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FENCHEL EQUALITIES AND BILINEAR
MINMAX EQUALITIES

G. H. GRECO, A. FLORES-FRANULIČ, and H. ROMÁN-FLORES∗

(Dedicated to memory of Werner Fenchel on the occasion of the 100th anniversary of his birth)

Abstract

Chief objects here are pairs (X, F ) of convex subsets in a Hilbert space, satisfying the bilinear
minmax equality

inf
x∈X

sup
y∈F

〈x, y〉 = sup
y∈F

inf
x∈X

〈x, y〉.

Specializing F to be an affine closed subspace we recover and restate crucial concepts of convex
duality, revolving around Fenchel equalities, biconjugation, and inf-convolution. The resulting
perspective reinforces the strong links between minmax, set-theoretic, and functional aspects of
convex analysis.

Let E be a (real) Hilbert space with scalar product 〈·, ·〉. Select two convex
subsets X, Y of E. The relation

(1) inf
x∈X

sup
y∈Y

〈x, y〉 = sup
y∈Y

inf
x∈X

〈x, y〉

is called a bilinear minmax equality with respect to the pair (X, Y ). Corres-
pondingly, whenever (1) holds, the couple (X, Y ) is said to be a minmax convex
pair. Such pairs were introduced and studied in [3], and some criteria for re-
cognizing them were given there.

Von Neumann’s theorem [6] about equilibrium in zero-sum two-person
games can be restated as “every couple of simplices is a minmax pair”. Simil-
arly, Fenchel’s theorem on linear programming duality [2] can be restated as
“every feasible couple of polyhedral convex sets is a minmax pair”.

Motivation for exploring minmax equalities comes from their frequent oc-
currence and wide applicability. To wit, they may help in modeling zero-sum
two-persons games, facilitate the study of inequality systems in terms of altern-
ative formulations, describe or indicate when commutation between universal
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and existential quantifiers are allowed, and much more, as we will see in the
next section.

Our main Theorem 0.1 characterize minmax pairs (X, F ) of a nonempty
convex subset X and a closed affine subspace F of a Hilbert space E.

For the statement, given a closed affine subspace F of a Hilbert space E,
denote by eF the point ofF nearest to the origin. Let pr0 denote the orthogonal
projection of E on the closed vector subspace F0 := F + ReF . Moreover,
denote by Y∞ the asymptotic cone {v ∈ E : Y +v ⊂ Y } of an arbitrary closed
nonempty convex subset Y of E.

When F is a closed vector subspace (i.e. eF = 0), “(X, F ) is a minmax
pair if and only if either X ∩ F⊥ �= ∅ or dist(X, F⊥) �= 0” [3], where
dist(X, F ) := inf{‖x − y‖ : x ∈ X, y ∈ F }. Otherwise,

Theorem 0.1 (Minmax convex pairs and affine subspaces). Assume eF �= 0.
Then (X, F ) is a minmax pair if and only if the following two conditions hold:

(2) inf{λ ∈ R : λeF ∈ pr0 X} = inf{λ ∈ R : λeF ∈ pr0 X} (inf-normality)

(3) either pr0 X ∩ ReF �= ∅ or − eF �∈ pr0 X
∞

(feasibility).

In the next section 1 Theorem 0.1 is proved. In the last sections 2–3, we
explore and comment relationships between minmax pairs, Fenchel equalities
and biconjugation formulae; we will show that the roles played by these three
types of equalities are interchangeable.

In the sequel “convex set” always stands for “convex subset of a Hilbert
space E”, if not otherwise explicitly specified. Some terms coming from con-
vex analysis (e.g. normality, feasibility) will be used as meta-terms for thread-
ing similar properties.

Here and in the sequel we adopt Moreau’s convention (+∞) + (−∞) :=
(−∞)+ (+∞) := +∞ together with inf ∅ := +∞ and sup∅ := −∞. This
convention assures that inf(a + A) = a + inf A, for every a ∈ R and A ⊂ R.
R denotes the extended real line R ∪ {±∞}. R+ := {t ∈ R : t ≥ 0}.

For an arbitrary function ϕ : E → R, the convex and concave conjugate
function are denoted by ϕ∗ and ϕ∗, respectively; they are defined by ϕ∗(y) :=
sup{〈y, x〉 − ϕ(x) : x ∈ E} and ϕ∗(y) := inf{〈y, x〉 − ϕ(x) : x ∈ E}) [2].
Clearly, −ϕ∗(·) = (−ϕ)∗(−·) and −ϕ∗(·) = (−ϕ)∗(−·).

The biconjugation ϕ∗∗ is defined by ϕ∗∗ := (ϕ∗)∗ [2]. It is well known that
ϕ∗∗ ≤ ϕ.

For an arbitrary subset A, the indicator function δA : E → R is equals to
0 on A, and +∞ otherwise. The associated convex and the concave support
function δ+A and δ−A : E → R are defined by δ+A(v) := supw∈A〈v,w〉 and
δ−A(w) := infv∈A〈v,w〉. Clearly, δ+A = (δA)

∗ and δ−A = (−δA)∗ = −(δ−A)∗.
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Finally, recall epi ϕ := {(x, t) ∈ E × R : ϕ(x) ≤ t} and Bε(x) := {x ′ ∈
E : ‖x − x ′‖ < ε}.

1. Proof of the main theorem

For every closed affine subspace F of a Hilbert space E, the closed vector
space �F associated to F is defined by �F := F − eF .

Lemma 1.1. Let H be a closed affine hyperplane of E with ‖eH‖ �= 0 and
let X be a nonempty convex set. Then

(4) inf
x∈X

sup
y∈H

〈x, y〉 = ‖eH‖2 inf{λ ∈ R : λeH ∈ X},

(5) inf
x∈X

sup
y∈H

〈x, y〉 < +∞ if and only if X ∩ ReH �= ∅ (inf-feasibility),

(6) sup
y∈H

inf
x∈X

〈x, y〉 > −∞ if and only if − eH �∈ X∞
(sup-feasibility).

Proof. To prove (4) observe that H = �H + eH and �H⊥ = ReH . Hence

inf
x∈X

sup
y∈H

〈x, y〉 = inf
x∈X

sup
w∈ �H

〈x,w + eH 〉 = inf
x∈X

sup
w∈ �H

{〈x,w〉 + 〈x, eH 〉}

= inf{〈x, eH 〉 : x ∈ X ∩ �H⊥} = inf{〈x, eH 〉 : x ∈ X ∩ ReH }
= ‖eH‖2 inf{λ ∈ R : λeH ∈ X}.

Obviously, from (4) follows (5).
(6)�⇒. When supy∈H infx∈X〈x, y〉 > −∞, there exists ȳ ∈ H with

infx∈X〈x, ȳ〉 > −∞. Fix x̄ ∈ X. Since 〈x̄ − teH , ȳ〉 = 〈x̄, ȳ〉 − t‖eH‖2,
we have inf{〈x, ȳ〉 : x ∈ x̄ − R+eH } = −∞. Therefore x̄ − R+eH �⊂ X. Thus
−eH �∈ X∞

.
(6)⇐�. Fix x̄ ∈ X. From −eH �∈ X∞

it follows that there exists a real number
t̄ > 0 such that x̄ − t̄ eH �∈ X. Hence, there is a closed hyperplane strictly
separating x̄ − t̄ eH from X; that is, there is a nonzero w̄ ∈ E such that
〈x̄ − t̄ eH , w̄〉 < 〈x, w̄〉 for all x ∈ X. In particular, we have 〈x̄ − t̄ eH , w̄〉 <
〈x̄, w̄〉; consequently 〈eH , w̄〉 > 0. Now define ȳ := ‖eH ‖2

〈eH ,w̄〉 w̄. Observe that
ȳ ∈ H and infx∈X〈x, ȳ〉 ≥ 〈x̄ − t̄ eH , ȳ〉. Therefore supy∈H infx∈X〈x, y〉 ≥
infx∈X〈x, ȳ〉 > −∞.

Proof of Theorem 0.1. Since F is a closed affine hyperplane of the
Hilbert space F0 := �F + ReF , we will use Lemma 1.1, replacing H and E
with F and F0, respectively.
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For every (x, y) ∈ X × F we have 〈x, y〉 = 〈pr0x, y〉. Hence,

(a)

inf
x∈X

sup
y∈F

〈x, y〉 = inf
x∈pr0(X)

sup
y∈F

〈x, y〉
(i)= ‖eF‖2 inf{λ ∈ R : λeF ∈ pr0(X)}
(†)≥ ‖eF‖2 inf{λ ∈ R : λeF ∈ pr0(X)} (i)= inf

x∈pr0(X)

sup
y∈F

〈x, y〉
(‡)≥ sup

y∈F
inf

x∈pr0(X)

〈x, y〉 (ii)= sup
y∈F

inf
x∈pr0(X)

〈x, y〉

= sup
y∈F

inf
x∈X

〈x, y〉

where equalities marked by (i) are due to (4) of Lemma 1.1, and equality (ii)
follows from the continuity of the scalar product.

Part 1: necessity. Let (X, F ) be a minmax pair. Then inequalities (†) and (‡)
in (a) become equalities. Therefore, (2) holds and infx∈pr0(X)

supy∈F 〈x, y〉 =
supy∈F infx∈pr0(X)

〈x, y〉. Hence,

either inf
x∈pr0(X)

sup
y∈F

〈x, y〉 < +∞ or sup
y∈F

inf
x∈pr0(X)

〈x, y〉 > −∞;

therefore (3) holds, in virtue of (5)–(6) of Lemma 1.1.
Part 2: sufficiency. Assume (2) and (3) hold. Thus, inequality (†) in (a)

becomes an equality. By (a), to complete the proof it is enough to show that

(b) inf
x∈pr0(X)

sup
y∈F

〈x, y〉 ≤ sup
y∈F

inf
x∈pr0(X)

〈x, y〉.

Consider the following two cases:
1st case: “pr0(X) ∩ ReF �= ∅”. Choose a real number λ̄ such that λ̄eF ∈

pr0(X). Let a be a real number such that a < infx∈pr0(X)
supy∈F 〈x, y〉. By (4)

of Lemma 1.1 we have a < ‖eF‖2 inf{λ ∈ R : λeF ∈ pr0(X)}. Therefore,

a

‖eF‖2
eF �∈ pr0(X) and a < ‖eF‖2λ̄.

Strictly separating the point a
‖eF ‖2 eF from pr0(X) by a closed hyperplane of

F0, we get a nonzero w̄ ∈ F0 such that

(c)

〈
a

‖eF‖2
eF , w̄

〉
< 〈x, w̄〉 for all x ∈ pr0(X).
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In particular, we have
〈

a
‖eF ‖2 eF , w̄

〉
< 〈λ̄eF , w̄〉; consequently 〈eF , w̄〉 > 0.

Now define ȳ := ‖eF ‖2

〈eF ,w̄〉 w̄. Observe that ȳ ∈ F and by (c) we have

inf
x∈pr0(X)

〈x, ȳ〉 ≥
〈

a

‖eF‖2
eF , ȳ

〉
= a.

Therefore supy∈F infx∈pr0(X)
〈x, y〉 ≥ infx∈pr0(X)

〈x, ȳ〉 ≥ a. As a is an arbitrary
real number such that a < infx∈pr0(X)

supy∈F 〈x, y〉, inequality (b) holds.

2nd case: “−eF �∈ pr0(X)
∞

and pr0(X) ∩ ReF = ∅”. By (5) and (6) of
Lemma 1.1 we have

inf
x∈pr0(X)

sup
y∈F

〈x, y〉 = +∞ and sup
y∈F

inf
x∈pr0(X)

〈x, y〉 > −∞,

respectively. Therefore, there exist ȳ ∈ F and M ∈ R such that

(d) 〈x, ȳ〉 ≥ M for all x ∈ pr0(X).

Fix a real number a. The closed (locally compact) rayK := {λeF : λ ∈ R, λ ≤
a} and the closed convex set pr0(X) are disjoint and the intersection of their
asymptotic cones reduces to the zero vector. Hence, by Dieudonné’s separation
theorem (see [4, Theorem 15D]), K and pr0(X) are strictly separated by an
hyperplane of F0; that is, there exist a nonzero w̄ ∈ F0 and a real number µ
such that

(e) 〈teF , w̄〉 < µ < 〈x, w̄〉 for every x ∈ pr0(X) and t ≤ a.

Since pr0(X) �= ∅, we have 〈eF , w̄〉 ≥ 0. Consider the following two sub-
cases. First sub-case: “〈eF , w̄〉 > 0”. Reason as in the first case to complete the
proof. Second sub-case: “〈eF , w̄〉 = 0”. Since ȳ ∈ F , the point yt := ȳ + tw̄

belongs to F for every real number t . From (e) it follows that µ > 0. Hence
(d) and (e) imply that for all x ∈ pr0(X) and t ∈ R

〈x, yt 〉 = 〈x, ȳ〉 + t〈x, w̄〉 ≥ M + tµ.
Therefore

sup
y∈F

inf
x∈pr0(X)

〈x, y〉 ≥ sup
t∈R

inf
x∈pr0(X)

〈x, yt 〉 ≥ sup
t∈R
(M + tµ) = +∞.

Thus, (b) holds.
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2. Fenchel equalities and minmax convex pairs

Upon generalizing key properties between pairs of linear programs to non-
linear problems, Fenchel [2, Chap. III, §5–6] founded the duality theory of
convex optimization, thereby bringing to the fore the chief roles of conjugation

ϕ∗(y) := sup{〈y, x〉−ϕ(x) : x ∈ E}, ϕ∗(y) := inf{〈y, x〉−ϕ(x) : x ∈ E},
and inf-convolution

ϕ∇ψ(w) := inf
x∈E{ϕ(x)+ ψ(w − x)}.

Prominent in his approach are pairs (ϕ, ψ) of convex functions ϕ,ψ : E → R
satisfying

(7) inf
x∈E

{ϕ(x)+ ψ(x)} = sup
y∈E

{(−ϕ)∗(y)+ (−ψ)∗(−y)}

When valid, (7) will be referred to as a Fenchel equality with (ϕ, ψ) as a
Fenchel pair, and assertions about such facts are briefly called null duality gap
theorems. Whenever some extremum in (7) is attained, the result is known as
a Fenchel duality theorem; see [1, Theorem 3.3.5, p. 52 and Corollary 5.1.9,
p. 100].

A first appearance of such theorems is due to Fenchel; see Propositions 47
and 48 in [2, Ch. III §6]. Fenchel’s Proposition 47: “A couple (ϕ, ψ) of convex
functions is a Fenchel pair, ifϕ andψ are lower semi-continuous proper convex
functions and are finite in a same point” is not well stated. For guarantying its
validity some supplementary assumptions must be recovered from Fenchel’s
proofs; this will be done in next Theorem 3.1, via (14) and (16).

Further, in Proposition 49 of [2, Ch. III § 6, p. 110] Fenchel restated the
said Proposition 47, concerning null duality gap, as a minmax equality with
respect to the convex-concave bivariate function

(x, y)  → 〈x, y〉 + ϕ(x)− ψ∗(y).

He noticed that for ϕ, ψ proper and ψ lower semi-continuous one has

(8)

inf
x∈E

sup
y∈E

{〈x, y〉 + ϕ(x)− ψ∗(y)} = inf
x∈E{ϕ(x)+ ψ(x)}

sup
y∈E

inf
x∈E

{〈x, y〉 + ϕ(x)− ψ∗(y)} = sup
y∈E

{(−ϕ)∗(y)+ (−ψ∗)(−y)}.

Subsequently, Fenchel [2, Ch. III §6, p. 112] used his duality theorem to
derive von Neumann’s bilinear minmax theorem, applying (8) to the case where
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ϕ and ψ∗ are extended indicators of simplices. Following Fenchel’s approach,
we observe that when X, Y both are nonempty convex,

(9) (X, Y ) is a minmax pair ⇐⇒ (δX, δ
+
Y ) is a Fenchel pair.

On the other hand,

(10) (X, Y ) is a minmax pair ⇐⇒ (X, Y ) and (X, Y ) are minmax pairs;
in fact supY infX〈., .〉 = supY infX〈., .〉 ≤ supY infX〈., .〉 ≤ infX supY 〈., .〉 ≤
infX supY 〈., .〉 = infX supY 〈., .〉. Thus, by (9) the notion of Fenchel pair
provides a criterion for recognizing minmax pairs:
(11)
(X, Y ) is a minmax pair ⇐⇒ (δX, δ

+
Y ) and (−δ−X, δY ) are Fenchel pairs.

This tells that Fenchel equalities encompass minmax pairs. Conversely,
minmax convex pairs capture both biconjugation formulae and Fenchel equal-
ities. This will become clear from (12)–(16) below.

(12) (Fenchel biconjugation formula and minmax pairs) Let ϕ : E → R be a
convex function. Define

H := {(y, t) ∈ E × R : y ∈ E, t = 1}.
Then H is a closed affine hyperplane of the Hilbert space E × R and

ϕ∗∗(0) = ϕ(0) ⇐⇒ (epi ϕ,H) is a minmax pair.

In short, ϕ : E → R is said to be Fenchel regular at 0, if ϕ∗∗(0) = ϕ(0).
A function ϕ is said to be Fenchel regular if ϕ∗∗ = ϕ. Fenchel showed
that lower-semicontinuous proper convex functions are regular [2, Ch. III
§37, p. 91]

(13) (Fenchel equality and minmax pairs) Let ϕ,ψ : E → R be convex
functions. Let H be as in (12) and

F := {(y, 1,−y, 1) ∈ (E × R)2 : y ∈ E}.
Then F is a closed affine subspace of the Hilbert space (E × R)2 and

(ϕ, ψ) is a Fenchel pair

⇐⇒ (epi ϕ × epiψ,F) is a minmax pair

⇐⇒ (epi ϕ + epi(ψ ◦ σ),H) is a minmax pair

where σ : E → E defined be σ(y) := −y.
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(14) (Fenchel inf-convolution formula and minmax pairs) In [2, Ch. III §5,
proof of Prop. 47 p. 106] Fenchel used the inf-convolution formula
“ϕ∗∇ψ∗(0) = (ϕ + ψ)∗(0)”. Observe that

ϕ∗∇ψ∗(0) = (ϕ + ψ)∗(0)
⇐⇒ (epi ϕ × epiψ,F) is a minmax pair

⇐⇒ (epi ϕ + epi(ψ ◦ σ),H) is a minmax pair,

for everyϕ,ψ : E → R convex functions with epi ϕ �= ∅ and epiψ �= ∅,
and H , F and σ are as in (13).

(15) (Moreau inf-convolution formula and minmax pairs) In [5, §9.a, p. 56]
Moreau investigated the inf-convolution formula “ϕ∇ψ(0) = (ϕ∗ +
ψ∗)∗(0)”. Observe that

ϕ∇ψ(0) = (ϕ∗ + ψ∗)∗(0) ⇐⇒ (epi ϕ × epiψ,F ′) is a minmax pair

⇐⇒ (epi ϕ + epiψ,H) is a minmax pair,

where ϕ,ψ , H are as above in (14) and F ′ is a closed affine subspace
of the Hilbert space (E × R)2 which is defined by

F ′ := {(y, 1, y, 1) ∈ (E × R)2 : y ∈ E}.

(16) (Fenchel regularity of inf-convolution and minmax pairs) Let ϕ,ψ :
E → R be convex functions. Let H be as in (12). Then

(ϕ∇ψ)∗∗(0) = (ϕ∇ψ)(0) ⇐⇒ (epi ϕ + epiψ,H) is a minmax pair.

Together observations (12)–(16) show that the concept of minmax convex
pairs unifies much of convex duality theory. It is noteworthy that as basic
bivariate function we invoked merely the inner scalar product. Also noteworthy
is the importance of instances in which the second set of the minmax pair is
an affine closed subspace or an hyperplane. This last observation motivated us
to give Theorem 0.1: a “geometric characterization” of such instances.

3. Concluding Comments

To illustrate the topological significance of properties (2) and (3) we apply
Theorem 1 to Fenchel equalities and to biconjugation formulae.

Taking into account (13), we have a basic “null duality gap theorem” whose
sketched out proof provides a topological insight into (2) and (3).
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Theorem 3.1 (Null duality gap). Let ϕ,ψ : E → R arbitrary convex
functions. Then (ϕ, ψ) is a Fenchel pair if and only if the following properties
hold:

(17) inf
x∈E{ϕ(x)+ ψ(x)} ≤ lim inf

v→0
inf
x∈E{ϕ(x)+ ψ(x + v)} (inf-normality)

(18) either inf
x∈E

{ϕ(x)+ ψ(x)} < +∞
or sup

y∈E
{(−ϕ)∗(y)+ (−ψ)∗(−y)} > −∞ (feasibility).

Proof. Without loss of generality assume epi ϕ �= ∅ and epiψ �= ∅. Set
(1∗)
X := epi ϕ × epiψ and F := {(y, 1,−y, 1) ∈ (E × R)2 : y ∈ E}.

Clearly X is a nonempty convex set and F is a closed affine subspace of the
Hilbert space (E × R)2. We have

eF = (0, 1, 0, 1)(2∗)

F0 = {(y, λ,−y, λ) : y ∈ E, λ ∈ R}(3∗)

pr0(x, t, x
′, t ′) = 1

2
(x − x ′, t + t ′, x ′ − x, t + t ′)(4∗)

for all (x, t, x ′, t ′) ∈ (E × R)2

inf{λ ∈ R : λeF ∈ pr0 X} =
1

2
inf
x∈E

{ϕ(x)+ ψ(x)}(5∗)

inf{λ ∈ R : λeF ∈ pr0 X} =
1

2
lim inf
v→0

inf
x∈E{ϕ(x)+ ψ(x + v)}(6∗)

pr0X ∩ ReF �= ∅ ⇐⇒ lim inf
v→0

inf
x∈E{ϕ(x)+ ψ(x + v)} < +∞(7∗)

− eF �∈ pr0 X
∞ ⇐⇒ sup

y∈E
{(−ϕ)∗(y)+ (−ψ)∗(−y)} > −∞.(8∗)

Hence, from (13) and Theorem 0.1 the required equivalence follows.

If the affine subspace F in Theorem 0.1 is an hyperplane, the orthogonal
projection pr0 is the identity of E. Therefore

Theorem 3.2 (Minmax convex pairs and affine hyperplanes). Let H be a
closed affine hyperplane of E with ‖eH‖ �= 0. Let X be a nonempty convex
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subset of E. Then (X,H) is a minmax pair if and only if the following two
conditions hold:

(19) inf{λ ∈ R : λeH ∈ X} = inf{λ ∈ R : λeH ∈ X} (inf-normality),

(20) either X ∩ ReH �= ∅ or − eH �∈ X∞
(feasibility).

Hence, from (12) we have the following (known) basic criterion for bicon-
jugation formulae.

Theorem 3.3 (Biconjugation formula). Let ϕ : E → R an arbitrary convex
function. Then

(21) ϕ∗∗(0) = ϕ(0) ⇐⇒
{
(i) ϕ is lower semicontinuous at 0

(ii) either ϕ(0) < +∞ or ϕ∗∗(0) > −∞.

Proof. Without loss of generality assume epi ϕ �= ∅. Set

(1∗) X := epi ϕ and H := {(y, 1) ∈ E × R : y ∈ E}.
Clearly X is a nonempty convex set and H is closed affine hyperplane of the
Hilbert space E × R. We have

eH = (0, 1)(2∗)

inf{λ ∈ R : λeF ∈ X} = ϕ(0)(3∗)
and inf{λ ∈ R : λeF ∈ X} = lim inf

x→0
ϕ(x)

X ∩ ReH �= ∅ ⇐⇒ lim inf
x→0

ϕ(x) < +∞(4∗)

− eH �∈ X∞ ⇐⇒ ϕ∗∗(0) > −∞.(5∗)

Hence, from (12) and Theorem 0.1 the required equivalence follows.

Theorem 3.4 (A criterion for minmax convex pairs [3]). A couple (X, Y )
of nonempty convex sets is a minmax pair if and only if the following properties
hold:

(22) inf
x∈X

sup
y∈Y

〈x, y〉 ≤ lim
ε→0

inf
x∈Bε(X)

sup
y∈Y

〈x, y〉 (inf-normality)

(23) either inf
x∈X

sup
y∈Y

〈x, y〉 < +∞ or sup
y∈Y

inf
x∈X

〈x, y〉 > −∞ (feasibility)

(24) sup
y∈Y

inf
x∈X

〈x, y〉 = sup
y∈Y

inf
x∈X

〈x, y〉 (boundary sup-negligibility).
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Proof. First, observe that

(1∗) sup
y∈Y

inf
x∈X

〈x, y〉 ≤ sup
y∈Y

inf
x∈X

〈x, y〉 ≤ inf
x∈X

sup
y∈Y

〈x, y〉 = inf
x∈X

sup
y∈Y

〈x, y〉.

Define ϕ,ψ : E → R by ϕ := δX and ψ := δ+Y . Then

(2∗) inf
x∈X

sup
y∈Y

〈x, y〉 = inf
x∈E{δX(x)+ δ

+
Y (x)}.

Moreover, since (−δX)∗(y) = δ−X(y) and (−δ+Y )∗(−y) = δY (y), we have

(3∗) sup
y∈E

{(−δX)∗(y)+ (−δ+Y )∗(−y)} = sup
Y

inf
x∈X

〈x, y〉.

Conditions (17) and (18) become (22) and (23), respectively. Hence, from
Theorem 3.1 it follows that
(4∗)
(22)&(23) ⇐⇒ inf

x∈E{δX(x)− δ
+
Y (x)} = sup

y∈E
{(−δX)∗(y)+ (−δ+Y )∗(−y)}.

Therefore, combining (1∗)–(4∗), we have the required equivalence.

Similarly, (11) yields the following criterion.

Theorem 3.5 (A criterion for minmax convex pairs [3]). A couple (X, Y )
of nonempty convex sets is a minmax pair if and only if (22), (23) and the
following property hold:

(25) sup
y∈Y

inf
x∈X

〈x, y〉 ≥ lim
ε→0

sup
y∈Bε(Y )

inf
x∈X

〈x, y〉 (sup-normality).

The previous six theorems 0.1, 3.1–3.5 are “logically equivalent”; that is,
any one of them “implies” the other five. For example

(26) Theorem 3.1 is derivable from Theorem 3.3 by observing that for the
optimal value function γ : E → R (defined by γ (v) := infx∈E{ϕ(x)+
ψ(x + v)}) one has: γ (0) = infx∈E{ϕ(x) + ψ(x)} and γ ∗∗(0) =
supy∈E{(−ϕ)∗(y)+ (−ψ)∗(−y)}.

(27) Theorem 3.2 is derivable from Theorem 3.3 by observing that for the
function ϕX : �H → R which is defined by ϕX(v) := inf{〈x, eH 〉 : x ∈
X ∩ (v + ReH )}, one has: ϕ∗∗X (0) = supy∈H infx∈X〈x, y〉 ≤
infx∈X supy∈H 〈x, y〉 = ϕX(0).

(28) Theorem 3.4 is derivable from Theorem 3.3 by observing that for the
function ϕ : E → R which is defined by ϕ(v) := infx∈X supy∈Y 〈x +
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v, y〉, one has: infv∈Bε(0) ϕ(v) = infx∈Bε(X) supy∈Y 〈x, y〉 and ϕ∗∗(0) =
supy∈Y infx∈X〈x, y〉 ≤ infx∈X supy∈Y 〈x, y〉 = ϕ(0).

Two extremely simplified “equivalent reformulations” of the previous the-
orems are given by the following theorems.

Theorem 3.6 (Minmax pairs of closed convex sets and affine hyperplanes).
LetH be a closed affine hyperplane ofE with ‖eH‖ �= 0. For every nonempty
closed convex set X:

(29) (X,H) is a minmax pair ⇐⇒ either X∩ReH �= ∅ or −eH �∈ X∞.

Theorem 3.7 (Biconjugation formula). Let ϕ : E → R a lower-semi-
continuous convex function. Then

(30) ϕ∗∗(0) = ϕ(0) ⇐⇒ either ϕ(0) < +∞ or ϕ∗∗(0) > −∞.
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