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AMENABLE REPRESENTATIONS AND COEFFICIENT
SUBSPACES OF FOURIER-STIELTJES ALGEBRAS

ROSS STOKKE∗

Abstract
Amenable unitary representations of a locally compact group,G, are studied in terms of associated
coefficient subspaces of the Fourier-Stieltjes algebra B(G), and in terms of the existence of
invariant and multiplicative states on associated von Neumann and C∗-algebras. We introduce
Fourier algebras and reduced Fourier-Stieltjes algebras associated to arbitrary representations,
and study amenable representations in relation to these algebras.

Introduction

The theory of amenable representations was developed in 1990 by M.E.B. Bek-
ka [3]. Bekka proved analogues of all of the classical invariance properties
of amenable groups, including the Følner conditions, and interpreted several
amenability theories in terms of amenable representations. In particular, he
proved that a locally compact group is amenable if and only if each of its
unitary representations is amenable.

We will say that a representation is H -amenable if it has almost invariant
vectors. We give several characterizations of both amenable and H -amenable
representations, in terms of associated coefficient subspaces of the Fourier-
Stieltjes algebra, and in terms of the existence of certain states upon related
von Neumann and C∗-algebras. These results provide new characterizations
of amenable and inner amenable locally compact groups, as well as amenable
action on coset spaces. Coefficient subspaces of the Fourier-Stieltjes algebra
have been studied by several authors, see for example [1], [4], [6], [7], [9], and
[13].

Leptin’s theorem [15] states that a locally compact group G is amenable
precisely when its Fourier algebra,A(G), has a bounded approximate identity.
Leptin’s theorem is the starting point to much of the theory connecting amen-
able locally compact groups to properties of their associated Fourier and group
von Neumann algebras. For each representation π of G, we introduce an as-
sociated Fourier algebra A(π), and a reduced Fourier-Stieltjes algebra B(π).
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In Section 4 we prove that when the Fourier algebra A(π ⊗ π) has a bounded
approximate identity, the representation π is necessarily amenable. With re-
gards to the reduced Fourier-Stieltjes algebras, it is shown that the existence
of an identity, or a bounded approximate identity, in B(π ⊗ π) characterizes
the amenability of π . Several examples are provided in Section 5.

A portion of the material in this paper has appeared in the author’s Ph.D.
thesis, written under the supervision of Professor Anthony T.-M. Lau at the
University ofAlberta, (2003). The author would like to express his appreciation
to Professor Lau for all of his encouragement and for introducing him to the
subject of this work. The author is also very grateful to Professor Fereidoun
Ghahramani for his financial support in the spring and summer of 2003. The
author thanks the referee for his or her valuable comments which provided
significant improvements to this article.

1. Preliminaries

Throughout this paper, G is a locally compact group with fixed left Haar
measuredx and modular function�. References for the material which follows
are [1], [5], [8] and [9].

By a representation {π,H } ofGwe will always mean a continuous unitary
representation, π , on a Hilbert space H . A net of unit vectors ξα in H is called
an almost invariant net of vectors for π , if

‖π(s)ξα − ξα‖ → 0

uniformly on compact subsets of G. The group G endowed with the discrete
topology is denoted by Gd , and πd is the representation π viewed as a rep-
resentation of Gd . If ξ, η ∈ H , then ξ ∗π η(s) = 〈π(s)ξ |η〉 (s ∈ G) is the
associated coefficient function. We write π ∼= γ and π � γ to respectively
indicate unitary equivalence and weak containment.

The Fourier-Stieltjes algebra of G is B(G), and is identified with the dual
of the group C∗-algebra, C∗(G). We will be concerned with the C∗-algebras
associated to {π,H }, C∗

π = π(C∗(G)) and C∗
δ,π = C∗

πd
. The von Neumann

algebra generated by π is the WOT-closure in B(H ) of either 〈π(G)〉 or C∗
π ,

(where 〈·〉 indicates linear span), and is denoted by VNπ . We define Aπ , the
Fourier space associated to π , to be the norm-closure in B(G) of 〈ξ ∗π η :
ξ, η ∈ H 〉; Bπ , the reduced Fourier-Stieltjes space associated to π , is the
w∗-closure of Aπ in B(G). The Banach space Aπ may be identified with the
predual of VNπ , and Bπ may be identified with the dual of C∗

π .
If {λ,L2(G)} is the left regular representation of G, Aλ = A(G) is a

closed ideal of B(G), called the Fourier algebra of G, and Bλ = Br(G) is the
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reduced Fourier-Stieltjes algebra ofG. The reduced group C∗-algebra ofG is
C∗
r (G) = C∗

λ , and the group von Neumann algebra of G is VN(G) = VNλ.

2. Amenable and H -amenable representations

The following definition of an amenable representation was given by M.E.B.
Bekka in [3].

Definition 2.1. A representation {γ,K } ofG is called amenable if there
exists a state ω on B(K ) such that

ω(γ (s)xγ (s−1)) = ω(x) (x ∈ B(K ), s ∈ G).
The state ω is called a G-invariant mean for γ .

For our purposes, we will find it convenient to introduce the following
terminology.

Definition 2.2. A representation {π,H } will be called H -amenable if π
has an almost invariant net of (unit) vectors. If πd isH -amenable, then we will
say that π is Hd -amenable.

Observe that all statements phrased in terms of H -amenability may be
interpreted in terms of Hd -amenability. The following remarks record some
elementary properties of H -amenable representations.

Remarks 2.3. (1) If {π,H } is Hd -amenable, then it is amenable. To see
this, let (ξα) be a net of almost invariant vectors for πd . Consider the vector
state ωξα on B(H ) defined by ωξα (T ) = 〈T ξα|ξα〉 (T ∈ B(H )), and take ω to
be any w∗-limit point in B(H )∗ of (ωξα ). Then it is easily seen that ω satisfies

(1) ω(π(s)x) = ω(xπ(s)) = ω(x) (x ∈ B(H ), s ∈ G).
In particular, ω is a G-invariant mean for π . Conversely, we note that if there
is a state ω on B(H ) such that Equation (1) holds, then π is necessarily Hd -
amenable. This follows, for example, from Proposition 3.1.

(2) The Reiter conditions for amenability and inner amenability, (see for
example [18, Proposition 1.13] in conjunction with [16, Exercise 4.4.5]) show
that

(i) G is amenable ⇔ the left regular representation {λ,L2(G)} isH -amen-
able;

(ii) G is inner amenable ⇔ the conjugation representation {β,L2(G)} is
H -amenable.

When H is a closed subgroup of G we similarly obtain that
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(iii) G acts amenably on G/H ⇔ the quasi-regular representation IndGH1H
is H -amenable.

(3) The statements (i), (ii), and (iii) of [3, Remark 1.2] are valid for H -
amenable representations. Moreover, it is clear that if {π,H } contains an H -
amenable subrepresentation, then {π,H } is also H -amenable.

The following may be compared to [3, Theorem 1.3].

Proposition 2.4. Let {π1,H1}, . . . , {πn,Hn} be representations ofG, and
let π = ∑n

1 ⊕πk . If π is H -amenable, then at least one πk is H -amenable.

Proof. Let H = ∑n
1 ⊕Hk , and let (ξα) be a net of almost invariant vectors

for π . Write ξα = ⊕n
k=1ξα,k . Then 1 = ∑n

k=1 ‖ξα,k‖2 so for some k we may
assume, by passing to a subnet if necessary, that for each α we have ‖ξα,k‖ ≥
1/

√
n. The inequality

‖π(s)ξα − ξα‖ ≥ ‖πk(s)ξα,k − ξα,k‖
now readily yields the H -amenability of πk .

Example 2.5. Let T = {α ∈ C : |α| = 1} be the circle group and let H

be any Hilbert space. Consider the representation defined by

ιH : T → B(H ) : α �→ α idH .

It is obvious that ιH is amenable. But, if ξ is any unit vector in H , then
‖ιH (−1)ξ − ξ‖ = 2 so ιH is not Hd -amenable.

Thus,H -amenability is strictly a stronger property than amenability for rep-
resentations. Moreover, in contrast to the theory of amenable representations
(see [3, Theorems 1.3 and 2.2]), even one-dimensional representations can
fail to be H -amenable, and amenable groups can have representations which
are not H -amenable. In terms of weak containment, it is well-known that the
existence of almost invariant vectors can be simply expressed as follows (see
Corollary F.1.5 of [5] and [1, Proposition 3.1]):

Proposition 2.6. The following are equivalent for a representation {π,H }
of G.

(1) {π,H } is H − amenable (2) 1G � π (3) 1G ∈ Bπ

Corollary 5.4 (ii) of [3] states that when π and γ are amenable represent-
ations, the representation π ⊗ γ is also amenable. Observe that if  is a G-
invariant mean for π⊗γ onB(H ⊗K ), then, by definingω(y) =  (y⊗ idK )
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(y ∈ B(H )), we obtain obtain a G-invariant mean for π on B(H ). Thus, we
can make the following statement.

Proposition 2.7. Let {π,H } and {γ,K } be representations ofG. Then π
and γ are amenable if and only if π ⊗ γ is amenable.

The following is an immediate corollary of [3, Theorem 5.1], Remark 2.3(1),
and Proposition 2.7. It shows that all notions of amenability are equivalent for
representations of the form γ ⊗ γ . As well, it shows that any characteriz-
ation of H -amenable representations yields a characterization of amenable
representations and hence, by [3, Theorem 2.2], of amenable locally compact
groups.

Corollary 2.8. Let {γ,K } a representation of G, and let {γ ,K } be its
conjugate representation. The following are equivalent.

(1) {γ,K } is amenable.

(2) {γ ⊗ γ ,K ⊗ K } is H -amenable.

(3) {γ ⊗ γ ,K ⊗ K } is Hd -amenable.

(4) {γ ⊗ γ ,K ⊗ K } is amenable.

3. Invariant means and multiplicative functionals

We will characterize the amenability and H -amenability of a representation
{π,H } in terms of Aπ , and in terms of the existence of certain states on C∗

δ,π ,
C∗
π , VNπ , and B(H ).

Recall that if A is any Banach algebra, then its dual A ∗ becomes a Banach
A -bimodule through the operations

(2) 〈φ · x, y〉 = 〈φ, xy〉 and 〈x · φ, y〉 = 〈φ, yx〉 (φ ∈ A ∗, x, y ∈ A ).

When A is a C∗-algebra, the operations in equation (2) are often called Sakai-
products, and to avoid confusion, we shall write φ.x and x.φ for all Sakai-
products. The predual M∗ of a von Neumann algebra M is always a Banach
M-submodule of M∗.

According to Proposition 2.8 of [1], for µ ∈ M(G), and u ∈ Aπ ,

(3) π(µ).u = u ∗�µ̌ and u.π(µ) = µ̌ ∗ u,
where

(4) 〈h, µ̌〉 =
∫
G

h(s−1)dµ(s) (h ∈ C0(G)).
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We will call a state φ on either VNπ or C∗
π a π -topological right invariant

mean (or π -TRIM) if

φ.π(f ) = φ (f ∈ L1(G)+1 ).

As well, we have left and two-sided versions of this concept: π -TLIM’s and
π -TIM’s. A state φ on VNπ is a π -right invariant mean (π -RIM) if φ.π(s) =
φ (s ∈ G). A simple argument shows that any π -TRIM is a π -RIM. For u a
function on G, and s, t ∈ G, we write lsu(t) = u(st) and rsu(t) = u(ts).

Proposition 3.1. Let {π,H } be a representation ofG. Then the following
are equivalent.

(1) {π,H } is H -amenable.

(2) There is a net (uα) ⊂ Aπ ∩ P1(G) such that

‖lsuα − uα‖Aπ → 0 (and ‖rsuα − uα‖Aπ → 0)

uniformly on compact subsets of G.

(3) There is a net (uα) ⊂ Aπ ∩ P1(G) such that

‖µ ∗ uα − uα‖Aπ → 0 (µ ∈ M(G)+1 ).
(4) There is a π -TRIM (π -TIM) φ on either VNπ or C∗

π .

Proof. (1) ⇒ (2) Let (ξα) ⊂ H be a net of almost invariant vectors for π .
Letting uα = ξα ∗π ξα , we have lsuα = ξα ∗π π(s−1)ξα . Thus

‖lsuα − uα‖Aπ = ‖ξα ∗π (π(s−1)ξα − ξα)‖Aπ ≤ ‖π(s−1)ξα − ξα‖ → 0

uniformly on compact subsets of G. The proof of the bracketed part of (2) is
similar.

(2) ⇒ (3) Observe thatAπ is a BanachM(G)-module through Equation (3).
It follows from this (see for example [12, Chapter 2]) and Equation (4) that for
any µ ∈ M(G),

µ ∗ u =
∫
G

lsu dµ̌(s) (weak integral).

For µ ∈ M(G)+1 , one can easily establish the inequality

‖µ ∗ uα − uα‖Aπ ≤
∫
G

‖lsuα − uα‖Aπ dµ̌(s).

Assuming without loss of generality that µ ∈ M(G)+1 has compact support, it
is now clear that (3) follows from (2).
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(3) ⇒ (4) It is evident that we are assuming that the equation

(5) ‖uα.π(µ)− uα‖ → 0 (µ ∈ M(G)+1 )
holds. Now any w∗-limit point φ of (uα) in VN∗

π is a state satisfying

(6) φ.π(µ) = φ (µ ∈ M(G)+1 ).
In particular, φ is a π -TRIM on VNπ . Setting φ1 = φ

∣∣
C∗
π

, φ1 is positive,

‖φ1‖ ≤ 1, and φ1.π(f ) = φ1 (f ∈ L1(G)+1 ). Moreover, if f ∈ L1(G)+1 , then
‖π(f )‖ ≤ 1 and

φ1(π(f )) = φ(π(f )) = φ.π(f )(π(e)) = φ(π(e)) = 1.

Thus φ1 is a state on C∗
π . To obtain two-sided means, note that if we assume

the bracketed part of statement (2), then the net (uα) found in the proof of (2)
⇒ (3) satisfies both equation (5) and

‖π(µ).uα − uα‖ → 0 (µ ∈ M(G)+1 ).
Now proceed as above.

(4) ⇒ (1) Let φ be a π -TRIM on C∗
π and let (eα) ⊂ L1(G)+1 be a bounded

approximate identity for L1(G) such that e∗α = eα . Then π(eα) is a (self-
adjoint) bounded approximate identity for C∗

π , so for any f ∈ L1(G)+1 ,

1 = ‖φ‖ = lim φ(π(eα)) = lim φ.π(f )(π(eα))

= lim φ(π(eα)π(f )) = φ(π(f )).

Thus φ ∈ (C∗
π )

∗ = Bπ satisfies∫
G

f (s) ds =
∫
G

f (s)φ(s) ds (f ∈ L1(G)+1 ).

Consequently φ = 1G ∈ Bπ , and π is H -amenable.

Remarks 3.2. (1) The result [3, Corollary 4.5] states that when a repres-
entation {π,H } is amenable, there exists a net (uα) ⊂ Aπ ∩ P1(G) such
that ‖uxα − uα‖Aπ → 0 uniformly on compact subsets of G (where ux(s) =
u(x−1sx)). Moreover, Bekka proves that the converse holds when π is irredu-
cible. Combined with Corollary 2.8, the above result shows that the amenabil-
ity of a representation γ is completely characterized by the existence of a net
converging to left or right translation invariance in the Fourier space Aγ⊗γ .

(2) Letting {π,H } = {λ,L2(G)}, Proposition 3.1 gives a new characteriza-
tion of amenability for a locally compact group in terms of its associated group
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von Neumann algebra, and reduced group C∗-algebra. It is worth noting that
the net in condition (2) converges to 1G uniformly on compact subsets of G.
Thus, in this case the nets from (2) are bounded approximate identities inA(G)
[10, Theorem B2]. Example 5.4 will show that, in general, such a statement is
not possible for arbitrary representations.

(3) A representation {π,H } is H -amenable if and only if there is a net
(uα) ⊂ Aπ ∩ P1(G) such that for every v ∈ A(G), ‖uαv − v‖ → 0. This
follows immediately from the previous remark and [10, Theorem B2].

When our representation is the conjugation representation {β,L2(G)}, the
following contains one of the main results of [20].

Corollary 3.3. Let {π,H } be a representation of G. Then the following
are equivalent.

(1) {π,H } is H -amenable.

(2) There is state φ on VNπ (or B(H )) such that φ(π(µ)) = µ(G), (µ ∈
M(G)).

(3) There is state φ on C∗
π (or VNπ or B(H )) such that φ(π(f )) =∫

G
f (s) ds, (f ∈ L1(G)).

Proof. If π isH -amenable, then the proof of Proposition 3.1 yields a state
φ on VNπ satisfying Equation (6). Then∫

G

dµ(s) = 1 = φ(π(e)) = φ(π(µ)) µ ∈ M(G)+1 .

Statement (2) now follows by considering the Jordan decomposition of an
arbitrary measure µ ∈ M(G). That statement (2) implies statement (3) is
obvious, and it is clear that statement (3) implies that φ = 1G ∈ Bπ .

The following theorem generalizes and extends [2, Theorems 1 and 1’] due
to E. Bédos in the case of the left regular representation. The proof is different
from the one in [2].

Theorem 3.4. The following are equivalent for a representation {γ,K }
of G.

(1) {γ,K } is amenable.

(2) There is a non-zero multiplicative linear functional on C∗
γ⊗γ .

(3) There is a non-zero multiplicative linear functional on C∗
δ,γ⊗γ .

(4) There is a continuous character onGwhich is weakly contained in γ⊗γ
[or (γ ⊗ γ )d].

(5) There is a finite dimensional representation on G which is weakly con-
tained in γ ⊗ γ [or (γ ⊗ γ )d].
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Proof. We will exhibit the equivalence of statements (1), (2), and the non-
bracketed parts of (4) and (5). Observe that amenability of γ and γd are equi-
valent, and that γd ⊗ γd = (γ ⊗ γ )d . By definition, C∗

δ,γ⊗γ = C∗
(γ⊗γ )d , so the

equivalence of all remaining statements will follow.
(1) ⇒ (2) The representation γ is amenable, so 1G ∈ Bγ⊗γ , which is a

non-zero multiplicative linear functional on C∗
γ⊗γ .

(2) ⇒ (4) Let σ ∈ Bγ⊗γ be a non-zero multiplicative linear functional on
C∗
γ⊗γ . Then σ is necessarily a state on C∗

γ⊗γ , which is to say that

σ ∈ Bγ⊗γ ∩ P1(G) = {u ∈ P(G) : u(e) = 1 and πu � γ ⊗ γ },
(see [1] and [8]). If we view σ as an element of L∞(G), it is evident that σ is a
∗-representation of L1(G) into C. Hence, σ is a character on G and it follows
that σ = πσ . Thus, σ � γ ⊗ γ .

(4) ⇒ (5) is trivial.
(5) ⇒ (1) By [3, Theorem 1.3(i)], finite-dimensional representations are

amenable, so it follows from [3, Corollary 5.3] that γ ⊗ γ is amenable. Now
γ is amenable by Corollary 2.8.

Remarks 3.5. (1) Note that the left regular representation λ is quasi-
equivalent to λ ⊗ λ, and consequently λd is quasi-equivalent to (λ ⊗ λ)d . It
follows that there are ∗-isomorphisms between C∗

λ⊗λ and C∗
r (G), and between

C∗
δ,λ⊗λ and C∗

δ,λ. In particular, [2, Theorem 1] is an immediate consequence of
Theorem 3.4.

(2) The continuous character ι = ιH from Example 2.5, is notH -amenable.
Nevertheless C∗

ι has a non-zero multiplicative linear functional, (and indeed
each of the statements (2)–(5) holds when ι replaces γ ⊗ γ ).

(3) Theorem 6.8 of [3], (combined with Corollary 2.8), says that if C∗
δ,γ⊗γ

has a central state, and if C∗
δ,γ⊗γ is amenable, then γ is amenable. Theorem

3.4 may thus be seen as a partial converse to this statement.

We turn now to an examination of the above statements with weak con-
tainment replaced by containment. For a given representation {γ,K }, put
t (γ ) = γ ⊗ γ . With this notation, Corollary 2.8 says 1G � t (γ ) if and
only if 1G � t (t (γ )).

If γ is quasi-equivalent to a subrepresentation of π , we will write γ �Q π
and when γ is contained in π , we write γ ⊂ π . It is well-known that 1G ⊂
t (γ ) if and only if γ contains a finite-dimensional subrepresentation, (see for
example [5, PropositionA.1.10]). We note as well that tensor products preserve
quasi-equivalence.

Proposition 3.6. Let {γ,K } be a representation of G. The following are
equivalent.
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(1) VNγ⊗γ has a non-zero normal multiplicative linear functional.

(2) Aγ⊗γ contains a continuous character.

(3) 1G ⊂ t (t (γ )).

(4) 1G ⊂ t (γ ) = γ ⊗ γ .

Proof. (1) ⇒ (2) Let σ ∈ Aγ⊗γ be a nonzero multiplicative linear func-
tional on VNγ⊗γ . We have σ(s) = 〈(γ ⊗ γ )(s), σ 〉, so σ(st) = σ(s)σ (t),
(s, t ∈ G). Moreover σ is a state on VNγ⊗γ , so σ(s−1) = 〈γ ⊗ γ (s)∗, σ 〉 =
〈γ ⊗ γ (s), σ 〉 = σ(s), and we have 1 = σ(e) = σ(ss−1) = |σ(s)|2. Thus σ
is a character on G.

(2) ⇒ (3) Let σ ∈ Aγ⊗γ be a continuous character onG. ThenAσ ⊂ Aγ⊗γ ,
so by [1, Corollaire 3.14], σ �Q γ ⊗ γ . Therefore 1G ∼= σ ⊗ σ �Q (γ ⊗
γ )⊗ (γ ⊗ γ ) = t (t (γ )), from which it follows that 1G ⊂ t (t (γ )).

(3) ⇒ (4) If 1G ⊂ t (t (γ )), then, as noted above, t (γ ) contains a finite-
dimensional subrepresentation. From the comments at the top of page 386 of
[3], there is a normalG-invariant mean  for γ ⊗ γ on B(K ⊗ K ). The map
y �→ y ⊗ idK : B(K ) → B(K ⊗ K ) is σ − σ continuous, so we can obtain
a normalG-invariant mean ω for γ , (see the paragraph preceding Proposition
2.7). By [3, Theorem 1.4], γ contains a finite-dimensional subrepresentation,
and hence 1G ⊂ γ ⊗ γ .

(4) ⇒ (1) If 1G ⊂ γ ⊗ γ , then 1G ∈ Aγ⊗γ . Now 1G is multiplicative on
〈(γ ⊗ γ )(G)〉 which is σ -dense in VNγ⊗γ . That 1G is a normal multiplic-
ative linear functional on VNγ⊗γ now follows from separate σ -continuity of
multiplication in VNγ⊗γ .

Remarks 3.7. (1) Given a representation π , one can also prove the fol-
lowing equivalence:

VNπ has a normal π -TRIM (or π -RIM) ⇔ 1G ∈ Aπ ⇔ 1G ⊂ π

(2) Corollary 5.9 of [3] shows that for groups G with Khazdan’s prop-
erty (T), a representation γ is amenable if and only if 1G ⊂ γ ⊗ γ . Thus
Proposition 3.6 (and also the previous remark) characterizes the amenable
representations of groups with property (T).

4. The Fourier algebras A(π)

In the preliminary section we defined the Fourier spacesAπ and noted thatAλ
is the Fourier algebra A(G). It is however quite rare for a Fourier space Aπ
to be an algebra [1, Proposition 3.26]. In this section we will define and study
an analogue of the Fourier algebra for an arbitrary representation. Leptin’s
theorem [15] says that a locally compact group G is amenable if and only
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if the Fourier algebra A(G) has a bounded approximate identity. In terms of
representations this says that (H -)amenability of the left regular representation
{λ,L2(G)} is characterized by the existence of a bounded approximate identity
in Aλ. The main result of this section is one direction of Leptin’s theorem for
amenable representations.

LetA(π)denote the closed subalgebra ofB(G)generated by the coefficients
ξ ∗π η of π . We will refer to A(π) as the Fourier algebra associated to π . It is
not difficult to see that A(π) is closed under left and right translations, so by
[1, Théorème 3.17] A(π) = Aτπ for some representation τπ of G. We begin
with an explicit description of this representation which we will find useful.

Let {π,H } be a representation of G. For a positive integer n we employ
the notation

π⊗n = ⊗n
i=1π and H ⊗n = ⊗n

i=1H .

Lemma 4.1. Let {π,H } be a representation of G and consider the associ-
ated representation

{τπ ,Hτπ } =
{ ∞∑
n=1

⊕(π⊗n),
∞∑
n=1

⊕(H ⊗n)
}
.

Then A(π) = Aτπ = A(τπ).

Proof. In fact, this follows from results in [1]. First note that by [1,
Théorème 3.9], every u ∈ Aτπ may be written as a sum u = ∑∞

n=1 un where
un ∈ Aπ⊗n and

∑∞
n=1 ‖un‖ < ∞. It follows from [1, Proposition 3.25] that

Aπ⊗n ⊂ A(π) and so Aτπ ⊂ A(π). For the reverse containment, we need to
show thatAτπ is itself an algebra. By [1, Proposition 3.26] this is so if (and only
if) τπ ⊗τπ is quasi-equivalent to a subrepresentation of τπ . But this certainly is
the case: For example, it is easily checked that∞(τπ⊗τπ ) ∼= ∞(∑∞

n=2 ⊕π⊗n).

In [14] A.T.-M. Lau calls a Banach algebra A an F -algebra if A is the
predual of some von Neumann algebra M such that the identity element of M

is a multiplicative linear functional on A. We remark that F -algebras are now
commonly called Lau algebras and we shall refer to them as such. Observe
that if {τ,Hτ } is a representation of G for which Aτ is an algebra, then τ(e)
is the identity in VNτ = A∗

τ and 〈u, τ(e)〉 = u(e) (u ∈ Aτ ). It follows that
Aτ is a Lau algebra. Thus, for any representation {π,H } ofG, A(π) is a Lau
algebra.

Lemma 4.2. Let {π,H } be a representation ofG. Then {π,H } is amenable
if and only if {τπ ,Hτπ } is amenable.
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Before we prove this, we remark that it has been suggested to the author that
if [3, Theorem 1.3(iii)] carried over to infinite sums, then Lemma 4.2 would
follow from Proposition 2.7. We do not know if such an infinite version of [3,
Theorem 1.3(iii)] is true or not, however we take this opportunity to observe
that the proof (at least) which is given in [3] does not work in the infinite case.
To see this, note that if H = 32, then ιH = ∑∞

n=1 ⊕ιHn
, where ιH is as defined

in Example 2.5 and each Hn = C. Now let (ωn) be the sequence of vector states
associated to the standard basis of 32, and let M̃ be a w∗-limit point of (ωn).
Then M̃ is aG-invariant mean for ιH , but it is readily verified that M̃(Pn) = 0
for each projection Pn onto Hn. For this reason, we give the following proof of
Lemma 4.2. (Observe that, just as proved below, τπ is H -amenable whenever
π is H -amenable. It will be shown in Section 5 that the converse is not true,
so there is no infinite version of Proposition 2.4).

Proof. Suppose first that π is amenable. Then τπ = ∑∞
n=1 ⊕(π⊗n) has an

amenable subrepresentation and it follows from [3, Theorem 1.3(ii)] that τπ is
amenable. For the converse, suppose that ω is a state on B(Hτπ ) such that

ω(τπ(s)Bτπ(s
−1)) = ω(B) (s ∈ G, B ∈ B(Hτπ ).

Define

4 : B(H ) → B(Hτπ ) : B �→
∞∑
n=1

⊕(B ⊗ (⊗n
k=2 idH )).

Then it is easy to see that 4 is a linear isometry such that 4(idH ) = idHτπ
,

and, for any B ∈ B(H ) and s ∈ G, τπ (s)4(B)τπ(s−1) = 4(π(s)Bπ(s−1)).

Therefore, if we define

m(B) = ω(4(B)) (B ∈ B(H )),
then it is clear that m is a G-invariant mean on B(H ) for {π,H }.

Let {π,H } be a representation ofG. We define the reduced Fourier-Stieltjes
algebra, B(π), associated to π as the weak∗-closure of A(π) in B(G). That
is, B(π) = Bτπ . By [1, Proposition 2.20], an element u ∈ B(G) belongs to
Bτπ precisely when there is a bounded net in Aτπ = A(π) which converges to
u uniformly on compact subsets of G. From this it follows easily that B(π)
is indeed a Banach subalgebra of B(G). When our representation is the left
regular representation {λ,L2(G)}, we have B(λ) = Bλ = Br(G), the reduced
Fourier-Stieltjes algebra of G.

If {π,H } is a representation such that Aπ = A(π), let VNπ = A∗
π have its

canonical dual Aπ -module structure.
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Lemma 4.3. Let {π,H } be a representation of G such that Aπ = A(π).

(1) The module action of Aπ on VNπ restricted to π(L1(G)) is given by
pointwise multiplication. That is,

u · π(f ) = π(uf ) (u ∈ Aπ, f ∈ L1(G)).

Consequently C∗
π is a closed Aπ -submodule of VNπ .

(2) The dual module action of Aπ on (C∗
π )

∗ = Bπ is given by pointwise
multiplication. That is,

u · φ = uφ (u ∈ Aπ, φ ∈ Bπ).
(3) If A(π) has a bai, then {π,H } is H -amenable.

Proof. (1) For u, v ∈ Aπ and f ∈ L1(G) we have

〈v, u · π(f )〉 = 〈vu, π(f )〉 =
∫
G

v(s)u(s)f (s) ds = 〈v, π(uf )〉.

As C∗
π = π(L1(G))

‖·‖B(H )
it follows that C∗

π is an Aπ -submodule of VNπ .
(2) Let u ∈ Aπ , φ ∈ (C∗

π )
∗ = Bπ . Then uφ ∈ Bπ and for any f ∈ L1(G),

〈π(f ), u · φ〉 = 〈π(f ) · u, φ〉 = 〈π(f u), φ〉
=

∫
G

f (s)u(s)φ(s) ds = 〈π(f ), uφ〉,

where we have used part (1).
(3) Suppose that A(π) = Aπ has a bai (eα) and let φ be a w∗-limit point of

(eα) in VN∗
π ; assume without loss of generality that eα → φ w∗. Then for any

u ∈ Aπ and x ∈ VNπ we have

〈x, u · φ〉 = 〈x · u, φ〉 = lim〈x · u, eα〉 = lim〈x, ueα〉 = 〈x, u〉.
Thus u · φ = u (u ∈ Aπ). Letting φ1 ∈ (C∗

π )
∗ = Bπ denote the restriction of

φ to C∗
π , part (2) of this lemma gives

u = u · φ1 = uφ1 (u ∈ Aπ).
Suppose that ξ is any unit vector in H . Then given any s ∈ G, lettingη = π(s)ξ

and u = ξ ∗π η, we have

1 = u(s) = u(s)φ1(s) = φ1(s).

Thus φ1 = 1G ∈ Bπ and by Proposition 2.6 {π,H } is H -amenable.
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Theorem 4.4. Let {γ,K } be a representation of G. If either A(γ ) or
A(γ ⊗ γ ) has a bounded approximate identity, then γ is amenable.

Proof. If A(γ ) has a bounded approximate identity, then by Lemma 4.1
and Lemma 4.3, τγ is H -amenable and therefore amenable. The amenability
of γ now follows from Lemma 4.2. If A(γ ⊗ γ ) has a bai, then the above
argument and Corollary 2.8 show that γ is amenable.

In the next section we will give an example of anH -amenable representation
π for which A(π) = Aπ fails to have an approximate identity. Unfortunately,
we have been unable to determine whether the (H -)amenability ofγ guarantees
the existence of a bai in A(γ ⊗ γ ). Observe, however, that λ ⊗ λ and λ are
quasi-equivalent, so A(G) = A(λ) = A(λ⊗ λ). For reduced Fourier-Stieltjes
algebras we are able to say more.

Theorem 4.5. The following are equivalent for a representation {γ,K }
of G.

(1) {γ,K } is amenable.

(2) The reduced Fourier-Stieltjes algebra B(γ ⊗ γ ) has an identity.

(3) The reduced Fourier-Stieltjes algebra B(γ ⊗ γ ) has a bounded approx-
imate identity.

Proof. (1) ⇒ (2) This is an immediate consequence of [3, Theorem 5.1]
and [1, Proposition 3.1] (quoted in this article respectively as Corollary 2.8
and Proposition 2.6).

(2) ⇒ (3) is trivial.
(3) ⇒ (1) Suppose that B(γ ⊗ γ ) has a bounded approximate identity. It

follows from Proposition 2.24 of [1] that B(γ ⊗ γ ) = Bτγ⊗γ = Aπ = A(π),
for some representation π of G. Now Aπ is w∗-closed, and by Lemma 4.3
π is H -amenable, so 1G ∈ Bπ = Aπ . Thus 1G ∈ Bτγ⊗γ and it follows that
τγ⊗γ is H -amenable. That γ is amenable now follows as it did in the proof of
Theorem 4.4.

As noted earlier, A(π) is a commutative Lau algebra. It follows directly
from [14, Example(1) Page 168] and [14, Theorem 4.10] that A(π) has a bai
precisely when the closed ideal Iπ = {u ∈ A(π) : u(e) = 0} of A(π) has a
bai.

Proposition 4.6. Let G be a locally compact group. Then G is amenable
if and only if Br(G) contains a non-trivial translation-invariant closed sub-
algebra with a bounded approximate identity.

Proof. The forward implication follows from Leptin’s theorem. For the
converse, note that any such subalgebra is of the formAπ = A(π)with π � λ
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[1, Proposition 3.1 and Théorème 3.17]. The statement now follows from
Lemma 4.3(3), Remark 2.3(2) and Proposition 2.6.

5. Examples

The equivalence of H and Hd -amenability for representations of the form
γ ⊗ γ is really just Reiter’s condition for amenable representations (see The-
orems 4.3 and 5.1 of [3]). Moreover, for each of the representations discussed
in Remark 2.3(2), it is known that Hd -amenability implies H -amenability. (A
generalized approach which simultaneously yields Reiter’s condition in all
of the above cases may be found in [18, Section 1]). It is natural to wonder
whether Reiter’s condition holds in general forH -amenability, that is, whether
Hd -amenability always implies H -amenability. Example 5.2 will show that
this is not the case. If, however, {π,H } is continuous with respect to the norm
topology on B(H ), then a standard compactness argument shows that π isH -
amenable, whenever it isHd -amenable. This last statement may also be derived
from results in [17], where norm continuous representations are studied.

We first show that every infinite, compact, abelian group has an Hd -amen-
able representation which is not H -amenable. This is a consequence of two
facts which are summarized in the following remarks.

Remarks 5.1. (i) Let G be an infinite compact abelian group, and let 6
be a subset of the dual group of G, Ĝ, such that Ĝ = 6 ∪ 6−1 ∪ {1G}. Then
1Gd is weakly contained in 6d = {γd : γ ∈ 6}. To see this, notice that Ĝ is
dense Ĝd [11, Corollary 26.16] and, because G is infinite, Ĝd is not discrete.
Therefore, 1Gd belongs to the closure in Ĝd of 6 ∪ 6−1. Hence there is a net
(γα) ⊂ 6 ∪ 6−1 converging to 1 on finite subsets of G. This clearly implies
the existence of such a net in 6, and thus, 1Gd is weakly contained in 6d .

(ii) Let G be any compact group, and let {π,H } be a representation of G
such that π does not contain 1G. Then π does not weakly contain 1G. To see
this, first note that the orthogonality relations for compact groups, (see for
example [11, Theorems 27.15 and 27.44]) show that∫

G

〈π(s)ξ |η〉 ds = 0 (ξ, η ∈ H ).

Suppose that 1G � π . Then there is a net (ξα) of unit vectors in H such that
sups∈G ‖π(s)ξα − ξα‖ → 0. But ‖π(s)ξα − ξα‖2 = 2(1 −Re〈π(s)ξα|ξα〉), so

2 = 2

(
1 − Re

∫
G

〈π(s)ξα|ξα〉 ds
)

≤ sup
s∈G

‖π(s)ξα − ξα‖2,

which yields a contradiction.
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Example 5.2. LetG be any infinite, compact, abelian group, and let 6 be
a subset of Ĝ such that 1G /∈ 6 and Ĝ = 6 ∪6−1 ∪ {1G}. Let τ = ∑

γ∈6 ⊕γ .
Then 1Gd is weakly contained in 6d by Remark 5.1(i) and so 1Gd � τd . On the
other hand, it is clear that τ does not contain 1G, and so, by Remark 5.1(ii), τ
does not weakly contain 1G. In the language of this paper, τ is Hd -amenable
but is not H -amenable.

Let {π,C} be the representation of Z2 defined by setting π(0) = 1 and
π(1) = −1. Thenπ⊗2 is unitarily equivalent to 1G, hence 1G ⊂ ∑∞

n=1 ⊕(π⊗n)
= τπ . It follows that {τπ ,Hτπ } isH -amenable, however, the justification from
Example 2.5 shows that π is not H -amenable. This shows that Lemma 4.2
is false if, in its statement, we replace “amenable” by “H -amenable”. If π
is H -amenable, then Proposition 2.6 implies that B(π) has an identity. This
example shows as well that A(π) (and therefore B(π)) may have an identity
for representations π which are not H -amenable.

As a special case of Example 5.2, we obtain a more interesting example
of a non-H -amenable representation π for which {τπ ,Hτπ } is H -amenable.
It is less trivial than the above example in the sense that for each n, π⊗n
is not H -amenable. It therefore also shows that Proposition 2.4 cannot be
extended to infinite sums. Further, it provides us with a concrete description
of a representation which is Hd -amenable, but not H -amenable.

Example 5.3. Let π = ιC be the unitary representation of the circle group,
G = T, as defined in Example 2.5, and consider τπ . Note that if we identify
Z with the dual group of G, then the representation π⊗n is (up to unitary
equivalence) just the character γn on G associated to the positive integer n.
Observe that by choosing s ∈ G for which sn = −1, the argument from
Example 2.5 shows that γn is not Hd -amenable for any n. Now, by replacing
6 in Example 5.2 with the set N of positive integers, we see that τπ is just the
representation τ from that example. Thus, τ = τπ is Hd -amenable (but not
H -amenable). Moreover, note that τ is a representation on l2 which affords
the simple description τ(s) = (sn)n ∈ l∞, where we are viewing l∞ as a
C∗-subalgebra of B(l2).

Assume now that 6 is a locally compact abelian group with dual group G
(thus, 6̂ = G and Ĝ = 6). Recall that the Fourier-Stieltjes transform µ �→ µ̂

is an isometric ∗-isomorphism of M(G) onto B(6). Moreover, the Fourier-
Stieltjes transform is a w∗ − w∗ homeomorphism. To see this, note that by
Example 3 (1.17) of [9], the Fourier transform L1(6) → C0(G) extends to
an isometric isomorphism,4, of C∗(6) onto C0(G). A calculation shows that
the Fourier-Stieltjes transformM(G) → B(6) is exactly the dual map 4∗.

The measure algebraM(G) becomes a BanachCB(G)-module through the
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operation defined by

d(φ · µ)(x) = φ(x)dµ(x) (φ ∈ CB(G), µ ∈ M(G)).
(By restricting this module operation to C0(G), we obtain the natural dual
module action of C0(G) on M(G) = C0(G)

∗.) If γ0 ∈ 6 is viewed, through
duality, as an element of CB(G), then for any µ ∈ M(G) we have

̂(γ0 · µ)(γ ) = µ̂(γ − γ0) (γ ∈ 6).
It follows that the Fourier-Stieltjes transform A = M̂ of a closed 6-invariant
subspaceM ofM(G) is a closed translation-invariant subspace of B(6).

Let us also note that

(7) A(γ ⊗ γ ) = 〈uv : u, v ∈ A(γ )〉 ‖·‖
.

Indeed, the statement follows from the calculation

(ξ1 ⊗ η1) ∗γ⊗γ (ξ2 ⊗ η2) = (ξ1 ∗γ ξ2)(η1 ∗γ η2).

The following is an example of anH -amenable representation π for which
A(π) = Aπ does not have an approximate identity (let alone a bai). As we have
already stated, we still do not know whether amenability (orH -amenability) of
a representation γ implies the existence of a bai in A(γ ⊗ γ ). (In the example
below we shall see that π is not quasi-equivalent to a representation of the
form γ ⊗ γ , and also that 1G ∈ A(π ⊗ π).)

Example 5.4. Let G = (R,+), and let S = ((0,∞),+). Then S is a
subsemigroup of G, so the semigroup algebra

l1(S) =
{
µ =

∑
x>0

µ(x)δx :
∑
x>0

|µ(x)| < ∞
}

is a closed subalgebra of M(G). For γ ∈ 6 and µ = ∑
µ(x)δx ∈ l1(S),

we have γ · µ = ∑
µ(x)γ (x)δx which is also in l1(S). From the comments

preceding this example, A = {µ̂ : µ ∈ l1(S)} is a translation-invariant closed
subalgebra of B(6) (= B(R)), and by [1, Théorème 3.17], A = Aπ = A(π)

for some representation π of 6. Let xn = 1
n

and consider δxn ∈ l1(S). Then
for any h ∈ C0(G), 〈h, δxn〉 = h(xn) → h(0) = 〈h, δ0〉. Thus δxn →
δ0 σ(M(G),C0(G)) and it follows that δ̂xn → δ̂0 = 16 σ (B(6), C∗(6)). Con-

sequently, 16 ∈ Aπw
∗ = Bπ andπ isH -amenable. Now letµ = ∑

x>0 µ(x)δx∈ l1(S) and take y ∈ S. Then (δy ∗ µ)(y) = (∑
x>0 µ(x)δy+x

)
(y) = 0, so

‖δy ∗ µ− δy‖ ≥ |(δy ∗ µ)(y)− δy(y)| = 1.
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But µ ∈ l1(S) was arbitrary so l1(S), and therefore A(π), does not have an
approximate identity.

Note that l1(S) is not a ∗-subalgebra ofM(G), so A(π) is not conjugation
invariant; by the observation (7), π is not quasi-equivalent to a representation
of the form γ ⊗γ . Finally note that by the same observation, taking any x ∈ S
we have 16 = δ̂0 = (δx ∗ δ∗x )̂ = δ̂x(δ̂x)

− ∈ A(π ⊗ π).
The Fourier algebra A(G) = Aλ is an ideal in Bλ. With our final example,

we observe that this is not always the case.

Example 5.5. Let 6 be any non-compact locally compact abelian group
with dual group G. Then G is non-discrete so l1(G) is a closed subalgebra
of M(G) which is not an ideal in M(G). Clearly l1(G) is 6-invariant, so
A = ̂l1(G) is of the form A = Aπ = A(π) for some representation π of
G. As well, A(π) is not an ideal in B(6) = M̂(G). But the Fourier-Stieltjes
transform is a w∗ − w∗ homeomorphism and l1(G) is w∗-dense in M(G) so

B(π) = A(π)
w∗ = B(6).

6. Final Remarks

The preprint [19] is, to some extent, a continuation of the work presented
here. In it, we provide a class of examples for which the converse to The-
orem 4.4 holds, and we study our Fourier algebras as operator Banach algeb-
ras, (especially with regards to operator amenability). Moreover, we define
C∗(π) = C∗

τπ
, VN(π) = VNτπ , and respectively study the amenability and

Connes-amenability of these algebras. When π and π are weakly equivalent,
we show that the nuclearity of C∗(π) reflects the amenability of G as well as
we could wish: If N is the kernel of π in G, then G/N is amenable if and
only if C∗(π) is nuclear and G/N is inner amenable. Several corollaries are
obtained in which we pay special attention to the conjugation and quasi-regular
representations of G.
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