,s,πs
X)∗ = P(nX), the polynomials that attain their norms on the

unit sphere of ⊗̂n,s,πs
X are a dense set in P(nX). Say that for a n-homogeneous

polynomial P on X there exists a tensor u in the unit sphere of ⊗̂n,s,πs
X such

that 〈u, P 〉 = ‖P ‖. Given any η > 0, there exists a sequence (λi) of scalars
with

∑∞
i=1 |λi | < 1 + η and a sequence (xi) in the unit sphere of X such

that u = ∑∞
i=1 λix

n
i and then ‖P ‖ = 〈u, P 〉 = ∑∞

i=1 λiP (xi). However, for
the study of geometrical properties like norm attainment and smoothness, we
would like

∑∞
i=1 |λi | = 1 = ‖u‖πs

, as that would imply that P attains its
norm on BX. This does not happen in general. Under certain hypotheses, we
will transform the infinite sum

∑∞
i=1 λiP (xi) into an integral with respect to

a measure whose total variation will equal ‖u‖πs
, this equality being essential

for obtaining norm attainment results.
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3. Multilinear forms and polynomials defined on dual spaces

Let u be an element of the completed tensor product X∗
1⊗̂π · · · ⊗̂πX

∗
n. Given

any η > 0, there exists sequences (λi) with
∑∞

i=1 |λi | < ‖u‖π + η and
(ϕ1,i ), . . . , (ϕn,i) in the unit spheres of X∗

1, . . . , X
∗
n respectively such that

u =
∞∑
i=1

λiϕ1,i ⊗ · · · ⊗ ϕn,i .

We can think of u as a nuclear n-linear form on X1 × · · · × Xn, one of its
nuclear representations being

u(x1, . . . , xn) =
∞∑
i=1

λiϕ1,i (x1) · · ·ϕn,i(xn).

We can go one step further and consider u as an integral n-linear form on
X1 × · · · × Xn. In general ‖u‖I ≤ ‖u‖N ≤ ‖u‖π . Let µ be a regular Borel
measure on BX∗

1
× · · · × BX∗

n
such that ‖u‖I = ‖µ‖ and

u(x1, . . . , xn) =
∫
BX∗

1
×···×BX∗

n

ϕ1(x1) · · ·ϕn(xn) dµ(ϕ1, . . . , ϕn).

In the sequel, each time we will refer to a regular Borel measure on unit
balls of dual spaces or their cartesian products we will work with their weak∗
topologies.

In [3] Alencar showed that LN(
nX1, . . . , Xn) and LI (

nX1, . . . , Xn) are
isometrically isomorphic if X∗

1, . . . , X
∗
n have the Radon-Nikodým Property

(RNP). Furthermore, LI (
nX1, . . . , Xn) has RNP [18]. Thus X1⊗̂ε · · · ⊗̂εXn

cannot contain a copy of �1. Alencar’s result can be extended to all spaces
X1, . . . , Xn with the property that X1⊗̂ε · · · ⊗̂εXn does not contain a copy of
�1, using the fact that the set of extreme points of the unit ball of LI (

nX1, . . . ,

Xn) is equal to {ϕ1 · · ·ϕn : ϕi ∈ Ext BX∗
i
} (Theorem 1.1 of [18]) and following

the reasoning in Proposition 3 of [7].

Theorem 1. If X1⊗̂ε · · · ⊗̂εXn is separable and does not contain a copy of
�1 and at least n−1 of the duals X∗

1, . . . , X
∗
n have the approximation property

(AP), then for every element u of X∗
1⊗̂π · · · ⊗̂πX

∗
n, there exists a regular Borel

measure µ on BX∗
1
× · · · × BX∗

n
such that ‖u‖π = ‖µ‖ and

〈u,A〉 =
∫
BX∗

1
×···×BX∗

n

A(ϕ1, . . . , ϕn) dµ(ϕ1, . . . , ϕn)

for every continuous n-linear form A on X∗
1 × · · · × X∗

n.
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Proof. Due to the fact that at leastn−1 of the dualsX∗
1, . . . , X

∗
n haveAP, the

spaces X∗
1⊗̂π · · · ⊗̂πX

∗
n and LN(

nX1, . . . , Xn) are isometrically isomorphic
and so

L (nX∗
1, . . . , X

∗
n) = (X∗

1⊗̂π · · · ⊗̂πX
∗
n)

∗ = LN(
nX1, . . . , Xn)

∗

= LI (
nX1, . . . , Xn)

∗ = (X1 ⊗ε X2 ⊗ε · · · ⊗ε Xn)
∗∗.

Thus, by the Odell-Rosenthal Theorem [16], every multilinear form A on
X∗

1 ×· · ·×X∗
n is the weak∗-limit of a sequence (vn) fromX1⊗εX2⊗ε · · ·⊗εXn

with ‖vn‖ε ≤ ‖A‖. Let µ be a regular Borel measure on BX∗
1
×· · ·×BX∗

n
such

that ‖µ‖ = ‖u‖I = ‖u‖N = ‖u‖π . Since every vn is a linear combination of
basic tensors, we have

〈u, vn〉 =
∫
BX∗

1
×···×BX∗

n

vn(ϕ1, . . . , ϕn) dµ(ϕ1, . . . , ϕn)

and thus

〈u,A〉 = lim
n

〈u, vn〉 = lim
n

∫
BX∗

1
×···×BX∗

n

vn(ϕ1, . . . , ϕn) dµ(ϕ1, . . . , ϕn)

=
∫
BX∗

1
×···×BX∗

n

A(ϕ1, . . . , ϕn) dµ(ϕ1, . . . , ϕn),

by the Dominated Convergence Theorem.

Remark. It follows from the proof of the theorem that the function J ,

defined on BX∗
1
×· · ·×BX∗

n
with values in X∗

1⊗̂π · · · ⊗̂πX
∗
n by (ϕ1, . . . , ϕn)

J�→
ϕ1 ⊗ · · · ⊗ ϕn, is weakly µ-measurable and that the tensor u can be expressed
as a Pettis integral

u =
∫
BX∗

1
×···×BX∗

n

ϕ1 ⊗ · · · ⊗ ϕn dµ(ϕ1, . . . , ϕn).

Since ‖µ‖ = ‖u‖π < ∞, the function J is Bochner integrable with respect to
µ whenever it is µ-measurable. By the Pettis Measurability Theorem [9], this
will happen when we work under the additional hypothesis that all the spaces
X∗

1, . . . , X
∗
n are separable, in which case the integral above will actually be a

Bochner integral.

Now suppose that the n-linear form A, as a linear functional on X∗
1⊗̂π · · ·
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⊗̂πX
∗
n, attains its norm at a tensor u of unit norm. Then

‖A‖ = 〈u,A〉 =
∫
BX∗

1
×···×BX∗

n

A(ϕ1, . . . , ϕn) dµ(ϕ1, . . . , ϕn)

≤ ‖A‖‖µ‖ = ‖A‖.
It follows that A(ϕ1, . . . , ϕn) = ‖A‖ a.e. with respect to µ and so A at-
tains its norm as an n-linear form. Applying the Bishop-Phelps Theorem for
(X∗

1⊗̂π · · · ⊗̂πX
∗
n)

∗, we obtain the following

Corollary 2. If X1⊗̂ε · · · ⊗̂εXn is separable and does not contain a copy
of �1 and at least n − 1 of the duals X∗

1, . . . , X
∗
n have AP then the set of

norm-attaining n-linear forms on X∗
1 ×· · ·×X∗

n is dense in L (nX∗
1, . . . , X

∗
n).

In particular the result holds if the non-containment of �1 in X1⊗̂ε · · · ⊗̂εXn

is replaced by the stronger condition that X∗
1, . . . , X

∗
n have RNP. This can be

obtained in an alternative way, since under these conditions X∗
1⊗̂π · · · ⊗̂πX

∗
n

has RNP [9] and norm-attaining linear functionals on spaces with RNP attain
their norms at extreme points, which, as noted above, are of the form ϕ1 ⊗
· · ·⊗ϕn with ϕi extreme points of BX∗

i
. However there exists separable spaces

whose duals do not have RNP which satisfy the conditions of the theorem. One
such example is the James-Hagler space JH [13]. Its injective tensor product
does not contain a copy of �1 [15], its dual does not have RNP but does have
AP. This last fact follows from Lemma 7.3.c in [8], since JH has Schauder
basis and forF , the closure in JH ∗ of the subspace generated by the coefficient
functionals, the quotient JH ∗/F is isometrically isomorphic to a c0 space.

In [4] a variational principle due to Stegall is used to obtain the density in
L (nX) of the set of norm-attaining n-linear forms defined on a Banach space
X with RNP. However, the proof is highly non-symmetrical, so no result is
obtained for symmetric n-linear forms. The advantage of the integral formula
is that it allows us to obtain multilinear Bishop-Phelps-type results for any
spaces of multilinear forms that are duals of corresponding spaces of tensors,
e.g. symmetric, alternating, Jacobian, etc. [12]. For instance, we have:

Corollary 3. LetX be a separable Banach space such thatX∗ has AP and
⊗̂n,εX does not contain a copy of �1. Then the set of norm-attaining symmetric
n-linear forms on X∗ is dense in Ls(

nX∗).

As above, ifX∗ has RNP, the result can be obtained in an alternative way, due
to the fact that the set of extreme points of the unit ball of ⊗̂n,s,πX

∗ is a subset
of {ϕ1 ⊗s · · · ⊗s ϕn : ‖ϕi‖ = 1} (by the same reasoning as in proposition 1 of
[7]).
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In the light of this fact, repeating line by line the proof of the theorem, but
working with symmetric n-linear forms and tensors, Corollary 3 remains valid
under the slightly weaker condition that ⊗̂n,s,εX does not contain a copy of �1.

A similar integral formula holds for n-homogeneous polynomials. In [11]
this formula has been obtained for the case n = 2 for Hilbert spaces.

Theorem 4. If ⊗̂n,s,εsX is separable and does not contain a copy of �1 and
X∗ has AP, then for every element u of ⊗̂n,s,πs

X∗ there exists a regular Borel
measure µ on BX∗ such that ‖u‖πs

= ‖µ‖ and

〈u, P 〉 =
∫
BX∗

P(ϕ) dµ(ϕ)

for every n-homogeneous polynomial P on X∗.

The proof mimics that of Theorem 1, using the fact that every element u
of ⊗̂n,s,πs

X∗ can be considered as a nuclear, and thus integral, polynomial
on X and the measure µ on BX∗ associated with u can be chosen such that
‖µ‖ = ‖u‖I ≤ ‖u‖N ≤ ‖u‖πs

. Then PN(
nX) = PI (

nX) when ⊗̂n,s,εsX does
not contain a copy of �1 [7] and PN(

nX) = ⊗̂n,s,πs
X∗ when X∗ has AP, which

give

P(nX∗) = (⊗̂n,s,πs
X∗)∗ = PN(

nX)∗ = PI (
nX)∗ = (⊗̂n,s,εsX)∗∗.

Let Pw∗(nX∗) be the space of n-homogeneous polynomials on X∗ that are
w∗-continuous on bounded subsets of X∗. In [21] it is shown that P(nX∗)
coincides with the bidual of Pw∗(nX∗) whenever X∗ has AP and Pw∗(nX∗)
does not contain a copy of �1. We have just obtained another proof of this result
(under the assumption of separability) since Pw∗(nX∗) = ⊗̂n,s,εsX whenever
X has AP.

Corollary 5. Let X be a separable Banach space such that X∗ has
AP and ⊗̂n,s,εsX does not contain a copy of �1. The set of norm-attaining
n-homogeneous polynomials on X∗ is dense in P(nX∗).

A natural question is whether the integral formulae above can be obtained
from Choquet’s Theorem [17]. Let us work under the assumptions of The-
orem 4. Then the unit ball of ⊗̂n,s,πs

X∗ is weak∗-compact. The Choquet The-
orem says that, given u in B⊗̂n,s,πs X

∗ , there exists a probability measure µ

supported by the weak∗-closure of the extreme points of B⊗̂n,s,πs X
∗ such that

〈u, v〉 =
∫
B⊗̂n,s,πs X

∗
〈w, v〉 dµ(w)
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for all v in (⊗̂n,s,πs
X∗, w∗)∗ = ⊗̂n,s,εsX. Furthermore, the set of extreme

points of B⊗̂n,s,πs X
∗ is included in { ϕ ⊗ · · · ⊗ ϕ : ‖ϕ‖ = 1} and includes

{ϕ ⊗ · · · ⊗ ϕ : ‖ϕ‖ = 1 and ϕ is norm-attaining} [7]. However, the weak∗-
closure of this set can be quite large, although {ϕ ⊗ · · · ⊗ ϕ : ‖ϕ‖ = 1} is
norm-closed or even weakly-closed in particular cases [20]. For instance, if X
is a Hilbert space then its w∗-closure is the whole of B⊗̂n,s,πs X

∗ . Thus there is
no reason to believe that µ is supported by {ϕ ⊗ · · · ⊗ ϕ : ‖ϕ‖ = 1}, a fact
that was essential in deducing the Bishop-Phelps-type results.
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