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ODD RIEMANNIAN SYMMETRIC SPACES
ASSOCIATED TO FOUR-FORMS

VICENTE CORTÉS∗

Abstract
To any four-form � satisfying certain system of quadratic equations a Lie superalgebra � =
�0 + �1 endowed with an invariant scalar superproduct is associated. The geometric structure of
the corresponding odd symmetric superspace, which is of hyper-Kähler type, is described. Finally,
some classes of solutions to the quadratic system are discussed.

1. Introduction

Hyper-Kähler manifolds are Riemannian manifolds with holonomy group in
Sp(n) ⊂ SO(4n). As examples of Ricci-flat Einstein manifolds, they are partic-
ularly interesting but not easy to construct [4]. It is natural to extend the above
definition to the case when the manifold is endowed with a pseudo-Riemannian
(i.e possibly indefinite) metric, as follows: a pseudo-hyper-Kähler manifold is a
pseudo-Riemannian manifold with holonomy in Sp(k, l) ⊂ SO(4k, 4l). There
is an other natural extension of hyper-Kähler manifolds from the Rieman-
nian to the pseudo-Riemannian setting: a para-hyper-Kähler manifold is a
pseudo-Riemannian manifold with holonomy in the real symplectic group
IdR2 ⊗ Sp(R2n) ⊂ GL(R2 ⊗ R2n), which is a subgroup of SO(2n, 2n). These
two types of constraints on the holonomy of a pseudo-Riemannian manifold
correspond to the different real forms, Sp(k, l) and Sp(R2n), of the complex
symplectic group Sp(C2n).

It was found in [1], [2] that non-flat pseudo-Riemannnian symmetric spaces
with pseudo-hyper-Kählerian and para-hyper-Kählerian holonomy exist in
abundance. They all have solvable holonomy group and correspond to solu-
tions of a system of homogeneous quadratic equations for a quartic tensor S,
see (1) below.

The aim of this paper is to extend this correspondence to the category of
supermanifolds. The role of the quartic tensor S will be played by a four-form
� satisfying a new system of quadratic equations (2).
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In the following, we state the results of [6], [1], [2] which we shall transpose
to the category of supermanifolds. The main results of this paper will be briefly
summarized at the end of the introduction.

Let (E, ωE) and (H, ωH ) be (real or complex) symplectic vector spaces
of dimension 2n and 2 respectively. Given a quartic tensor S ∈ S4E and two
vectors e, e′ ∈ E, the contraction of S with ee′ ∈ S2E, by means of ωE ,
is denoted See′ ∈ S2E. We can consider the following system of quadratic
equations:

(1) See′ · S = 0 for all e, e′ ∈ E,

where the dot stands for the action of the symplectic Lie algebra ��(E) ∼= S2E

on the ��(E)-module S4E.
The following theorem was proven in [1].

Theorem 1. Any S ∈ S4E satisfying the equation (1) defines a Lie algebra
� endowed with a Z/2Z-grading � = �0 + �1 of Lie algebras. More precisely,

�0 := SEE := span{See′ | e, e′ ∈ E} ⊂ S2E ∼= ��(E),

�1 := E ⊗ H,

with �0 acting via the identification ��(E) ∼= ��(E)⊗ IdH ⊂ ��(E ⊗H) and

[e ⊗ h, e′ ⊗ h′] := ωH(h, h
′)See′ .

LetG be the simply connected Lie group with Lie algebra � andK ⊂ G the
closed connected Lie subgroup with Lie algebra K = �0. Then MS = G/K

is a simply connected symmetric space. The scalar product ωE ⊗ ωH induces
on M a G-invariant pseudo-Riemannian metric if the ground field K is R and
a G-invariant complex (i.e. holomorphic) Riemannian metric if K = C. More
precisely, we have the following results:

Theorem 2 ([1]). Let K = C. Any complex Riemannian symmetric space
MS = G/K associated to S ∈ S4E satisfying equation (1) admits a G-
invariant complex hyper-Kähler structure and any simply connected symmetric
complex hyper-Kähler manifold is of this form.

Moreover, it was proven in [1] that the complex manifold MS admits a real
form which is a symmetric pseudo-hyper-Kähler manifold, provided that S
satisfies a suitable reality condition. The reality condition is defined using a
quaternionic structure jE on E which satisfies j ∗

EωE = ω̄E .
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Theorem 3 ([2]). Let K = R. Any pseudo-Riemannian symmetric space
MS = G/K associated to S ∈ S4E satisfying equation (1) admits a G-
invariant para-hyper-Kähler structure. Conversely, any simply connected sym-
metric para-hyper-Kähler manifold is of this form.

It is shown in [1], [2] that any tensor S ∈ S4E0 ⊂ S4E over an isotropic
subspace E0 ⊂ (E, ωE) is a solution of (1) and defines a complex hyper-
Kähler (respectively, a para-hyper-Kähler) symmetric space MS with Abelian
holonomy group if K = C (respectively, if K = R). In the case K = C, the
complex manifold MS admits a real form which is a symmetric pseudo-hyper-
Kähler manifold with Abelian holonomy group, provided that S satisfies a
suitable reality condition. Conversely, any complex hyper-Kähler, para-hyper-
Kähler or pseudo-hyper-Kähler symmetric space withAbelian holonomy group
is obtained in this way, see Theorem 10.

The problem of determining the general solution of the quadratic system
(1) is open, despite the attempt of [1] to prove that any solution is a quartic
tensor over an isotropic subspace, which is inconclusive due to a sign mistake
in the calculations. Pseudo-hyper-Kähler symmetric spaces with non-Abelian
holonomy group were recently constructed by Kath and Olbrich [7]. They
correspond to solutions of (1), for which there is no isotropic subspace E0

such that S ∈ S4E0 ⊂ S4E.
The following result is due to Cahen and Parker [6]:

Theorem 4. Let � = �0 + �1 be a Z/2Z-graded Lie algebra such that
�0 = [�1, �1]. If �1 is endowed with an ad�0 -invariant scalar product 〈·, ·〉1

then there exists a unique ad�0 -invariant scalar product 〈·, ·〉0 on �0 which
extends 〈·, ·〉1 to an ad�-invariant scalar product 〈·, ·〉 = 〈·, ·〉0 ⊕ 〈·, ·〉1 on �.

As a corollary, we obtain

Corollary 1. Let � = �0 + �1 be the Lie algebra defined by a quartic
tensor S ∈ S4E satisfying the equation (1) and K ⊂ G two connected Lie
groups with LieG = � and LieK = � := �0. Then there exists a unique
AdK -invariant scalar product 〈·, ·〉0 on �0 which extends the AdK -invariant
scalar product 〈·, ·〉1 := ωE ⊗ωH on �1 = E⊗H to an AdG-invariant scalar
product 〈·, ·〉 = 〈·, ·〉0 ⊕ 〈·, ·〉1 on �. It is defined by

〈See′ , Se′′e′′′ 〉0 := ωE(See′e′′, e′′′) for all e, e′, e′′, e′′′ ∈ E.

Proof. Since G is connected, the AdG-invariance of the scalar product is
equivalent to the ad�-invariance, i.e. to:

〈[X, Y ], Z〉 = −〈Y, [X,Z]〉
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for all elements X, Y and Z of �. Evaluating this for X = e⊗h, Y = e′ ⊗h′ ∈
�1 = E ⊗ H and Z = Se′′e′′′ ∈ �0 = SEE , we get

ωH(h, h
′)〈See′ , Se′′e′′′ 〉0 = 〈e′ ⊗ h′, Se′′e′′′e ⊗ h〉1

= −ωH(h, h
′)ωE(e

′, Se′′e′′′e)

= ωH(h, h
′)ωE(See′e′′, e′′′).

This establishes the explicit formula for the scalar product.

Lie algebras admitting an ad-invariant scalar product and Lie superalgebras
admitting an ad-invariant scalar superproduct have been much studied in the
literature, see e.g. [11], [5], [8], [3] and [9]. They play some role in BRST
quantization, see e.g. [10].

The main purpose of this paper is to introduce and study an interesting
class of Lie superalgebras � = �(�) = �0 +�1 which are associated to certain
four-forms� and admit an ad-invariant scalar superproduct. The basic data for
the construction are the same as above, with the difference that, instead of a
symplectic vector space (E, ωE), we will now consider a vector space (E, gE)
of arbitrary dimensionn endowed with a scalar productgE (i.e. a nondegenerate
symmetric bilinear form on E). The role of the quartic symmetric tensor S is
now played by a four-form � ∈ ∧4E ∼= ∧4E∗ satisfying the following system
of quadratic equations:

(2) �e∧e′ · � = 0 for all e, e′ ∈ E,

where �e∧e′ ∈ ∧2E stands for the contraction of � with e ∧ e′ by means of
gE , the dot stands for the action of the orthogonal Lie algebra ��(E) ∼= ∧2E

on the ��(E)-module ∧4E.
Analogues in the category of supermanifolds of the above Theorems 1, 2, 3

and 4 are established below in Theorems 5, 7, 8 and 6, respectively. Moreover,
some classes of solutions of the equation (2) are discussed. In particular, all
solutions for which the Lie subalgebra �E∧E ⊂ ��(E) is Abelian are determ-
ined, see Theorem 9.

I thank Dmitri Alekseevsky, Saïd Benayadi, Lionel Bérard Bergery, and
Francisco Martín Cabrera for useful discussions.
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2. Lie superalgebras associated to four-forms

Let E be a K-vector space of dimension n and gE a scalar product on E, i.e. a
nondegenerate symmetric bilinear form.

Theorem 5. Any � ∈ ∧4E satisfying the equation (2) defines a Lie super-
algebra � = �(�) = �0 + �1. More precisely,

�0 := �E∧E := span{�e∧e′ | e, e′ ∈ E} ⊂ ∧2E ∼= ��(E),

�1 := E ⊗ H,

with �0 acting via the identification ��(E) ∼= ��(E)⊗ IdH ⊂ ��(E ⊗H) and

[e ⊗ h, e′ ⊗ h′] := ωH(h, h
′)�e∧e′ .

Proof. We have to check that, with the above definitions, the Jacobi iden-
tity is satisfied. Using equation (2), we first check that �0 ⊂ ��(E) is a Lie
subalgebra:

0 = (�e∧e′ · �)e′′∧e′′′

= [�e∧e′ , �e′′∧e′′′ ] − �(�e∧e′ e′′)∧e′′′ − �e′′∧(�e∧e′ e′′′).

This shows that [�e∧e′ , �e′′∧e′′′ ] ∈ �E∧E for all e, e′, e′′, e′′′ ∈ E and, hence,
that �0 ⊂ ��(E) is a Lie subalgebra. In particular, the Jacobi identity is satisfied
for X, Y,Z ∈ �0. It is also satisfied for X, Y ∈ �0 and Z ∈ �1, since �1 is a
�0-module. So we are left with two cases.

Case 1: X = �e′′∧e′′′ ∈ �0 and Y = e ⊗ h, Z = e′ ⊗ h′ ∈ �1 = E ⊗ H .
Using equation (2), we obtain:

[X, [Y,Z]] − [[X, Y ], Z] − [Y, [X,Z]]

= ωH(h, h
′)([�e′′∧e′′′ , �e∧e′ ] − �(�e′′∧e′′′ e)∧e′ − �e∧(�e′′∧e′′′ e′))

= ωH(h, h
′)(�e′′∧e′′′ · �)e∧e′ = 0.

Case 2: X = e ⊗ h, Y = e′ ⊗ h′, Z = e′′ ⊗ h′′ ∈ �1 = E ⊗ H . Using the
skew-symmetry of � ∈ ∧4E in the first three arguments, we get:

[X, [Y,Z]] − [[X, Y ], Z] + [Y, [X,Z]]

= −ωH(h
′, h′′)�e′∧e′′e ⊗ h − ωH(h, h

′)�e∧e′e′′ ⊗ h′′

− ωH(h, h
′′)�e∧e′′e′ ⊗ h′

= −�e∧e′e′′ ⊗ (ωH (h, h
′)h′′ + ωH(h

′, h′′)h + ωH(h
′′, h)h′).
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Now it is sufficient check that

ωH(h, h
′)h′′ + ωH(h

′, h′′)h + ωH(h
′′, h)h′ = 0

for all h, h′, h′′ ∈ H . This is obvious, since this cyclic sum is completely skew
in (h, h′, h′′) and dim H = 2.

The above calculation shows that adX : Y → [X, Y ] is a superderivation
for all X ∈ �. This is the content of the Jacobi identity.

3. Invariant scalar superproducts on a class of Lie superalgebras

Definition 1. Let V = V0 ⊕ V1 be a Z/2Z-graded K-vector space. The
elements of V0 ∪ V1 are called homogeneous elements. The degree α ∈ Z/2Z
of X ∈ Vα is denoted by X̃. A K-bilinear form 〈·, ·〉 on V is called even if
〈V0, V1〉 = 〈V1, V0〉 = 0. An even K-bilinear form 〈·, ·〉 on V and is called
supersymmetric if

〈X, Y 〉 = (−1)X̃Ỹ 〈Y,X〉
for all homogeneous elements X, Y ∈ V . A scalar superproduct, more pre-
cisely, an even scalar superproduct, on V is a nondegenerate even supersym-
metric K-bilinear form 〈·, ·〉 on V .

In other words, a scalar superproduct is a direct sum 〈·, ·〉 = 〈·, ·〉0 ⊕ 〈·, ·〉1

of a (possibly indefinite) scalar product 〈·, ·〉0 on V0 and a symplectic bilinear
form 〈·, ·〉1 on the ungraded vector space underlying V1.

Definition 2. Let � = �0 + �1 be a Lie superalgebra. A symmetric de-
composition (or Z/2Z-grading) of � is a direct decomposition � = � + � of
Z/2Z-graded vector spaces such that

[�, �] ⊂ �, [�,�] ⊂ � and [�,�] ⊂ �.

Here we prove the following generalization of Theorem 4:

Theorem 6. Let � = � + � be a symmetric decomposition of a Lie su-
peralgebra � = �0 + �1 such that � = [�,�]. If � is endowed with an ad�-
invariant scalar superproduct 〈·, ·〉� then there exists a unique ad�-invariant
scalar superproduct 〈·, ·〉� on � which extends 〈·, ·〉� to an ad�-invariant scalar
superproduct 〈·, ·〉 = 〈·, ·〉� ⊕ 〈·, ·〉� on �.

Proof. The ad�-invariance of the scalar superproduct 〈·, ·〉 means that

(3) 〈[X, Y ], Z〉 = −(−1)X̃Ỹ 〈Y, [X,Z]〉
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for all homogeneous elements X, Y,Z ∈ �. Now let X, Y,Z,W ∈ � and
put A = [X, Y ] and B = [Z,W ] ∈ � = [�,�]. The ad�-invariance of
〈·, ·〉 = 〈·, ·〉� ⊕ 〈·, ·〉� implies that

(4) 〈A,B〉� = −(−1)X̃Ỹ 〈Y, [X,B]〉�.

This proves the uniqueness. To prove the existence we have to prove that
the right-hand side of (4) depends only on A and B and check the full ad�-
invariance. It is clear that the right-hand side of (4) depends on Z,W ∈ �
only through B = [Z,W ]. Similarly, it depends on X, Y ∈ � only through
A = [X, Y ], in virtue of the identity

(5) (−1)X̃Ỹ 〈Y, [X,B]〉� = (−1)Z̃W̃ 〈[A,W ], Z〉�,

which follows from the next lemma. To prove this identity we first remark that

(6) � × � � (X, Y ) �→ R(X, Y ) := − ad[X,Y ] |� ∈ ���(�)

defines an algebraic curvature tensor R of type ���(�), i.e. a skew-symmetric
(in the super sense) bilinear form on the supervector space � with values in
the orthosymplectic Lie superalgebra ���(�) which satisfies the first Bianchi
identity:

R(X, Y )Z + (−1)X̃(Ỹ+Z̃)R(Y, Z)X + (−1)Z̃(X̃+Ỹ )R(Z,X)Y = 0

for all X, Y,Z ∈ �.

Proposition 1. Let � = � + � be a symmetric decomposition of a Lie
superalgebra � and R : � × � → ���(�) the bilinear map defined by (6).
Then R is an ad�-invariant algebraic curvature tensor R of type ���(�).

Proof. The Bianchi identity and ad�-invariance of R follow both from the
Jacobi identity of �.

Lemma 1. Let V be a supervector space endowed with a scalar super-
product 〈·, ·〉 and R any algebraic curvature tensor of type ���(V ). Then R is
symmetric in pairs:

(7) 〈R(X, Y )Z,W 〉 = (−1)(X̃+Ỹ )(Z̃+W̃ )〈R(Z,W)X, Y 〉, X, Y, Z,W ∈ V.
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Proof. We calculate

〈R(X, Y )Z,W 〉
= −〈(−1)X̃(Ỹ+Z̃)R(Y, Z)X + (−1)Z̃(X̃+Ỹ )R(Z,X)Y,W 〉
= 〈X,R(Y,Z)W 〉 + (−1)X̃(Ỹ+Z̃)〈Y,R(Z,X)W 〉
= −〈X, (−1)Ỹ (Z̃+W̃ )R(Z,W)Y + (−1)W̃(Ỹ+Z̃)R(W, Y )Z〉

− (−1)X̃(Ỹ+Z̃)〈Y, (−1)Z̃(X̃+W̃ )R(X,W)Z + (−1)W̃(Z̃+X̃)R(W,Z)X〉
= 2(−1)(X̃+Ỹ )(Z̃+W̃ )〈R(Z,W)X, Y 〉

+ (−1)W̃(Ỹ+Z̃)
(
(−1)X̃(W̃+Ỹ )〈R(W, Y )X,Z〉 + 〈R(X,W)Y,Z〉)

= 2(−1)(X̃+Ỹ )(Z̃+W̃ )〈R(Z,W)X, Y 〉 − (−1)W̃ Z̃+Ỹ X̃〈R(Y,X)W,Z〉
= 2(−1)(X̃+Ỹ )(Z̃+W̃ )〈R(Z,W)X, Y 〉 − 〈R(X, Y )Z,W 〉.

This proves (7).
Let us now check that (7) implies (5):

(−1)X̃Ỹ 〈Y, [X,B]〉� = −(−1)B̃(X̃+Ỹ )〈[B,X], Y 〉�

= (−1)(Z̃+W̃ )(X̃+Ỹ )〈R(Z,W)X, Y 〉�

(7)= 〈R(X, Y )Z,W 〉� = −〈[A,Z],W 〉�

= (−1)Z̃W̃ 〈[A,W ], Z〉�.

We have shown that equation (4) defines a scalar superproduct 〈·, ·〉 = 〈·, ·〉� ⊕
〈·, ·〉� on �. By construction, this scalar superproduct satisfies (3) if at least
one of the three vectors X, Y,Z is in �. The ad�-invariance of 〈·, ·〉� follows
from that of 〈·, ·〉� and the Jacobi identity (which implies the ad�-invariance
of the Lie superbracket), since 〈·, ·〉� is canonically defined in terms of 〈·, ·〉�

and the Lie superbracket. This finishes the proof of Theorem 6.

Corollary 2. Let � = �0 + �1 be the Lie superalgebra defined by a
four-form � ∈ ∧4E satisfying the equation (2). Then there exists a unique
ad�0 -invariant scalar product 〈·, ·〉0 on �0 which extends the ad�0 -invariant
scalar superproduct 〈·, ·〉1 := gE ⊗ ωH on �1 = E ⊗ H to an ad�-invariant
scalar superproduct 〈·, ·〉 = 〈·, ·〉0 ⊕ 〈·, ·〉1 on �. It is defined by

〈�e∧e′ , �e′′∧e′′′ 〉0 := gE(�e∧e′e′′, e′′′) for all e, e′, e′′, e′′′ ∈ E.

Notice that gE(�e∧e′e′′, e′′′) = �(e, e′, e′′, e′′′) is the full contraction of
� ∈ ∧4E with e ∧ e′ ∧ e′′ ∧ e′′ ∈ ∧4E by means of gE . Similarly, in the even
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case, ωE(See′e′′, e′′′) = S(e, e′, e′′, e′′′) is the full contraction of S ∈ S4E with
ee′e′′e′′′ ∈ S4E by means of ωE .

Proof. It is sufficient to establish the explicit formula for the scalar product,
whose existence and uniqueness was proven in Theorem 6. (Here � = �0 and
� = �1.) Evaluating (3) for X = e ⊗ h, Y = e′ ⊗ h′ ∈ �1 = E ⊗ H and
Z = �e′′∧e′′′ ∈ �0 = �E∧E , we get

ωH(h, h
′)〈�e∧e′ , �e′′∧e′′′ 〉0 = −〈e′ ⊗ h′, �e′′∧e′′′e ⊗ h〉1

= ωH(h, h
′)gE(e′, �e′′∧e′′′e)

= ωH(h, h
′)gE(�e∧e′e′′, e′′′).

This proves the explicit formula for the scalar superproduct.

4. Odd symmetric superspaces associated to four-forms

In this section we will reconsider the Lie superalgebras � = �(�) constructed
in Theorem 5. The symmetric decomposition � = � + �, � := �0, � := �1,
can be considered as an infinitesimal model of a symmetric superspace, which
is purely odd since � = �1. We will describe its additional invariant special
geometric structures.

Since we do not wish to develop, nor to assume, here the theory of Lie
supergroups G and their homogeneous superspaces G/K , we prefer to keep
the discussion on the infinitesimal level. This means that instead of discussing
G/K endowed with some geometric structure invariant under the Lie super-
group G, we shall only consider the corresponding pairs (�, �) of Lie superal-
gebras endowed with the corresponding ad�-invariant linear algebraic data on
the vector superspace �/�.

Definition 3. An (effective) infinitesimal homogeneous superspace is a
pair (�, �) consisting of a Lie superalgebra � and a graded subalgebra � ⊂ �
such that � does not contain any proper ideal of �. If, moreover, � is endowed
with a symmetric decomposition � = � + �, then (�, �,�) is called an in-
finitesimal symmetric superspace. An odd infinitesimal symmetric space is an
infinitesimal symmetric superspace such that � is purely odd, i.e. � = �1.
Two infinitesimal symmetric superspaces (�, �,�) and (�′, �′,�′) are called
isomorphic if there exists an isomorphism of Lie superalgebras φ : � → �′
such that φ� = �′ and φ� = �′. The map φ : � → �′ is called an isomorphism
of infinitesimal symmetric superspaces.

Notice that an infinitesimal symmetric superspace (�, �,�) is completely
determined by the involutive automorphism σ with the eigenspaces

� = {X ∈ � | σX = X} and � = {X ∈ � | σX = −X}.
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The elements of � are called infinitesimal transvections. They generate the
ideal �tr := [�,�] + � ⊂ �.

Definition 4. Let (�, �,�) be an infinitesimal symmetric superspace. It
is called minimal if � = [�,�], i.e. � = �tr . The infinitesimal symmetric
space (�tr, [�,�]) is called the minimal model of (�, �,�). Two infinites-
imal symmetric superspaces are called equivalent if their minimal models are
isomorphic.

Since we are only interested in infinitesimal symmetric superspaces up to
equivalence, we will always assume that � = [�,�].

In the following we will consider infinitesimal symmetric superspaces
(�, �,�) such that � is endowed with some ad�-invariant structure, such as
a scalar superproduct.

Definition 5. An infinitesimal complex Riemannian symmetric super-
space is an infinitesimal symmetric superspace (�, �,�) over C equipped
with an ad�-invariant scalar superproduct g on �. An infinitesimal pseudo-
Riemannian symmetric superspace is an infinitesimal symmetric superspace
(�, �,�) over R equipped with an ad�-invariant scalar superproduct g on �.
If the restriction of the scalar superproduct g to the even part �0 ⊂ � =
�0 + �1 is positive definite, then (�, �,�, g) is called an infinitesimal (real)
Riemannian symmetric superspace. An odd infinitesimal Riemannian symmet-
ric space is a real or complex infinitesimal Riemannian symmetric superspace
(�, �,�, g) for which � = �1. Two infinitesimal complex Riemannian or
pseudo-Riemannian symmetric superspaces (�, �,�, g) and (�′, �′,�′, g′) are
called isomorphic if there exists an isomorphism of infinitesimal symmetric
superspaces φ : � → �′ such that φ∗g′ = g.

With these definitions we can state that the Lie superalgebras � = �(�)

constructed in Theorem 5 define a class of minimal odd infinitesimal symmetric
spaces (�, � = �0,� = �1) and that the scalar superproduct

(8) g := 〈·, ·〉1 = gE ⊗ ωH

on � = E ⊗ H defines on (�, �,�) the structure of an odd infinitesimal
Riemannian symmetric space if the ground field K is R and that of an odd
infinitesimal complex Riemannian symmetric space if K = C.

In order to speak about the additional special geometric structure of these
odd infinitesimal Riemannian symmetric spaces we need yet an other defini-
tion.

Definition 6. Let (�, �,�, g) be an infinitesimal Riemannian (respect-
ively, complex Riemannian) symmetric superspace. A hyper-Kähler (respect-
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ively, complex hyper-Kähler) structure on (�, �,�, g) is a triplet of pair-
wise anticommuting even complex structures J1, J2, J3 = J1J2 ∈ End(�)

(i.e. J 2
1 = J 2

2 = J 2
3 = − Id) which are skew-symmetric with respect to

the scalar superproduct g and which commute with ad�. Let (�, �,�, g) be
an infinitesimal pseudo-Riemannian symmetric space. A para-hyper-Kähler
structure on (�, �,�, g) is a triplet of pairwise anticommuting linear maps
J1, J2, J3 = J1J2 ∈ End(�1) satisfying J 2

1 = J 2
2 = −J 2

3 = + Id which are
skew-symmetric with respect to the scalar superproduct g and which commute
with ad�.

Theorem 7. Let K = C. Any infinitesimal complex Riemannian sym-
metric superspace (� = �(�), �,�, g) associated to a four-form � ∈ ∧4E

satisfying equation (2) admits a complex hyper-Kähler structure. (The scalar
superproduct g is defined in (8).) Conversely, any minimal odd infinitesimal
complex Riemannian symmetric space which admits a complex hyper-Kähler
structure is of this form.

Proof. Let us consider H = C2 = H = span{1, i, j, k} with the complex
structure given by left-multiplication Li with i. Then I1 := Ri , I2 := Rj ,
I3 := I1I2 = −Rk is a triplet of C-linear anticommuting complex structures on
H which are skew-symmetric with respect to the standard complex symplectic
structure ωH of C2. Here Ra stands for the right-multiplication by a ∈ H. The
three C-linear operators Jα := IdE ⊗Iα , α = 1, 2, 3, on � = �1 = E⊗H form
again a triplet of anticommuting complex structures and are skew-symmetric
with respect to the scalar superproduct gE ⊗ ωH on the purely odd vector
superspace �1. Moreover, they are obviously invariant under ad� |� ⊂ ��(E)⊗
IdH . This proves that (� = �(�), �,�, g) admits a complex hyper-Kähler
structure.

Now we prove the converse. Let (�, �,�, g) be any minimal odd infinites-
imal complex Riemannian symmetric space which admits a complex hyper-
Kähler structure (J1, J2, J3). We wish to show that it is defined by a four-
form � satisfying equation (2). Notice that by minimality � = [�,�] ⊂ �0.
Since � ⊂ �1, this implies that � = �0 and � = �1. Let us denote by
Q ⊂ ���(�) ∼= ��(C2n) the Lie algebra generated by the g-skew-symmetric
endomorphisms Jα . The action of Q ∼= ��(2,C) defines an identification
� = E ⊗ H of (�, g) with the tensor product of a complex Euclidean vec-
tor space (E, gE) and a two-dimensional complex symplectic vector space
(H = C2, ωH ) such that g = gE ⊗ ωH and Q = IdE ⊗��(H).

Let R denote the algebraic curvature tensor of type ���(�) ∼= ��(C2n)

defined by the equation (6). The operators R(X, Y ), X, Y ∈ �, commute with
the three complex structures Jα on �, by the ad�-invariance of the Jα . This
shows that R : �×� → ���(�) takes values in ��(E)⊗ IdH

∼= ∧2E, which
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is the centralizer of Q in ���(�) = ��(E ⊗ H).
Using the fact that the Jα are skew-symmetric with respect to g and Lem-

ma 1, it follows that R : � × � → ∧2E is invariant with respect to the Lie
algebra Q. Finally, using the super skew-symmetry of R(X, Y ) in X and Y ,
we can interpret R as an ��(H)-equivariant linear map

R : S2E ⊗ S2H + ∧2E ⊗ ∧2H → ∧2E.

Now Schur’s Lemma implies thatR vanishes on the first summand S2E⊗S2H ,
since S2H is a non-trivial irreducible ��(H)-module. More explicitely, this
means that for X = e⊗ h, Y = e′ ⊗ h′, Z = e′′ ⊗ h′′ ∈ � = E ⊗H , we have

[[X, Y ], Z] = −R(X, Y )Z = ωH(h, h
′)�(e ∧ e′)e′′ ⊗ h′′,

where � is a linear map

∧2E → ��(E) ∼= ∧2E ∼= ∧2E∗.

It can be considered as an element � ∈ ∧2E∗ ⊗ ∧2E∗.
Now it is sufficient to show that � is completely skew-symmetric, i.e.

� ∈ ∧4E∗ ∼= ∧4E. The symmetry in pairs of R, see Lemma 1, implies the
symmetry in pairs of �, i.e. � ∈ S2 ∧2 E∗. The (super) Jacobi identity for
X = e ⊗ h, Y = e′ ⊗ h′, Z = e′′ ⊗ h′′ ∈ � = E ⊗ H reads

0 = [[X, Y ], Z] + [[Y,Z], X] + [[Z,X], Y ]

= ωH(h, h
′)�(e ∧ e′)e′′ ⊗ h′′ + ωH(h

′, h′′)�(e′ ∧ e′′)e ⊗ h

+ ωH(h
′′, h)�(e′′ ∧ e)e′ ⊗ h′.

Choosing (h, h′, h′′) such that ωH(h, h
′) = 1 and h′′ = h, we get

0 = �(e ∧ e′)e′′ − �(e′ ∧ e′′)e,

i.e. the invariance of � under cyclic permutations in the first three arguments.
Since � is skew-symmetric in the first two arguments this shows that � ∈
∧3E∗ ⊗E∗ and hence � ∈ S2 ∧2 E∗ ∩ ∧3E∗ ⊗E∗ = ∧4E∗, as claimed. This
proves the theorem.

Remark. Suppose that E is endowed with a quaternionic structure jE
which satisfies j ∗

EgE = ḡE and j ∗
E� = �̄. Then the odd infinitesimal sym-

metric space (� = �(�), �,�) admits a C-antilinear automorphism ρ with the
following properties:

1) (�ρ, �ρ,�ρ) is a (real) odd infinitesimal symmetric space.
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2) g is real-valued on the fixed point set �ρ of ρ|�, defining on (�ρ, �ρ,�ρ)

the structure of an odd infinitesimal Riemannian symmetric space. The scalar
superproduct, denoted by gρ , is the restriction of g to �ρ .

3) The three complex structures Jα , α = 1, 2, 3, commute with ρ|� and,
hence, define on (�ρ, �ρ,�ρ, gρ) a (real) hyper-Kähler structure.

Moreover, any minimal odd infinitesimal Riemannian symmetric space en-
dowed with a hyper-Kähler structure is obtained in this way.

Theorem 8. Let K = R. Any odd infinitesimal Riemannian symmetric
space (� = �(�), �,�, g = gE ⊗ ωH) associated to � ∈ ∧4E satisfying
equation (2) admits a para-hyper-Kähler structure. Conversely, any minimal
odd infinitesimal Riemannian symmetric space, which admits a para-hyper-
Kähler structure is obtained in this way.

Proof. Let us consider the three pairwise anticommuting linear maps

I1 =
(

1 0
0 −1

)
, I2 =

(
0 1
1 0

)
, I3 = I1I2 =

(
0 1

−1 0

)

on H = R2. They satisfy I 2
1 = I 2

2 = −I 2
3 = Id and are skew-symmetric with

respect to the standard symplectic structure ωH on H = R2. The operators
Jα := IdE ⊗Iα , α = 1, 2, 3, on � = �1 = E ⊗ H satisfy J 2

1 = J 2
2 = −J 2

3 =
Id and are skew-symmetric with respect to the scalar superproduct (8). They
are obviously invariant under ad� |� ⊂ ��(E) ⊗ IdH .

The converse can be proven along the lines of the previous proof.

5. Some classes of solutions

Finally, we construct a large family of solutions to the system (2):

Theorem 9. Let E0 ⊂ (E, gE) be an isotropic subspace and � ∈ ∧4E0 ⊂
∧4E. Then � solves (2) and the even part �0 of the corresponding Lie super-
algebra � = �0 + �1 is Abelian. In fact more is true, namely AB = 0 for all
A,B ∈ �0 ⊂ ��(E), when considered as endomorphisms of E. Moreover, any
solution of (2) for which �0 is Abelian is of this form.

Proof. LetE0 ⊂ E be an isotropic subspace and� ∈ ∧4E0. Then ∧2E0 ⊂
∧2E ∼= ��(E) is an Abelian Lie subalgebra with the property that AB = 0 for
all A,B ∈ ∧2E0 and �0 = �E∧E ⊂ ∧2E0. Thus for all x, y, z, w, u ∈ E we
have

(�x∧y · �)z∧wu = [�x∧y,�z∧w]u − �(�x∧yz)∧wu − �z∧(�x∧yw)u

= −�(�x∧yz)∧wu − �z∧(�x∧yw)u

= −�w∧u�x∧yz − �u∧z�x∧yw = 0.
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This shows that � is a solution of (2) with the claimed properties.
Now let � be a solution of (2) for which �0 = �E∧E is Abelian. This means

that for all x, y, z, w, u ∈ E we have

0 = (�x∧y · �)z∧wu = [�x∧y,�z∧w]u − �(�x∧yz)∧wu − �z∧(�x∧yw)u

= 0 − �w∧u�x∧yz − �u∧z�x∧yw
= −�x∧y�w∧uz − �x∧y�u∧zw = −2�x∧y�z∧wu.

Now we can conclude that the support

,� := span{�x∧yz | x, y, z ∈ E} ⊂ E

of � is isotropic. In fact, for all x, y, z, w, u, v ∈ E we have

gE(�x∧yu,�z∧wv) = −gE(u,�x∧y�z∧wv) = 0.

This finishes the proof of the theorem, since any four-form � ∈ ∧4E satisfies
� ∈ ∧4,�.

Similarly, one can prove the following theorem, which implies the clas-
sification of simply connected complex hyper-Kähler, para-hyper-Kähler and
pseudo-hyper-Kähler symmetric spaces with Abelian holonomy group.

Theorem 10. With the same notation as in the introduction, let E0 ⊂
(E, ωE) be an isotropic subspace and S ∈ S4E0 ⊂ S4E. Then S solves (1)
and the even part �0 of the corresponding Lie algebra � = �0 + �1 is Abelian.
In fact more is true, namely AB = 0 for all A,B ∈ �0 ⊂ ��(E). Moreover,
any solution of (1) for which �0 is Abelian is of this form.

The following example shows that there exists solutions of (2) for which �0

is not nilpotent but only solvable.

Example 1. Consider E = K6 endowed with the scalar product gE defined
by gE(pi, pj ) = gE(qi, qj ) = 0 and gE(pi, qj ) = δij , with respect to some
basis (p1, p2, p3, q1, q2, q3) of E. Then

� = p1 ∧ p2 ∧ p3 ∧ q3

is a solution of (2) and

�0 = �E∧E = span{p1 ∧ p2, p1 ∧ p3, p2 ∧ p3, p1 ∧ q3, p2 ∧ q3, p3 ∧ q3}
is a 3-step solvable Lie algebra, which is not nilpotent. This example can be
generalized as follows:
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Theorem 11. Consider E = Kn+4 endowed with a scalar product gE and
an orthogonal decomposition E = K4 + E′. Assume that K4 admits a basis
(p1, p2, q1, q2) such that gE(pi, pj ) = gE(qi, qj ) = 0 and gE(pi, qj ) = δij .
(Such a basis does always exist if K = C.)

(i) For any A ∈ ∧2E′ ∼= ��(E′) ⊂ ��(E) the four-form

� = p1 ∧ p2 ∧ A

is a solution of (2) for which �0 is a solvable Lie algebra.

(ii) The Lie algebra �0 is at most 3-step solvable. It is precisely 3-step solv-
able if A4 �= 0.

(iii) The Lie algebra �0 is nilpotent if and only ifA is nilpotent. More precisely,
�0 is k-step nilpotent if and only if Ak �= 0 and Ak+1 = 0.

Proof. Let us first calculate � = �0 = �E∧E :

� = span{p1 ∧ p2, A} + p1 ∧ AE + p2 ∧ AE.

From this, one can easily check that � · � = 0. Next we calculate the lower
central series

Dk� = [�,Dk−1�] = p1 ∧ Ak+1E + p2 ∧ Ak+1E + p1 ∧ p2gE(E,A
k+1E),

where k ≥ 1 and D0� := �. (Notice that gE(E,Ak+1E) = K if Ak+1 �= 0.)
This shows that � is k-step nilpotent if and only if Ak �= 0 and Ak+1 = 0.
Finally,

[D1�,D1�] = p1 ∧ p2gE(E,A
4E),

and, hence, � is at most 3-step solvable.

The following example shows that there exists also solutions of (2) for
which �0 is semisimple.

Example 2. If dim E = 4, any four-form� ∈ ∧4E ∼= K is a solution of (2)
and, if � �= 0, we have that �0 = ��(E). The corresponding Lie superalgebra
� is simple and belongs to the orthosymplectic series.

It is a challenging problem to determine the general solution of (2).
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