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DIRECT SUMS OF EXACT COVERS OF COMPLEXES

ALINA IACOB

Abstract
A ring R is left noetherian if and only if the direct sum of injective envelopes of any family
of left R-modules is the injective envelope of the direct sum of the given family of modules
(or equivalently, if and only if the direct sum of any family of injective left R-modules is also
injective). This result of Bass ([2]) led to a series of similar closure questions concerning classes
of modules and classes of envelopes and covers (Chase in [4] considers the question of the closure
of the class of flat modules with respect to products).

Motivated by Bass’result we consider the question of direct sums of exact covers of complexes.
From the close connection between minimal injective resolutions of modules and exact covers of
complexes it seemed reasonable to conjecture that we get this closure over left noetherian rings.
In this paper we show that this is not the case and that under various additional hypotheses on
the ring that in fact the ring must have finite left global dimension for this to happen. Our results
raise what we consider an interesting question about characterizing the local rings of finite global
dimension in terms of a certain property of minimal projective resolutions of finitely generated
modules over the local ring.

We also consider the closely related question of when the direct sum of DG-injective complexes
is DG-injective.

1. Introduction

In [6] it was proved that every complex X of left R-modules (for any ring R)
has an exact cover (see Section 2 for definitions).

As an example consider a minimal injective resolution

0 → M → E0 → E1 → . . .

of any left R-module M . Then the obvious map of complexes

(. . . → 0 → 0 → 0 → M → E0 → E1 → . . .) →
(. . . → 0 → 0 → 0 → M → 0 → 0 → . . .)

is an exact cover of M considered as a complex concentrated at 0.
From this example and the result of Bass ([2]) we quickly see that in order

that the direct sum of exact covers to be an exact cover the ring must be left
noetherian. So it seemed natural to conjecture that in fact this always is the
case over left noetherian rings.
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It is known that the kernel of any exact cover is a DG-injective complex
(see below for definitions) and any DG-injective complex is the kernel of an
exact precover ([6], Theorem 3.18 and Lemma 3.21). So a necessary condition
in order that every direct sum of exact covers to be an exact cover is that every
direct sum of DG-injective complexes be still DG-injective.

That the class of DG-injective complexes is not, in general, closed under
direct sums can be seen from [8] (Example, pp. 68). If l.gl.dimR < ∞ then
any complex K of injective left R-modules is DG-injective (see [1], Propos-
ition 3.4). Consequently, if R is left noetherian and l.gl.dimR < ∞ then for
any family (Ki)i∈I of DG-injective complexes we have that ⊕i∈IKi is DG-
injective. We give (Proposition 3) a necessary condition for a left noetherian
ring R in order that every direct sum of DG-injective complexes to be DG-
injective. We use this result to prove (Theorem 2) that if R is a commutative
local Gorenstein ring then the following are equivalent:

(1) every direct sum of DG-injective complexes is DG-injective.

(2) gl.dimR < ∞.

Theorem 3 proves that (1) and (2) are equivalent for any commutative Goren-
stein ring R.

Using this result we prove (Theorem 4) that ifR is a commutative Gorenstein
ring then the following are equivalent:

(1) If Ei → Xi is an exact cover for any i ∈ I then ⊕i∈iEi → ⊕i∈IXi is
an exact cover.

(2) gl.dimR < ∞.

We consider then a complete commutative local noetherian ring R such
that every direct sum of DG-injective complexes over R is DG-injective. Let

. . . → Rβ1
f1−→ Rβ0

f0−→ M → 0 be a minimal projective resolution of a
finitely generated R-module M . Theorem 5 shows that for each l ≥ 1 there is
n ≥ 1 such that the entries of the matrix that represents fn are all in ml , for
any n ≥ n.

Theorem 6 shows that this result is true for any commutative local noetherian
ring (R,m, k) with the property that the direct sum of DG-injective complexes
is DG-injective.

In particular, if . . . → Rβ1
f1−→ Rβ0

f0−→ k → 0 is a minimal projective
resolution andAn is the matrix that represents fn then, by Theorem 6, for each
l ≥ 1 there is nl ≥ 1 such that all entries of An are in ml , for any n ≥ nl . It
is not known if this guarantees that there is n ≥ 1 such that fn = 0 for any
n ≥ n, or equivalently gl.dimR = proj dim k < ∞.



direct sums of exact covers of complexes 163

As a consequence of Theorem 6 we show that for a commutative local
artinian ring R a necessary and sufficient condition in order that every direct
sum of DG-injective complexes to be DG-injective is that gl.dimR < ∞.
Theorem 7 shows that the result holds for any commutative artinian ring R.
We use Theorem 7 to prove that if R is commutative artinian then any direct
sum of exact covers of complexes of R-modules is still an exact cover if and
only if gl.dimR < ∞ (Theorem 8).

2. Preliminaries

Let R be any ring.

A (chain) complex C of R-modules is a sequence C = . . . → C2
∂2−→

C1
∂1−→ C0

∂0−→ C−1
∂−1−→ C−2 → . . . of R-modules and R-homomorphisms

such that ∂n−1 ◦ ∂n = 0 for all n ∈ Z.

A chain complex of the form C = . . . → C−2 ∂−2−→ C−1 ∂−1−→ C0 ∂0−→
C1 ∂1−→ C2 → . . . is called a cochain complex. In this case ∂n+1 ◦ ∂n = 0 for
all n ∈ Z. We note that a cochain complex is simply a chain complex with Ci

replaced by C−i and ∂i by ∂−i .
Throughout the paper we use both the subscript notation for complexes and

the superscript notation.
When we use superscripts for a complex we will use subscripts to distinguish

complexes, for example (Ki)i∈I is a family of complexes and Kn
i denotes the

degree n term of the complex Ki .
IfX and Y are both complexes of left R-modules then Hom(X, Y ) denotes

the complex with Hom(X, Y )n = �q=p+n HomR(Xp, Yq) and with differen-
tial given by ∂(f ) = ∂ ◦ f − (−1)nf ◦ ∂ , for f ∈ Hom(X, Y )n.

Definition 1 ([6]). A complex I is DG-injective if each I n is injective
and if Hom(E, I ) is exact for any exact complex E.

Recall that a complex I is K-injective if for every exact complex E the
complex Hom(E, I ) is exact ([10], Definition 1.1). Thus a complex I is DG-
injective if and only if each I n is injective and I is K-injective in the sense of
Spaltenstein.

It is known that if I = . . . → 0 → 0 → I n0 → I n0+1 → I n0+2 → . . . and
each I n is injective then I is DG-injective ([1], Remark 1.1.1).

If l.gl.dimR < ∞ then any complex I with all I n injective is DG-injective
([1], Proposition 3.4).

Throughout this paper Hom(X, Y ) denotes the set of morphisms fromX to
Y in the category of complexes, and Exti (X, Y ) are the right derived functors
of Hom(−,−).
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Definition 2. A complex E is injective if the functor Hom(−, E) is right
exact.

IfM is an injective R-module then the complex . . . → 0 → M
id−→ M →

0 → . . . (with the first M in the nth place) is injective. In fact any injective
complex is uniquely up to isomorphism the direct sum of such complexes (one
such complex for each n ∈ Z).

Proposition 1 ([6], Proposition 3.4). A complex I is DG-injective if and
only if Ext1(E, I ) = 0 for any exact complex E.

Definition 3 ([6], pp. 35). A DG-injective complex I = . . . → I n−1 gn−1−→
I n

gn−→ I n+1 → . . . is said to be minimal DG-injective if for each n, Ker gn is
essential in I n.

Proposition 2 ([6], Proposition 3.16). A DG-injective complex is the direct
sum of an injective complex and a minimal DG-injective complex. This direct
sum decomposition is unique up to isomorphism.

Definition 4 ([6]). A morphism of complexes � : E → X is an exact
precover ofX if E is exact and if Hom(F,E) → Hom(F,X) is surjective for
any exact complex F .

If, moreover, any f : E → E such that � = � ◦ f is an automorphism of
E, then � : E → X is called an exact cover of X.

Theorem 1 ([6], Theorem 3.18). Every complex X has an exact cover
E → X. A morphism E → X of complexes is an exact cover of X if and
only if E is exact, E → X is surjective and Ker(E → X) is a minimal DG-
injective complex. If E → X is an exact cover, E is injective if and only if X
is DG-injective.

We recall that for any n, and for any complexX,X[n] denotes the complex
such that X[n]m = Xn+m and whose boundary operators are (−1)n∂n+m.

If f : X → Y is a morphism of complexes then there is an exact sequence
0 → Y → M(f ) → X[1] → 0 with M(f ) the associated mapping cone
(M(f )n = Xn+1 ⊕ Yn and ∂(x, y) = (−∂x, f (x)+ ∂y) for (x, y) ∈ Xn+1 ⊕
Yn).

Lemma 1 ([6], Lemma 3.21). Let I be a DG-injective complex and let
Id : I → I give the exact sequence 0 → I → M(Id) → I [1] → 0. Then
M(Id) is injective andM(Id) → I [1] is an exact precover. If I is minimal then
I → M(Id) is an injective envelope and M(Id) → I [1] is an exact cover.

Lemma 2. If (Kn)n≥0 is a family of DG-injective complexes then �∞
n=0Kn

is DG-injective.
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Proof. Let M be an exact complex.
Each Kn is DG-injective, so by Proposition 1 we have Ext1(M,Kn) = 0

for any n ≥ 0.
Since Ext1(M,�∞

n=0Kn) 
 �∞
n=0 Ext1(M,Kn) = 0 for any exact complex

M it follows (by Proposition 1) that �∞
n=0Kn is DG-injective.

3. A necessary condition in order that every direct sum of DG-
injective complexes to be DG-injective

Our first result in this section gives a necessary condition in order that every
direct sum of DG-injective complexes to be DG-injective.

We recall that a morphism f : X → Y of complexes is called a quasi-
isomorphism if the maps Hn(X) → Hn(Y ) are all isomorphisms.

Proposition 3. Let R be a left noetherian ring. A necessary condition in
order that the direct sum of DG-injective complexes to be DG-injective is that

�∞
n=0Cn

⊕∞
n=0Cn

is injective, where Cn is the nth cosyzygy of some module C.

Proof. Let 0 → C → E0 → E1 → E2 → . . . be an injective resolution
of C.

Let

K0 = . . . → 0 → 0 → 0 →
0th

E0 → E1 → E2 → . . .

K1 = . . . → 0 → 0 → E0 → E1 → E2 → E3 → . . .

K2 = . . . → 0 → E0 → E1 → E2 → E3 → E4 → . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Each Kn is a bounded below complex of injective modules, so Kn is DG-
injective for any n ≥ 0.

We show first that the inclusion map ⊕∞
n=0Kn

ψ−→ �∞
n=0Kn is a quasi-

isomorphism.
We have that

H
(⊕∞

n=0Kn
) = ⊕∞

n=0H(Kn) and H
(
�∞
n=0Kn

) = �∞
n=0H(Kn)

But eachKn has at most one non-zero homology module and this is in the nth
position. So we see that for each l(⊕∞

n=0H(Kn)
)l = H(Kl) and

(
�∞
n=0H(Kn)

)l = H(Kl)
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Hence we see that ⊕∞
n=0Kn → �∞

n=0Kn

is a quasi-isomorphism.
• We show now that a necessary condition for ⊕∞

n=0Kn to be DG-injective
is that

�∞
n=0Cn

⊕∞
n=0Cn

is an injective module, where Cn is the nth cosyzygy of C.

Let E = �∞
n=0Kn

⊕∞
n=0Kn

. Since the sequence 0 → ⊕∞
n=0Kn

ψ−→ �∞
n=0Kn → E →

0 is exact and ψ is a quasi-isomorphism is follows that E is an exact complex.
If ⊕∞

n=0Kn is DG-injective then since�∞
n=0Kn is also DG-injective (Lemma

2) it follows that E is DG-injective ([6], Remark pp. 31).
Since E is exact and DG-injective it follows ([6] Proposition 3.7) that E is

an injective complex.

We use the notation Kn = . . . → K2
n

α2
n−→ K1

n

α1
n−→ K0

n → . . . for any
n ≥ 0.

We have

E = . . . → �∞
n=0K

2
n

⊕∞
n=0K

2
n

g2−→ �∞
n=0K

1
n

⊕∞
n=0K

1
n

g1−→ �∞
n=0K

0
n

⊕∞
n=0K

0
n

g0−→ �∞
n=0K

−1
n

⊕∞
n=0K

−1
n

→ . . . .

The complex E is injective, so Ker gn is an injective R-module for any n ∈ Z
([8], Theorem 3.1.3). In particular Ker g0 is injective.

• We show that Ker g0 
 �∞
n=0Cn

⊕∞
n=0Cn

(with Cn the nth cosyzygy of C).

g0((xn)n≥0 + ⊕∞
n=0K

0
n) = (α0

n(xn))n≥0 + ⊕∞
n=0K

−1
n .

If (xn)n≥0 + ⊕∞
n=0K

0
n ∈ Ker g0 then (α0

n(xn))n ∈ ⊕∞
n=0K

−1
n .

So α0
n(xn) = 0 ⇔ xn ∈ Ker α0

n = Ker(En → En+1) = Cn, for all but
finitely many n ≥ 0.

Let y = (yn)n≥0 with

yn =
{
xn, if xn ∈ Ker α0

n

0, if xn /∈ Ker α0
n.

Then y ∈ �∞
n=0 Ker α0

n = �∞
n=0Cn.

Let z = (xn−yn)n≥0. Then z ∈ ⊕∞
n=0K

0
n = ⊕∞

n=0E
n and (xn)n≥0 = y+z ∈

�∞
n=0Cn + ⊕∞

n=0E
n.

So

(1) Ker g0 ⊂ �∞
n=0Cn + ⊕∞

n=0E
n

⊕∞
n=0E

n
.
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If

x + ⊕∞
n=0K

0
n ∈ �∞

n=0Cn + ⊕∞
n=0E

n

⊕∞
n=0E

n
= �∞

n=0 Ker α0
n + ⊕∞

n=0K
0
n

⊕∞
n=0K

0
n

then x = y + z with y ∈ �∞
n=0 Ker α0

n and z ∈ ⊕∞
n=0K

0
n .

So x + ⊕∞
n=0K

0
n = y + ⊕∞

n=0K
0
n . Since g0(y + ⊕∞

n=0K
0
n) = (α0

n(yn))n≥0 +
⊕∞
n=0K

−1
n = 0 + ⊕∞

n=0K
−1
n it follows that

(2) x + ⊕∞
n=0K

0
n ∈ Ker g0

By (1) and (2) we have:

Ker g0 = �∞
n=0Cn + ⊕∞

n=0E
n

⊕∞
n=0E

n

 �∞

n=0Cn

�∞
n=0Cn ∩ ⊕∞

n=0E
n

= �∞
n=0Cn

⊕∞
n=0Cn

So �∞
n=0Cn

⊕∞
n=0Cn

is an injective module.

Another useful result is the following.

Lemma 3. Let (R,m, k) be a commutative local noetherian ring and let A
be an artinian module. If 0 → A → E0 → E1 → E2 → . . . is a minimal
injective resolution of A then each En is a finite direct sum of copies of E(k).

Proof. Since A is artinian, we have A ⊂ E(k)n, for some n ≥ 1 ([5],
Theorem 3.4.3). SoE0 is a direct summand ofE(k)n. ThereforeE0 = E(k)β0 ,
with 1 ≤ β0 ≤ n. If K1 = Ker(E1 → E2) then 0 → A → E0 → K1 → 0
is exact. Since E0 is artinian it follows that K1 is artinian. So K1 ⊂ E(k)l for
some l ≥ 1. Then E1 is a direct summand of E(k)l . So E1 = E(k)β1 , with
β1 ≤ l. Similarly, En is a finite direct sum of copies of E(k), for any n ≥ 0.

Using Lemma 3 we can prove the following result.

Lemma 4. Let (R,m, k) be a commutative local noetherian ring. Let 0 →
k → E(k)

f0−→ E1 f1−→ E2 → . . . be a minimal injective resolution of k and
let Kn = Ker(En → En+1) for any n ≥ 1.
Kn is injective if and only if for every homomorphism f : k → Kn there is

a homomorphism u : E(k) → Kn such that u|k = f .

Proof. “⇐” The injective envelope of Kn is En. By Lemma 3 En =
⊕i∈IEi with E(k)

ψi
 Ei , ∀i ∈ I .
Let Si = ψi(k) 
 k. Then Si ⊂ Ei is an injective envelope, ∀i ∈ I .

Since ψi(k) ∩ Kn ≤ ψi(k) and ψi(k) is simple we have ψi(k) ∩ Kn = 0 or
ψi(k)∩Kn = ψi(k). SinceKn is essential inEn,ψi(k)∩Kn = 0 would imply
that ψi(k) = 0 ⇔ k = 0. False.
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So ψi(k) ∩Kn = ψi(k) ⇔ Si = ψi(k) ⊂ Kn.

k
j

↪−−→ E(k)

↓ψi �↙ ui

Kn

By hypothesis there exists ui ∈ Hom(E(k),Kn) such that ui ◦j = ψi , ∀i ∈ I .

k
ψi−−−→ Kn

↓j �↙ vi

E(k)

Since ψi is an injection and E(k) is an injective module there exists vi ∈
Hom(Kn,E(k)) such that vi ◦ ψi = j .

Then vi ◦ui ◦ j = vi ◦ψi = j . Since j : k → E(k) is an injective envelope
it follows that vi ◦ ui ∈ AutE(k). Consequently, ui is an injection.

So Mi = ui(E(k)) 
 E(k) is an injective module, ∀i ∈ I .
Since ui(k) = ψi(k) = Si ⊂ Mi 
 E(k) and Si 
 k we have that Si ⊂ Mi

is an injective envelope. So Mi = Ei ∀i ∈ I .
Since Ei ⊂ Kn ∀i ∈ I we have ⊕i∈IEi ⊂ Kn ⇔ En ⊂ Kn ⊂ En ⇔

Kn = En. So Kn is an injective module.
“⇒” Let f ∈ Hom(k,Kn).

k
j

↪−−→ E(k)

↓f �↙ u

Kn

SinceKn is injective and j : k → E(k) is an injection there is u ∈ Hom(E(k),
Kn) such that u ◦ j = f .

4. Direct sums of exact covers over commutative Gorenstein rings

We prove in this section that the class of DG-injective complexes over a
commutative Gorenstein ring R is closed under direct sums if and only if
gl.dimR < ∞. Using this result we prove that if R is a commutative Goren-
stein ring then every direct sum of exact covers is an exact cover if and only if
gl.dimR < ∞.

We start with the following result.

Theorem 2. Let R be a commutative local Gorenstein ring with maximal
ideal m and residue field k. The following are equivalent:

(1) Every direct sum of DG-injective complexes is DG-injective.
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(2) gl.dimR < ∞.

Proof. (1) ⇒ (2) Suppose gl.dimR = ∞. R is a local ring, so gl.dimR =
proj dim k ([11], Corollary 4.4.12). Since R is a Gorenstein ring, and
proj dim k = ∞ we have inj dim k = ∞ ([5], Proposition 9.1.7).

Let 0 → k → E(k) → E1 → E2 → . . . be a minimal injective resolution
of k. Let Kn = Ker(En → En+1) for any n ≥ 0 (with K0 = k). Since
inj dim k = ∞ it follows that Kn is not injective for any n ≥ 0. By Lemma 4
this means that for each n ≥ 0 there is fn ∈ Hom(k,Kn) that can not be
extended to a homomorphism E(k) → Kn.

Let fn(1 +m) = xn.
We know (Proposition 3) that if every direct sum of DG-injective complexes

is DG-injective then �∞
n=0Cn

⊕∞
n=0Cn

is an injective module whereCn is thenth cosyzygy
of some module C.
R is a Gorenstein ring, so Gor inj dim k = d < ∞.
Then Kn is a Gorenstein injective module for any n ≥ d ([5], Proposi-

tion 11.2.5 and Theorem 10.1.4).
Let C = Kd and let M = �∞

n=0Cn
⊕∞
n=0Cn

= �∞
n=dKn

⊕∞
n=dKn

.
Let f : k → M be defined by f (1 +m) = x with x = (xn)n≥d +⊕∞

n=dKn.

k
j

↪−−→ E(k)

↓f �↙ F

M

SinceM is an injective module and j is an injection there isF ∈ Hom(E(k),M)
such that F ◦ j = f .

The sequence 0 → ⊕∞
n=dKn → �∞

n=dKn
P−→ M → 0 is exact, so

we have an associated long exact sequence 0 → Hom(E(k),⊕∞
n=dKn) →

Hom(E(k),�∞
n=dKn) → Hom(E(k),M) → Ext1(E(k),⊕∞

n=dKn) = 0
(since ⊕∞

n=dKn is Gorenstein injective and E(k) is injective).
Since 0 −→ Hom(E(k),⊕∞

n=dKn) −→ Hom(E(k),�∞
n=dKn) −→

Hom(E(k),M) → 0 is exact there is u ∈ Hom(E(k),�∞
n=dKn) such that

F = P ◦ u (with P : �∞
n=dKn → M , P((zn)n≥d) = (zn)n≥d + ⊕∞

n=dKn).

E(k)

�↙u ↓F
�∞
n=dKn

P−−→ M

Let u(1 + m) = (yn)n≥d . Then F(1 + m) = P(u(1 + m)) = (yn)n≥d +
⊕∞
n=dKn.
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Since F |k = f , we have F(1 +m) = f (1 +m) = (xn)n≥d + ⊕∞
n=dKn.

So xn = yn for all but finitely many n ≥ d.
Let n ≥ d be such that xn = yn.
Let πn : �∞

j=dKj → Kn, πn((zj )j≥d) = zn.

k
j

↪−−→ E(k)

↓fn �↙ πn◦u
Kn

We have πn ◦ u(1 +m) = πn((yj )j≥d) = yn = xn = fn(1 +m).
So fn : k → Kn can be extended to a morphism E(k) → Kn for infinitely

many n ≥ d. Contradiction.
Hence gl.dimR < ∞.
(2) ⇒ (1) Since gl.dimR < ∞ it follows that a complex J is DG-injective

if and only if each J n is an injective module.
Let (Ji)i∈I be a family of DG-injective complexes.
Since R is noetherian and J ni is injective ∀i ∈ I it follows that ⊕i∈I J ni is

injective. So ⊕i∈I Ji is a DG-injective complex.

In order to prove that the conditions (1) and (2) from Theorem 2 are in
fact equivalent for any commutative Gorenstein ring we use the following well
known result.

Lemma 5. Let R be a commutative noetherian ring and let S ⊂ R be a
multiplicative set (0 /∈ S). If E is an S−1R module then E is an injective
S−1R-module if and only if E is an injective R-module.

Theorem 3. Let R be a commutative Gorenstein ring. The following are
equivalent:

(1) Every direct sum of DG-injective complexes is DG-injective.

(2) gl.dimR < ∞.

Proof. (1) ⇒ (2) We prove first that if every direct sum of DG-injectives
is DG-injective then gl.dimRp < ∞ for any p ∈ SpecR.

Suppose there is p ∈ SpecR such that gl.dimRp = ∞.
Rp is a local ring with maximal ideal pRp and residue field Rp/pRp which

is denoted k(p). Since R is a Gorenstein ring it follows that Rp is also a
Gorenstein ring ([5], Remark 2.3.8, and [3] Corollary 2.3).

Since proj dimRp
k(p) = gl.dimRp = ∞ and Rp is Gorenstein, it follows

that inj dimRp
k(p) = ∞ (by [5], Proposition 9.1.7).

Let 0 → k(p) → E0
p → E1

p → . . . be a minimal injective resolution of

Rpk(p). Let Kn
p = Ker(Enp → En+1

p ).
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Since inj dimRp
k(p) = ∞ it follows that Kn

p is not injective, ∀n ≥ 0.
Rp is Gorenstein, so Gor inj dim k(p) = dp < ∞. Then Kn

p is Gorenstein
injective, ∀n ≥ dp.

Each Eip is an injective Rp-module, therefore an injective R-module (Lem-
ma 5). So each of the complexes:

Jdp = . . . → 0 → 0 →
0th

E
dp
p → E

dp+1
p → E

dp+2
p → . . .

Jdp+1 = . . . → 0 → E
dp
p → E

dp+1
p → E

dp+2
p → E

dp+3
p → . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

is DG-injective over R.
By hypothesis ⊕∞

n=dpJn is a DG-injective complex over R.

Let 0 → ⊕∞
n=dpJn

ψ−→ �∞
n=dpJn → E → 0 be exact.

Since ψ is a homology isomorphism (same argument as in the proof of
Proposition 3) it follows that E is exact.

Both ⊕∞
n=dpJn and �∞

n=dpJn are DG-injective, so E is DG-injective ([6],
Remark pp. 31). By [6], Proposition 3.7, E is an injective complex. By [8],
Theorem 3.1.3, Ker(En → En+1) is injective, ∀n ∈ Z.

In particular, Ker(E0 → E1) is an injective R-module. We showed (proof

of Proposition 3) that Ker(E0 → E1) 
 �∞
n=dpK

n
p

⊕∞
n=dpK

n
p

.

Let Mp = �∞
n=dpK

n
p

⊕∞
n=dpK

n
p

. Since Mp is an Rp-module which is injective as an

R-module it follows (by Lemma 5) that Mp is an injective Rp-module.
Kn
p is not injective for any n ≥ 0. So for each n ≥ 0 there is fn ∈

HomRp(k(p),K
n
p) that can not be extended to a homomorphism E(k(p)) →

Kn
p .
Let fn(1 + pRp) = xnp .
Let f : k(p) → Mp be defined by f (1 + pRp) = (xnp)n≥dp + ⊕∞

n=dpK
n
p .

SinceMp is injective there isF ∈ HomRp(E(k(p)),Mp) such thatF |k(p) =
f .

The sequence 0 → ⊕∞
n=dpK

n
p → �∞

n=dpK
n
p

θ−→ Mp → 0 is exact. There-
fore we have the long exact sequence 0 → Hom(E(k(p)),⊕∞

n=dpK
n
p) →

Hom(E(k(p)),�∞
n=dpK

n
p) −→ Hom(E(k(p)),Mp) −→ Ext1(E(k(p)),

⊕∞
n=dpK

n
p) = 0 (since ⊕∞

n=dpK
n
p is Gorenstein injective).

E(k(p))

�↙u ↓F
�∞
n=dpK

n
p

θ−−→ Mp
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So there exists u ∈ Hom(E(k(p)),�∞
n=dpK

n
p) such that θ ◦ u = F , with

θ : �∞
n=dpK

n
p → Mp, θ((zn)n≥dp ) = (zn)n≥dp + ⊕∞

n=dpK
n
p .

Let u(1 + pRp) = (ynp)n≥dp .
Then F(1 + pRp) = θ((ynp)n≥dp ) = (ynp)n≥dp + ⊕∞

n=dpK
n
p .

But F |k(p) = f , so F(1 + pRp) = f (1 + pRp) = (xnp)n≥dp + ⊕∞
n=dpK

n
p .

Hence xnp = ynp for all but finitely many n ≥ dp.
If n ≥ dp is such that xnp = ynp then πn ◦ u ∈ HomRp(E(k(p)),K

n
p)

and πn ◦ u|k(p) = fn (with πn : �∞
j=dpK

j
p → Kn

p , πn((zj )j ) = zn). So
fn ∈ Hom(k(p),Kn

p) can be extended to a homomorphism E(k(p)) → Kn
p .

Contradiction.
So inj dimRp

k(p) < ∞ ⇔ proj dimRp
k(p) < ∞ ⇔ gl.dimRp < ∞.

Since Rp is a local ring and gl.dimRp < ∞ it follows that gl.dimRp =
Krull dim Rp ([11], Theorem 4.4.16). By [3], Corollary 3.4, Krull dimRp =
inj dimRp

Rp. So

(3) gl.dimRp = inj dimRp
Rp, ∀p ∈ SpecR.

Let inj dimR R = n < ∞.
By [3], Corollary 2.3, we have

(4) inj dimRp
Rp ≤ inj dimR R = n, ∀p ∈ SpecR.

By (3) and (4), gl.dimRp ≤ n, ∀p ∈ SpecR.
By [7], Theorem 9.52, gl.dimR = sup gl.dimRm when m ranges over all

maximal ideals in R.
Hence gl.dimR ≤ n.
(2) ⇒ (1) Since gl.dimR < ∞ it follows that a complex J is DG-injective

if and only if each J n is an injective module.
Let (Ji)i∈I be a family of DG-injective complexes.
Since R is noetherian and J ni is injective ∀i ∈ I it follows that ⊕i∈I J ni is

injective. So ⊕i∈I Ji is a DG-injective complex.

Theorem 4. If R is a commutative Gorenstein ring then every direct sum
of exact covers is an exact cover if and only if gl.dimR < ∞.

Proof. “⇒” Let (Ji)i∈i be a family of DG-injective complexes.
By Proposition 2 Ji = Di ⊕ Ki with Di injective and Ki minimal DG-

injective.
By Lemma 1, Idi : Ki → Ki gives the exact sequence 0 → Ki →

M(Idi )
ψi−→ Ki[1] → 0 withM(Idi )

not= Ei (“not” is for notation) an injective
complex and with Ei → Ki[1] an exact cover.

By hypothesis ⊕i∈IEi → ⊕i∈IKi[1] is an exact cover.
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So ⊕i∈IKi = Ker(⊕i∈IEi → ⊕i∈IKi[1]) is minimal DG-injective. We have
⊕i∈I Ji = (⊕i∈IDi) ⊕ (⊕i∈IKi) with ⊕i∈IDi injective (hence DG-injective)
and ⊕i∈IKi DG-injective. Since the class of DG-injective complexes is closed
under taking finite direct sums ([6], pp. 27) it follows that ⊕i∈I Ji is DG-
injective.

Since R is commutative Gorenstein and every direct sum of DG-injective
complexes is DG-injective, it follows that gl.dimR < ∞ (by Theorem 3).

“⇐” Let Ei
ψi−→ Xi be an exact cover, for any i ∈ I .

Then Ti = Kerψi is a minimal DG-injective complex (Theorem 1).
Each sequence 0 → Ti → Ei → Xi → 0 is exact, so the sequence

0 → ⊕i∈I Ti → ⊕i∈IEi → ⊕i∈IXi → 0 is exact.
Since gl.dimR < ∞ it follows that ⊕i∈I Ti is DG-injective.

Ti = . . . → T n−1
i

f n−1
i−→ T ni

f ni−→ T n+1
1 → . . ..

For each i ∈ I , Ker f ni is essential in T ni , so ⊕i∈I Ker f ni is essential in
⊕i∈I T ni , ∀n ∈ Z ([5], Exercise 11, pp. 75).

Hence ⊕i∈I Ti is minimal DG-injective.
Since ⊕i∈IEi → ⊕i∈IXi is surjective, ⊕i∈IEi is exact and Ker(⊕i∈IEi →

⊕i∈IXi) is minimal DG-injective it follows that ⊕i∈IEi → ⊕i∈IXi is an exact
cover (by Theorem 1).

5. Minimal projective resolutions of finitely generated modules over
local noetherian rings

We consider a complete commutative local noetherian ringR with the property
that every direct sum of DG-injective complexes ofR-modules is DG-injective.
R is local, so every finitely generated R-module has a minimal projective

resolution. Let . . . → Rβ1
f1−→ Rβ0

f0−→ M → 0 be a minimal projective
resolution of a finitely generated R-moduleM . We show (Theorem 5) that for
each l ≥ 1 there is n ≥ 1 such that the entries of the matrix that represents fn
are all in ml , for any n ≥ n.

Theorem 6 proves that the result is true for any commutative local noetherian
ring R with the property that the direct sum of DG-injective complexes is DG-
injective.

Our first result in this section is the following.

Lemma 6. Let (R,m, k) be a commutative local noetherian ring. For each
n ≥ 1 let En = {x | x ∈ E(k),mnx = 0}.

If K ≤ E(k)s then Esn ⊂ K if and only if (1) ks ⊂ K and (2) any linear
map k → K has an extension En → K .
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Proof. Since ks ⊂ E(k)s is an injective envelope over R and mnks = 0 it
follows that the injective envelope of ks over R/mn is {x ∈ E(k)s | mnx =
0} = Esn.

“⇐" Let f1, . . . , fs ∈ Hom(k,K), f1(x) = (x, 0, . . . , 0), . . . , fs(x) =
(0, 0, . . . , x). By hypothesis there is σj ∈ HomR(En,K) that extends fj , 1 ≤
j ≤ s. Let σ : Esn → K , σ(y1, . . . , ys) = σ1(y1)+ · · · + σs(ys).

Ify = (y1, . . . , ys) ∈ ks∩Ker σ then (y1, . . . , ys) = f1(y1)+. . .+fs(ys) =
σ1(y1) + · · · + σs(ys) = 0. Since ks is essential in Esn and ks ∩ Ker σ = 0 it
follows that Ker σ = 0.

So Esn 
 σ(Esn) ⊂ K . Therefore ks = σ(ks) ⊂ σ(Esn) is an injective
envelope over R/mn.

We have rσ (y1, . . . , ys) = rσ1(y1) + · · · + rσs(ys) = σ1(ry1) + · · · +
σs(rys) = 0, for any r ∈ mn, for any (y1, . . . , ys) ∈ Esn. So σ(Esn) ⊂ {x ∈
K | mnx = 0} ⊂ {x ∈ E(k)s | mnx = 0} = Esn.

Both σ(Esn) and Esn are injective envelopes of ks , and σ(Esn) ⊂ Esn. So
σ(Esn) = Esn as R/mn-modules. Since their structure of R/mn-modules is
given by (r+mn)x = r ·x, for any r+mn ∈ R/mn, it follows that σ(Esn) = Esn
as R-modules. So Esn ⊂ K .

“⇒” We have Esn ⊂ K , so ks ⊂ Esn ⊂ K .
Letf ∈ HomR(k,K), f �= 0. Since k is simple, f is injective, sof (k) 
 k.

Since f (k) ∩ ks ≤ f (k) and f (k) is simple it follows that f (k) ∩ ks = 0 or
f (k) ∩ ks = f (k). ks is essential in E(k)s , so f (k) ∩ ks = 0 would imply
f (k) = 0 ⇔ k = 0. False. Hence f (k) ∩ ks = f (k) ⇔ f (k) ⊂ ks .
f is an R-homomorphism, so it is also an R/mn-homomorphism.

k ↪−−−→ En

↓f ↓g
ks ↪−−−→ Esn

i
↪−−−−→ K

Since k ⊂ En and ks ⊂ Esn are injective envelopes over R/mn, there is
g ∈ HomR/mn(En,E

s
n) that extends f .

For any r ∈ R we have g(r ·x) = g((r+mn)x) = (r+mn)g(x) = r ·g(x).
So g ∈ HomR(En,E

s
n). The homomorphism i ◦ g extends f .

We use Lemma 6 to prove the following result.

Proposition 4. Let (R,m, k) be a commutative local noetherian ring such
that every direct sum of DG-injective complexes ofR-modules is DG-injective.
Let l ≥ 1. If 0 → A → E0 → E1 → . . . is a minimal injective resolution
of an artinian R-module A, then there is n0 ≥ 0 such that {x ∈ En | mlx =
0} ⊂ Ker(En → En+1), for all n ≥ n0.
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Proof. Since A is an artinian module, we have En = E(k)βn , for some
βn ≥ 1 (Lemma 3).

Let El = {x ∈ E(k) | mlx = 0}.
Since R/ml has finite length, it follows that Hom(R/ml, E(k)) has finite

length ([5], Theorem 3.4.1). So El 
 Hom(R/ml, E(k)) is of finite length.
By [5], Theorem 2.3.17, El is noetherian, hence finitely generated.

Let Kn = Ker(En → En+1) for any n ≥ 0.
We prove that there is d0 ≥ 0 such that any linear map k → Kd can be

extended to a linear map El → Kd , for any d ≥ d0.
Suppose no d0 ≥ 0 has this property. Then for any j ≥ 0 there is dj ≥ j

and fdj ∈ Hom(k,Kdj ) that cannot be extended to El → Kdj .
Each of the complexes

Jd0 = . . . → 0 → 0 → 0 →
0th

Ed0
fd0−→ Ed0+1 → Ed0+2 → . . .

Jd1 = . . . → 0 → 0 → Ed1−1 → Ed1
fd1−→ Ed1+1 → Ed1+2 → . . .

Jd2 = . . . → 0 → Ed2−2 → Ed2−1 → Ed2
fd2−→ Ed2+1 → Ed2+2 → . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

is DG-injective so, by hypothesis, ⊕∞
i=0Jdi is DG-injective.

If 0 → ⊕∞
i=0Jdi

ψ−→ �∞
i=0Jdi

P−→ F → 0 is exact then F is an exact
complex (sinceψ is a quasi isomorphism). Both ⊕∞

i=0Jdi and�∞
i=0Jdi are DG-

injective, so F is a DG-injective complex. Thus F is an injective complex ([6],
Proposition 3.7) and therefore Ker(F n → Fn+1) is an injective R-module for
any n ∈ Z. In particular,

Ker(F 0 → F 1) 
 �∞
j=0 Ker fdj

⊕∞
j=0 Ker fdj

= �∞
j=0Kdj

⊕∞
j=0Kdj

is injective.

Let M = �∞
j=0Kdj

⊕∞
j=0Kdj

.

Let fdj (1 + m) = xdj and let f : k → M be defined by f (1 + m) =
(xdj )j≥0 + ⊕∞

j=0Kdj .
Since M is injective there is g ∈ Hom(El,M) that extends f . Since El

is finitely generated and ⊕∞
j=0Kdj is a pure submodule of �∞

j=0Kdj , it fol-
lows that the sequence 0 → Hom(El,⊕∞

j=0Kdj ) → Hom(El,�∞
j=0Kdj ) →

Hom(El,M) → 0 is exact. So there is u ∈ Hom(El,�∞
j=0Kdj ) such that

g = θ ◦ u (with θ((zdj )) = (zdj )j≥0 + ⊕∞
j=0Kdj ).

If u(1 + m) = (ydj )j≥0 then g(1 + m) = θ(u(1 + m)) = θ((ydj )j ) =
(ydj )j≥0 + ⊕∞

j=0Kdj .
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Since g|k = f we have g(1 +m) = f (1 +m) = (xdj )j≥0 + ⊕∞
j=0Kdj . So

xdj = ydj for all but finitely many j ≥ 0.
Let j ≥ 0 be such that xdj = ydj and letπdj : �∞

l=0Kdl → Kdj , πdj ((zdl )l) =
zdj . We have πdj ◦ u(1 +m) = πdj ((ydl )l) = ydj = xdj = f (1 +m).

Hence πdj ◦ u extends fdj . Contradiction.
So there is d0 ≥ 0 such that for any d ≥ d0, any linear map k → Kd can

be extended to El → Kd .
By [5], Corollary 3.1.21, we have SocKd = SocE(Kd) = SocE(k)βd =

kβd . So kβd ⊂ Kd for all d ≥ 0.
Since kβd ⊂ Kd ⊂ E(k)βd and any linear map k → Kd can be extended to

El → Kd it follows (Lemma 6) that Eβdl ⊂ Kd ⇔ {x ∈ E(k)βd | mlx = 0} ⊂
Kd . So {x ∈ Ed | mlx = 0} ⊂ Kd , for any d ≥ d0.

We can prove now the following.

Theorem 5. Let (R,m, k) be a complete commutative local noetherian
ring with the property that every direct sum of DG-injective complexes of R-
modules is DG-injective. Let M be a finitely generated R-module. If . . . →
Rβ1

f1−→ Rβ0
f0−→ M → 0 is a minimal projective resolution of M then for

each l ≥ 1 there is n ≥ 1 such that the entries of the matrix that represents fn
are all in ml , for any n ≥ n.

Proof. Since E(k) is injective and the complex . . . → Rβ1
f1−→ Rβ0

f0−→
M → 0 is exact, it follows that 0 → Mν → (Rβ0)ν → (Rβ1)ν → . . . is an
exact complex.

For each n ≥ 0, (Rβn)ν = Hom(Rβn, E(k)) 
 Hom(R,E(k))βn 
 E(k)βn

is an injective R-module. So 0 → Mν
f ν0−→ (Rβ0)ν

f ν1−→ (Rβ1)ν → . . . is an
injective resolution of Mν .

If u ∈ Hom((Rβ0)ν, (Rβ0)ν) is such that u◦f ν0 = f ν0 , then f νν0 ◦uν = f νν0 .
Since R is complete and RM is finitely generated it follows thatM 
 Mνν

([5], Lemma 3.4.6). Similarly Rβ0 
 (Rβ0)νν .
So f νν0 : (Rβ0)νν → Mνν is a projective cover. Thus f νν0 ◦uν = f νν0 implies

uν ∈ Aut(Rβ0)νν . Then uνν ∈ Aut(Rβ0)ννν .
The diagram

(Rβ0)ν u−−−−−→ (Rβ0)ν

↓� ↓�

(Rβ0)ννν uνν−−−−→ (Rβ0)ννν

is commutative. So uνν ∈ Aut(Rβ0)ννν implies that u ∈ Aut(Rβ0)ν .
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Hence Mν → (Rβ0)ν is an injective envelope of Mν . Similarly, (Im fn)
ν

f νn+1−→ (Rβn+1)ν is an injective envelope, for any n ≥ 1. So 0 → Mν
f ν0−→

(Rβ0)ν
f ν1−→ (Rβ1)ν

f ν2−→ . . . is a minimal injective resolution of the R-module
Mν .

The ringR is complete and RM is noetherian, soMν is an artinianR-module
([5], Corollary 3.4.4).

Let l ≥ 1. Let El = {x ∈ E(k) | mlx = 0}.
By Proposition 4 there is n0 ≥ 1 such that {x ∈ (Rβn)ν | mlx = 0} ⊂

Ker f νn+1, for any n ≥ n0.
Let n ≥ n0.
Let θ ∈ (Rβn)ν be defined by θ(eβn1 ) = y, for some y ∈ El , and θ(eβnj ) = 0,

2 ≤ j ≤ βn, where

e
βn
1 =


1
0
...

0

 , e
βn
2 =


0
1
...

0

 , . . . , e
βn
βn

=


0
0
...

1

 .

Sincemlθ = 0, it follows thatf νn+1(θ) = 0, which is equivalent to θ◦fn+1 = 0.

fn+1 : Rβn+1 → Rβn, fn+1(x) =


a11 a21 . . . aβn+11

a12 a22 . . . aβn+12
...

...
...

a1βn a2βn . . . aβn+1βn




x1

x2
...

xβn+1


for any

x1

x2
...

xβn+1

 ∈ Rβn+1 , where fn+1(e
βn+1
j ) =


aj1

aj2
...

ajβn

 , 1 ≤ j ≤ βn+1.

θ ◦fn+1(e
βn+1
1 ) = 0 ⇔ θ(a11e

βn
1 +a12e

βn
2 +· · ·+a1βne

βn
βn
) = 0 ⇔ a11θ(e

βn
1 )+

· · · + a1βnθ(e
βn
βn
) = 0 ⇔ a11y = 0. Since a11 ∈ Ann y, for any y ∈ El we

have a11 ∈ AnnEl = ml . Similarly aij ∈ ml for any i ∈ {1, . . . , βn+1}, and
for any j ∈ {1, . . . , βn}, for any n ≥ n0.

Theorem 6 shows that we can drop the completeness as part of the hypothesis
of Theorem 5.

The proof of Theorem 6 uses the following.
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Lemma 7. Let (R,m, k) be a commutative local noetherian ring and let R̂
be the m-adic completion of R. If E is an R̂-module, then E is an injective
R̂-module if and only if E is an injective R-module.

Proof. “⇒” Since R̂ is a flat R-module and E is an injective R̂-module,
it follows ([5], Theorem 3.2.9) that HomR̂(R̂, E) is an injective R-module.
HomR̂(R̂, E) 
 E as R̂-modules, so also as R-modules (when restricting the
scalars). Thus E is an injective R-module.

“⇐” Let J be an ideal of R̂. Then J = R̂ ⊗R I for some ideal I of R.
By [5], Theorem 2.1.10, HomR̂(R̂ ⊗R I,E) 
 HomR(I,HomR̂(R̂, E)) 

HomR(I, E). Similarly, HomR̂(R̂ ⊗R R,E) 
 HomR(R,E).

Since 0 → I → R is exact and E is injective it follows that the se-
quence HomR(R,E) → HomR(I, E) → 0 is exact ⇔ HomR̂(R̂, E) →
HomR̂(J, E) → 0 is exact.

So E is an injective R̂-module.

Theorem 6. Let (R,m, k) be a commutative local noetherian ring with
the property that every direct sum of DG-injective complexes of R-modules

is DG-injective. Let M be a finitely generated R-module. If . . . → Rβ1
f1−→

Rβ0
f0−→ M → 0 is a minimal projective resolution of M then for each l ≥ 1

there is n ≥ 1 such that the entries of the matrix that represents fn are all in
ml for any n ≥ n.

Proof. R̂ is a commutative local noetherian ring with maximal ideal mR̂
and residue field R̂/mR̂ 
 ̂(R/m) = k ([5], pp. 66).

Since the complex . . . → Rβ1
f1−→ Rβ0

f0−→ M → 0 is exact and R̂ is
a flat R-module ([5], Theorem 2.5.18), it follows that . . . → R̂ ⊗R R

β1 →
R̂ ⊗R R

β0 → R̂ ⊗R M → 0 is an exact complex.
By [5], Theorem 2.5.14, R̂ ⊗R M 
 M̂ .
We have R̂⊗R R

n 
 R̂⊗R (R⊕ . . .⊕R) 
 R̂⊗R R⊕ . . .⊕ R̂⊗R R 
 R̂n,
for any n ≥ 1.

So . . . → R̂β1
f̂1−→ R̂β0

f̂0−→ M̂ → 0 is a free resolution of R̂M̂ .
Rβ0 → M is a projective cover, so M/mM 
 (R/m)β0 .
SinceM is finitely generated we have m̂M = mM̂ . So M̂/mM̂ = M̂/m̂M


 ̂M/mM 
 ̂(R/m)β0 
 (R̂/m̂)β0 . Hence R̂β0
f̂0−→ M̂ is a projective cover.

Similarly, R̂βn
f̂n−→ Im f̂n is a projective cover, for any n ≥ 1. So . . . →

R̂β1
f̂1−→ R̂β0

f̂0−→ M̂ → 0 is a minimal projective resolution of M̂ .
By [5], Theorem 3.4.1, E(k) 
 ER̂(R̂/m̂) as an R̂-module, so the complex

0 → M̂ν → (R̂β0)ν → (R̂β1)ν → . . . is exact. The same argument used in
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the proof of Theorem 5 shows that 0 → M̂
f̂ ν0−→ (R̂β0)ν

f̂ ν1−→ (R̂β1)ν → . . .

is a minimal injective resolution of R̂M̂
ν . Since R̂ is complete and RM̂ is

noetherian it follows that M̂ν is an artinian R̂-module ([5], Corollary 3.4.4).
Let En = (R̂βn)ν and let Kn = Ker(En → En+1) for any n ≥ 0. Let

El = {x ∈ E(k) | m̂lx = 0}. Since El 
 HomR̂(R̂/m̂
l, E(k)) and R̂/m̂l has

finite length it follows that El has finite length. By [5], Theorem 2.3.17, El is
finitely generated.

We prove that there is d0 ≥ 0 such that any linear map k → Kd can be
extended to a linear map El → Kd , for any d ≥ d0.

Suppose no d0 ≥ 0 has this property. Then for any j ≥ 0 there is dj ≥ j

and fdj ∈ HomR̂(k,Kdj ) that cannot be extended to El → Kdj .

Each En is an injective R̂-module, therefore an injective R-module (by
Lemma 7). So each of the complexes

Jd0 = . . . → 0 → 0 → 0 →
0th

Ed0
gd0−→ Ed0+1 → Ed0+2 → . . .

Jd1 = . . . → 0 → 0 → Ed1−1 → Ed1
gd1−→ Ed1+1 → Ed1+2 → . . .

Jd2 = . . . → 0 → Ed2−2 → Ed2−1 → Ed2
gd2−→ Ed2+1 → Ed2+2 → . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

is DG-injective (over R). By hypothesis, ⊕∞
i=0Jdi is DG-injective.

The same argument used in the proof of Proposition 3 shows that

�∞
j=0 Ker gdj

⊕∞
j=0 Ker gdj

= �∞
j=0Kdj

⊕∞
j=0Kdj

is an injective R-module, therefore an injective R̂-module (by Lemma 7).
Then the same argument used in the proof of Proposition 4 shows that fdj

can be extended to a homomorphism El → Kdj for infinitely many j ≥ 0.
Contradiction. So there is d0 ≥ 0 such that for any d ≥ d0, any linear map
k → Kd can be extended to El → Kd .

By [5] Corollary 3.1.21, SocKd = SocER̂(Kd) = SocE(k)βd = kβd . So
kβd ⊂ Kd , ∀d ≥ 0. Since kβd ⊂ Kd ⊂ E(k)βd and any linear map k → Kd
can be extended to El → Kd , it follows that Eβdl ⊂ Kd ⇔ {x ∈ E(k)βd |
m̂lx = 0} ⊂ Kd ⇔ {x ∈ Ed | m̂lx = 0} ⊂ Kd for any d ≥ d0.

The same argument used in the proof the Theorem 5 shows that for each
l ≥ 1 there is n ≥ 1 such that the entries aij of the matrix that represents
f̂n are all in m̂l , for any n ≥ n. Since aij are the entries of the matrix that
represents fn, we have aij ∈ m̂l ∩ R = ml ([9], Corollaire pp. 26), for any
i ∈ {1, . . . , βn}, j ∈ {1, . . . , βn−1}.
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Remark 1. Let (R,m, k) be a commutative local noetherian ring such that
every direct sum of DG-injective complexes of R-modules is DG-injective.

If . . . → Rβ1
f1−→ Rβ0

f0−→ k → 0 is a minimal projective resolution of k
then, by Theorem 6, for each l ≥ 1 there is nl ≥ 1 such that the entries aij
(1 ≤ i ≤ βn, 1 ≤ j ≤ βn−1) of the matrix that represents fn are all in ml ,
for any n ≥ nl . It is not known if this condition guarantees the existence of an
n ≥ 1 such that for any n ≥ n all aij are in ml , for any l ≥ 1, so all aij are in
∩l≥1m

l = 0, that is fn = 0 for all n ≥ n, and so gl.dimR = proj dim k < ∞.

As a consequence of Theorem 6 we have that the class of DG-injective
complexes over a commutative local artinian ring R is closed under direct
sums if and only if gl.dimR < ∞.

Corollary 1. Let (R,m, k) be a commutative local artinian ring. The
following are equivalent:

(1) Every direct sum of DG-injective complexes is DG-injective.

(2) gl.dimR < ∞.

Proof. “(1) ⇒ (2)” SinceR is artinian there is l ≥ 1 such thatml = 0 ([5],
Proposition 2.3.22).

Let . . . → Rβ1
f1−→ Rβ0

f0−→ k → 0 be a minimal projective resolution
of k. By Theorem 6 there is nl ≥ 1 such that the entries aij of the matrix
that represents fn are all in ml , for any n ≥ nl . Hence fn = 0 for all n ≥ nl .
Consequently proj dim k < ∞. SinceR is local we have gl.dimR = proj dim k

([11] Corollary 4.4.12). So gl.dimR < ∞.
(2) ⇒ (1) Let (Ji)i∈I be a family of DG-injective complexes.
Since R is noetherian and each J ni is injective it follows that ⊕i∈I J ni is

injective, ∀n ≥ 0. Since gl.dimR < ∞ any complex of injective R-modules
is DG-injective. So ⊕i∈I Ji is a DG-injective complex.

Theorem 7 below shows that the result holds for any commutative artinian
ring.

Theorem 7. Let R be a commutative artinian ring. The following are
equivalent:

(1) Every direct sum of DG-injective complexes of R-modules is DG-injec-
tive.

(2) gl.dimR < ∞.

Proof. This follows from the fact that any artinian ring is isomorphic to a
product of local artinian rings. So then the result follows from the equivalence
between the category of R-modules and the product of categories of modules
over the local rings in the decomposition of R.
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Theorem 7 and the same argument as in the proof of Theorem 4 gives us
the following result.

Theorem 8. If R is a commutative artinian ring then every direct sum of
exact covers is an exact cover if and only if gl.dimR < ∞.
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