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DIRECT SUMS OF EXACT COVERS OF COMPLEXES

ALINA IACOB

Abstract

A ring R is left noetherian if and only if the direct sum of injective envelopes of any family
of left R-modules is the injective envelope of the direct sum of the given family of modules
(or equivalently, if and only if the direct sum of any family of injective left R-modules is also
injective). This result of Bass ([2]) led to a series of similar closure questions concerning classes
of modules and classes of envelopes and covers (Chase in [4] considers the question of the closure
of the class of flat modules with respect to products).

Motivated by Bass’ result we consider the question of direct sums of exact covers of complexes.
From the close connection between minimal injective resolutions of modules and exact covers of
complexes it seemed reasonable to conjecture that we get this closure over left noetherian rings.
In this paper we show that this is not the case and that under various additional hypotheses on
the ring that in fact the ring must have finite left global dimension for this to happen. Our results
raise what we consider an interesting question about characterizing the local rings of finite global
dimension in terms of a certain property of minimal projective resolutions of finitely generated
modules over the local ring.

‘We also consider the closely related question of when the direct sum of DG-injective complexes
is DG-injective.

1. Introduction

In [6] it was proved that every complex X of left R-modules (for any ring R)
has an exact cover (see Section 2 for definitions).
As an example consider a minimal injective resolution

0—>M-—E"—> E'— ...
of any left R-module M. Then the obvious map of complexes
(.. 0>0>0>M—->E"SE'-»..)>

(. 0-0->0->M—-0—->0—..)

is an exact cover of M considered as a complex concentrated at 0.

From this example and the result of Bass ([2]) we quickly see that in order
that the direct sum of exact covers to be an exact cover the ring must be left
noetherian. So it seemed natural to conjecture that in fact this always is the
case over left noetherian rings.
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It is known that the kernel of any exact cover is a DG-injective complex
(see below for definitions) and any DG-injective complex is the kernel of an
exact precover ([6], Theorem 3.18 and Lemma 3.21). So a necessary condition
in order that every direct sum of exact covers to be an exact cover is that every
direct sum of DG-injective complexes be still DG-injective.

That the class of DG-injective complexes is not, in general, closed under
direct sums can be seen from [8] (Example, pp. 68). If l.gl.dim R < oo then
any complex K of injective left R-modules is DG-injective (see [1], Propos-
ition 3.4). Consequently, if R is left noetherian and l.gl.dim R < oo then for
any family (K;);c; of DG-injective complexes we have that @;c; K; is DG-
injective. We give (Proposition 3) a necessary condition for a left noetherian
ring R in order that every direct sum of DG-injective complexes to be DG-
injective. We use this result to prove (Theorem 2) that if R is a commutative
local Gorenstein ring then the following are equivalent:

(1) every direct sum of DG-injective complexes is DG-injective.
(2) gl.dim R < oc.

Theorem 3 proves that (1) and (2) are equivalent for any commutative Goren-
stein ring R.

Using this result we prove (Theorem 4) that if R is acommutative Gorenstein
ring then the following are equivalent:

(1) If E; — X; is an exact cover for any i € [ then ®;¢; E; — D1 X; 1S
an exact cover.

2) gl.dim R < cc.

We consider then a complete commutative local noetherian ring R such
that every direct sum of DG-injective complexes over R is DG-injective. Let

. RA LY RA LS M 0 be a minimal projective resolution of a
finitely generated R-module M. Theorem 5 shows that for each / > 1 there is
7 > 1 such that the entries of the matrix that represents f, are all in m', for
any n > n.

Theorem 6 shows that this result is true for any commutative local noetherian
ring (R, m, k) with the property that the direct sum of DG-injective complexes
is DG-injective.

In particular, if ... — RP L Rf L5 k= 0'is a minimal projective
resolution and A, is the matrix that represents f, then, by Theorem 6, for each
I > 1 there is n; > 1 such that all entries of A, are in m!, for any n > ny. It
is not known if this guarantees that there is 7 > 1 such that f, = 0 for any
n > n, or equivalently gl.dim R = projdim k < oo.
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As a consequence of Theorem 6 we show that for a commutative local
artinian ring R a necessary and sufficient condition in order that every direct
sum of DG-injective complexes to be DG-injective is that gl.dim R < oo.
Theorem 7 shows that the result holds for any commutative artinian ring R.
We use Theorem 7 to prove that if R is commutative artinian then any direct
sum of exact covers of complexes of R-modules is still an exact cover if and
only if gl.dim R < oo (Theorem 8).

2. Preliminaries

Let R be any ring.

A (chain) complex C of R-modules is a sequence C = ... - C; N

C, N Co BN C_, ﬂ) C_, — ... of R-modules and R-homomorphisms

such that 9,1 00, =0 foralln € Z.

A chain complex of the foom C = ... — C~2 oo 0 B
c! 25 €2 - . s called a cochain complex. In this case 3"*! 0 8" = 0 for
all n € Z. We note that a cochain complex is simply a chain complex with C’
replaced by C_; and 9’ by 9_;.

Throughout the paper we use both the subscript notation for complexes and
the superscript notation.

When we use superscripts for acomplex we will use subscripts to distinguish
complexes, for example (K;);c; is a family of complexes and K" denotes the
degree n term of the complex K;.

If X and Y are both complexes of left R-modules then #om (X, Y) denotes
the complex with #om(X,Y), = I,—,1, Homg(X,, Y,) and with differen-
tial given by o(f) = do f — (—=1)"f 0 0, for f € Hom(X,Y),.

DEerINITION 1 ([6]). A complex [ is DG-injective if each I" is injective
and if Hom(E, I) is exact for any exact complex E.

Recall that a complex I is K-injective if for every exact complex E the
complex #om(E, I) is exact ([10], Definition 1.1). Thus a complex [ is DG-
injective if and only if each /" is injective and / is K -injective in the sense of
Spaltenstein.

Itis known thatif I = ... - 0 — 0 — [" — [+l 5 o+2 5 and
each I" is injective then I is DG-injective ([1], Remark 1.1.1).

If1.gl.dim R < oo then any complex / with all /" injective is DG-injective
([1], Proposition 3.4).

Throughout this paper Hom (X, Y) denotes the set of morphisms from X to
Y in the category of complexes, and Ext’ (X, Y) are the right derived functors
of Hom(—, —).
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DEFINITION 2. A complex E is injective if the functor Hom(—, E) is right
exact.

If M is an injective R-module then the complex ... - 0 - M LN VIR
0 — ... (with the first M in the nth place) is injective. In fact any injective
complex is uniquely up to isomorphism the direct sum of such complexes (one
such complex for each n € Z).

ProposiTION 1 ([6], Proposition 3.4). A complex I is DG-injective if and
only if Ext'(E, I) = 0 for any exact complex E.

DEFINITION 3 ([6], pp. 35). A DG-injective complex [ = ... — "1 £

1" 25 s s said to be minimal DG-injective if for each n, Ker g, is
essential in /".

ProposITION 2 ([6], Proposition 3.16). A DG-injective complex is the direct
sum of an injective complex and a minimal DG-injective complex. This direct
sum decomposition is unique up to isomorphism.

DEFINITION 4 ([6]). A morphism of complexes ® : E — X is an exact
precover of X if E is exact and if Hom(F, E) — Hom(F, X) is surjective for
any exact complex F.

If, moreover, any f : E — E such that ® = ® o f is an automorphism of
E,then & : E — X is called an exact cover of X.

THEOREM 1 ([6], Theorem 3.18). Every complex X has an exact cover
E — X. A morphism E — X of complexes is an exact cover of X if and
only if E is exact, E — X is surjective and Ker(E — X) is a minimal DG-
injective complex. If E — X is an exact cover, E is injective if and only if X
is DG-injective.

We recall that for any #, and for any complex X, X[n] denotes the complex
such that X[n]" = X"*™ and whose boundary operators are (—1)"9" ™.

If f: X — Y is amorphism of complexes then there is an exact sequence
0—Y - M(f) - X[1] - 0 with M(f) the associated mapping cone
(M(f)" = X" @ Y™ and d(x, y) = (—dx, f(x) + dy) for (x, ) € X" @
Ym.

Lemma 1 ([6], Lemma 3.21). Let I be a DG-injective complex and let
Id : I — I give the exact sequence 0 — I — M(Id) — I[1] — 0. Then
M (1d) is injective and M (Id) — I[1] is an exact precover. If I is minimal then
I — M(d) is an injective envelope and M (1d) — I[1] is an exact cover.

LEMMA 2. If (Kp)uxo0 is a family of DG-injective complexes then T132 K,
is DG-injective.
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PrROOF. Let M be an exact complex.

Each K, is DG-injective, so by Proposition 1 we have Ext' (M, K,) = 0
forany n > 0.

Since Ext! (M, 2 K,) ~ 1172, Ext'(M, K,)) = 0 for any exact complex
M it follows (by Proposition 1) that IT°° ) K, is DG-injective.

3. A necessary condition in order that every direct sum of DG-
injective complexes to be DG-injective

Our first result in this section gives a necessary condition in order that every
direct sum of DG-injective complexes to be DG-injective.

We recall that a morphism f : X — Y of complexes is called a quasi-
isomorphism if the maps H"(X) — H"(Y) are all isomorphisms.

PROPOSITION 3. Let R be a left noetherian ring. A necessary condition in
order that the direct sum of DG-injective complexes to be DG-injective is that

e ,C,
D,Z0Cn
is injective, where C,, is the nth cosyzygy of some module C.

PrOOF. Let0 — C — E° — E! — E? — ... be an injective resolution
of C.

Let
Oth
Kb=...50—> 0 > 0 > E°"> E' > E*?— ...
Ki=...-0—> 0 > E°5> E'" 5> E> > E>— ...
Ky=... 0> E'>E' 5> E*?> FE3 > E*— ...

Each K, is a bounded below complex of injective modules, so K, is DG-
injective for any n > 0.

We show first that the inclusion map &2 K, BN M2 K, is a quasi-
isomorphism.
We have that

H (D2 0K,) = O H(K,) and H(M2K,) = 2 H(K,)

But each K, has at most one non-zero homology module and this is in the nth
position. So we see that for each /

(@2 H(Ky)) = H(K) and (M2 H(K,)) = H(K))
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Hence we see that
@;ﬁOKn — HS‘;OK,,

is a quasi-isomorphism.
e We show now that a necessary condition for ®;° K, to be DG-injective

is that ne,C,

n

00
n:OC"

is an injective module, where C,, is the nth cosyzygy of C.

Let E = eagi—oKn Since the sequence 0 — @, K, 7, ne,K, - E—
0is exact and 1,// is a quasi-isomorphism is follows that E is an exact complex.

If ®,2 K, is DG-injective then since 172 , K, is also DG-injective (Lemma
2) it follows that E is DG-injective ([6], Remark pp. 31).

Since E is exact and DG-injective it follows ([6] Proposition 3.7) that E is

an injective complex.

. o %,
We use the notation K, = ... - K> — K! — K — ... for any
n=>0.
We have
2 1 0 1
Ee. o Mok @ TZoK, o MoK, o 2K,
O oK, O oK, O Ky D oKn !

The complex E is injective, so Ker g" is an injective R-module for any n € Z
([8], Theorem 3.1.3). In particular Ker g° is injective.

e We show that Ker g° ~ gw C. (with C, the nth cosyzygy of C).

80((Xn)nzo + 69210[(,9) = (Oln (Xp))n=0 + @ZozoKn L

If (xn)nZO + GBZO:OKS € Ker gO then (ag(xn))n € 69;.,1()1("_1-

So a®(x,) = 0 & x, € Kera? = Ker(E" — E"t!) = C,, for all but
finitely many n > 0.

Let y = (Yn)nz0 With

x,, ifx, € Ker ag
Yn = . 0
0, ifx, ¢ Kera,,.
Then y € T1%, Kera = 1% /C,,.
Letz = (x, — )n>0 Thenz € @2 oK =@ k" and (x,),>0 = y+z €
e ,C, + &2 OE"
So

I1,20Crn + @2 E"

1 Kerg® c
(D g O E"
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If
I,20Cn + ®,2,E" . 1,2, Ker 0‘2 + 69?10:0]()(1)

x4+ @2 K e
n=0T @, E" Oy Ky

then x = y 4+ z with y € 11 Kera! and z € &3 (K ..
Sox + @& K% = y+ @& ,K?. Since g°(y + @22, K?) = (a%(y))nz0 +
K1 =0+ @K, ! it follows that

(2) x + %KY € Ker g’
By (1) and (2) we have:
Ker g° = 720G + &5 E” ~ I1720Cn _ I20Cn
TR 2 ZCa N@L0E"  @,2,Ca

ne,C, . e
So @’;goc” is an injective module.
n=0%“n

Another useful result is the following.

LEMMA 3. Let (R, m, k) be a commutative local noetherian ring and let A
be an artinian module. If0 - A — E° — E! — E? — ... is a minimal
injective resolution of A then each E" is a finite direct sum of copies of E (k).

ProoF. Since A is artinian, we have A C E(k)", for some n > 1 ([5],
Theorem 3.4.3). So E° is a direct summand of E (k)". Therefore E® = E (k)P,
with 1 < By < n.If K; = Ker(E' — E*) then0 - A - E° - K, - 0
is exact. Since EV is artinian it follows that K is artinian. So K| C E (k) for
some [ > 1. Then E! is a direct summand of E(k)'. So E! = E(k)?', with
B1 < [. Similarly, E" is a finite direct sum of copies of E (k), for any n > 0.

Using Lemma 3 we can prove the following result.

LEMMA 4. Let (R, m, k) be a commutative local noetherian ring. Let 0 —

k — E(k) Ly Bt DS B2 s L be g minimal injective resolution of k and
let K, = Ker(E" — E"*!) foranyn > 1.

K, is injective if and only if for every homomorphism f : k — K, there is
a homomorphism u : E(k) — K, such that ul; = f.

ProoF. “«<” The injective envelope of K, is E". By Lemma 3 E" =

®Dici E; with E(k) lp_\"’ E;, Vi e l.

Let S; = ¥;(k) ~ k. Then S; C E; is an injective envelope, Vi € 1.
Since ¥; (k) N K, < ¥;(k) and ¥, (k) is simple we have ¥; (k) N K, = 0 or
Y (k)N K, = ;i (k). Since K, is essential in E”, ; (k) N K,, = 0 would imply
that v; (k) = 0 & k = 0. False.
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So (k) N K, =y (k) & Si =i(k) C K,.
ks Ek)

| A

Ky
By hypothesis there exists u; € Hom(E (k), K,,) suchthatu; o j =, Vi € I.

k——wl—>K,,

| A

E(k)

Since ; is an injection and E(k) is an injective module there exists v; €
Hom(K,, E(k)) such that v; o ¥; = j.

Then v;ou; 0 j = v;0of; = j. Since j : k — E(k) is an injective envelope
it follows that v; o u; € Aut E (k). Consequently, &; is an injection.

So M; = u;(E(k)) >~ E (k) is an injective module, Vi € I.

Since u; (k) = ¥; (k) = S; C M; >~ E(k) and S; >~ k we have that §; C M;
is an injective envelope. So M; = E; Vi € I.

Since E; C K, Vi € I we have ®;¢;E; C K, & E" C K, C E" &
K, = E". So K,, is an injective module.

“="Let f € Hom(k, K,).

ks Ek)

1A

K,

Since K, isinjective and j : k — E (k) is an injection there is u € Hom(E (k),
K,) suchthatuoj = f.

4. Direct sums of exact covers over commutative Gorenstein rings

We prove in this section that the class of DG-injective complexes over a
commutative Gorenstein ring R is closed under direct sums if and only if
gl.dim R < oo. Using this result we prove that if R is a commutative Goren-
stein ring then every direct sum of exact covers is an exact cover if and only if
gl.dim R < oo.

We start with the following result.

THEOREM 2. Let R be a commutative local Gorenstein ring with maximal
ideal m and residue field k. The following are equivalent:

(1) Every direct sum of DG-injective complexes is DG-injective.
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(2) gl.dim R < oo.

PRrROOF. (1) = (2) Suppose gl.dim R = oco. R is alocal ring, so gl.dim R =
projdimk ([11], Corollary 4.4.12). Since R is a Gorenstein ring, and
proj dim k = oo we have injdim k = oo ([5], Proposition 9.1.7).

Let0 - k — E(k) - E' — E? — ...be a minimal injective resolution
of k. Let K, = Ker(E" — E"*!) for any n > 0 (with Ky = k). Since
injdim k = oo it follows that K, is not injective for any n > 0. By Lemma 4
this means that for each n > 0 there is f, € Hom(k, K,) that can not be
extended to a homomorphism E (k) — K,,.

Let f,(1 +m) = x,.

We know (Proposition 3) that if every direct sum of DG-injective complexes
is DG-injective then g;%—gg is an injective module where C,, is the nth cosyzygy
of some module C.

R is a Gorenstein ring, so Gorinjdimk = d < oo.

Then K, is a Gorenstein injective module for any n > d ([5], Proposi-
tion 11.2.5 and Theorem 10.1.4).

Let C = Ky and let M = gt = gine,

Let f : k — M be defined by f (1 4+m) = x withx = (x,)n=q + B2, Kn.

ks Ek)

| A

M

Since M is aninjective module and j is aninjection thereis F € Hom(E (k), M)
such that F o j = f.

The sequence 0 — @72 K, — II° K, LN M — 0 is exact, so
we have an associated long exact sequence 0 — Hom(E(k), ®;° ,K,) —
Hom(E (k), IT° ,K,) — Hom(E(k), M) — Ext!(E (k), @ y,K) =0
(since @, , K, is Gorenstein injective and E (k) is injective).

Since 0 — Hom(E(k), ®;° ,K,) —> Hom(E(k), T2 ,K,) —>
Hom(E(k), M) — 0 is exact there is u € Hom(E (k), IT72 ,K,,) such that
F=Pou (Wlth P: H;.,O:dKn - M, P((Zn)nzd) = (Zn)nzd + Qazoszn)

E (k)
Sl
ne K, -+t M

Let u(l +m) = (Yp)nza- Then F(1 +m) = P(u(l +m)) = (Yn)n=a +
&2, K.
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Since Fl = f,wehave F(1 +m) = f(1+m) = (X,)pza + D5 ;K.
So x, = y, for all but finitely many n > d.

Letn > d be such that x,, = y,.

Letm, : 172, K; — K, 1,((2))j2a) = Zn-

ks E®)

K,

We have 7, o u(1 +m) = m,((y;)j=a) = Yn = Xp = fu(1 +m).

So f, : k — K, can be extended to a morphism E (k) — K, for infinitely
many n > d. Contradiction.

Hence gl.dim R < oo.

(2)= (1) Since gl.dim R < oo it follows that a complex J is DG-injective
if and only if each J” is an injective module.

Let (J;);e; be a family of DG-injective complexes.

Since R is noetherian and J" is injective Vi € [ it follows that ®;¢;J;" is
injective. So @;¢;J; is a DG-injective complex.

In order to prove that the conditions (1) and (2) from Theorem 2 are in
fact equivalent for any commutative Gorenstein ring we use the following well
known result.

LEMMA 5. Let R be a commutative noetherian ring and let S C R be a
multiplicative set (0 ¢ S). If E is an S™'R module then E is an injective
S~'R-module if and only if E is an injective R-module.

THEOREM 3. Let R be a commutative Gorenstein ring. The following are
equivalent:

(1) Every direct sum of DG-injective complexes is DG-injective.
(2) gl.dim R < oo.

PrOOF. (1) = (2) We prove first that if every direct sum of DG-injectives
is DG-injective then gl.dim R, < oo for any p € Spec R.

Suppose there is p € Spec R such that gl.dim R, = oo.

R), is alocal ring with maximal ideal p R,, and residue field R,/ p R, which
is denoted k(p). Since R is a Gorenstein ring it follows that R, is also a
Gorenstein ring ([5], Remark 2.3.8, and [3] Corollary 2.3).

Since projdimp k(p) = gl.dim R, = oo and R, is Gorenstein, it follows
that inj dimRP k(p) = oo (by [5], Proposition 9.1.7).

Let0 — k(p) — Eg — E ,1, — ... be a minimal injective resolution of
&, k(p). Let K» = Ker(Ep — Ept').
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Since injdimp k(p) = oo it follows that K} is not injective, Vn > 0.

R, is Gorenstein, so Gor injdimk(p) = d, < oo. Then K is Gorenstein
injective, Vn > d,,.

Each E ;, is an injective R,-module, therefore an injective R-module (Lem-
ma 5). So each of the complexes:

Oth
dp+1 dp+2

— dp P P
Ji,=...>0—> 0 - ES —>E) E,
d dp+1 dp+2 dy+3
Ji,s1=...>0—>E, > E —>ES —>E/’ —

is DG-injective over R.
By hypothesis @, d, J, is a DG-injective complex over R.

Let0 — @2, J» BN 2, Jn — E — 0 be exact.

Since ¥ is a homology isomorphism (same argument as in the proof of
Proposition 3) it follows that E is exact.

Both @2 J, and IT;2, J, are DG-injective, so E is DG-injective ([6],
Remark pp. 31) By [6], Proposmon 3.7, E is an injective complex. By [8],
Theorem 3.1.3, Ker(E" — E”“) is injective, Vn € Z.

In particular, Ker(E® — E!) is an injective R-module. We showed (proof

ne, K"
of Proposition 3) that Ker(E® — E') ~ Uiy 2

00
@n =dp p

e}

Let M, = ea’;l‘? ”:” 2} Since M), is an R,-module which is injective as an
R-module it follows (by Lemma 5) that M, is an injective R,-module.

K 1’,’ is not injective for any n > 0. So for each n > O there is f, €
Homg, (k(p), K ”) that can not be extended to a homomorphism E (k(p)) —
Kn

Let fa(l+ pRy) = xp

Let f : k(p) — M, be defined by f(1 + pR,) = (x;)nzdp + EB;’,ozde;.

Since M), is injective thereis F € Homg, (E(k(p)), M,) such that F |, =
f.

The sequence 0 — @;2, K — I}, K N M, — 0 is exact. There-
fore we have the long exact sequence 0 — Hom(E (k(p)), ®,2 “d, K ") —
Hom(E (k(p)), I;2, K;) —> Hom(E(k(p)), M,) —> Ext' (E (k(p)),
®,~y, K,) =0 (since ®;2; K is Gorenstein injective).

E(k(p))
Y

I'I"OdK”—> M,
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So there exists u € Hom(E (k(p)), Hg‘;de;) such that 6 o u = F, with
0 : H;’lozdeI',' - M,, 9((Zn)nzd,,) = (Zn)nzdp e @;id,,K;'

Letu(l + pR,) = (y;)nzdp-

Then F (1 + pRp) = 9((y;)nzd,,) = (y;;)nzdp + ®§.;dp K;,l

But Flip) = f.s0 F(1+ pRy) = f(1+ pRy) = (x))nzq, + @Zidpl(;j.

Hence x); = y;, for all but finitely many n > d,,.

If n > d)p is such that x; = y; then 7, o u € Homg, (E(k(p)), K};)
and 7, o ulyp = fu (with w, : T2, Kp — Kj, 7,((z7);) = 2"). So
fn € Hom(k(p), K;‘) can be extended to a homomorphism E(k(p)) — K;j.
Contradiction.

Soinjdimg k(p) < 00 < projdimg k(p) < 0o < gl.dim R, < oo.

Since R, is a local ring and gl.dim R, < oo it follows that gl.dim R, =
Krull dim R, ([11], Theorem 4.4.16). By [3], Corollary 3.4, Krulldim R,
injdimg R,. So

3) gl.dim R, = inj dime R,, Vp € Spec R.

Letinjdimy R = n < oo.
By [3], Corollary 2.3, we have

4) inj dime R, <injdim, R =n, VYp € Spec R.

By (3) and (4), gl.dim R, < n,Vp € Spec R.

By [7], Theorem 9.52, gl.dim R = sup gl.dim R,, when m ranges over all
maximal ideals in R.

Hence gl.dim R < n.

(2)= (1) Since gl.dim R < oo it follows that a complex J is DG-injective
if and only if each J” is an injective module.

Let (J;);¢; be a family of DG-injective complexes.

Since R is noetherian and J" is injective Vi € [ it follows that ®;¢;J;" is
injective. So @;¢;J; is a DG-injective complex.

THEOREM 4. If R is a commutative Gorenstein ring then every direct sum
of exact covers is an exact cover if and only if gl.dim R < oo.

PrOOF. “=" Let (J;);c; be a family of DG-injective complexes.

By Proposition 2 J; = D; @& K; with D; injective and K; minimal DG-
injective.

By Lemma 1, Id; : K; — K; gives the exact sequence 0 — K; —
M(d;) l) K;[1] = 0 with M(d;) e E; (“not” is for notation) an injective
complex and with E; — K;[1] an exact cover.

By hypothesis ®;c; E; — ®;<; K;[1] is an exact cover.
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So @i/ K; =Ker (B Ei — Dier K;[1]) is minimal DG-injective. We have
BicrJi = (BicrDi) & (Bics K;) with ®;¢; D; injective (hence DG-injective)
and @;<; K; DG-injective. Since the class of DG-injective complexes is closed
under taking finite direct sums ([6], pp. 27) it follows that ®;c,J; is DG-
injective.

Since R is commutative Gorenstein and every direct sum of DG-injective
complexes is DG-injective, it follows that gl.dim R < oo (by Theorem 3).

“<” Let E; L X; be an exact cover, forany i € 1.

Then 7; = Ker v; is a minimal DG-injective complex (Theorem 1).

Each sequence 0 — T; — E; — X; — 0 is exact, so the sequence
0— Pic/T; > Dic/E; — Bic; X; — 0is exact.

Since gl.dim R < oo it follows that @;<; T; is DG-injective.

A A
Ti=...> T 21 25 L

For each i € I, Ker f" is essential in 7", so @;c; Ker f" is essential in
®@icr T, VYn € Z ([5], Exercise 11, pp. 75).

Hence @®;¢; T; is minimal DG-injective.

Since @i E; — Dicy X; 1s surjective, ;s E; is exact and Ker (P, E; —
®icr X;) is minimal DG-injective it follows that @;<; E; — ®;¢; X; is an exact
cover (by Theorem 1).

5. Minimal projective resolutions of finitely generated modules over
local noetherian rings

We consider a complete commutative local noetherian ring R with the property
that every direct sum of DG-injective complexes of R-modules is DG-injective.
R is local, so every finitely generated R-module has a minimal projective

resolution. Let ... — RP s Rf L M 5 0 be a minimal projective
resolution of a finitely generated R-module M. We show (Theorem 5) that for
each [ > 1 there is n > 1 such that the entries of the matrix that represents f,
are all in m', for any n > n.

Theorem 6 proves that the result is true for any commutative local noetherian
ring R with the property that the direct sum of DG-injective complexes is DG-
injective.

Our first result in this section is the following.

LEMMA 6. Let (R, m, k) be a commutative local noetherian ring. For each
n>1lletE,={x|xe¢€ E(k),m"x =0}

If K < E(k)’ then E; C K if and only if (1) k* C K and (2) any linear
map k — K has an extension E,, — K.
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Proor. Since k* C E (k) is an injective envelope over R and m"k® = 0 it
follows that the injective envelope of k* over R/m" is {x € E(k)* | m"x =
0}y =E;.

“<" Let fi,..., fy € Hom(k, K), fi(x) = (x,0,...,0),..., fi(x) =
(0,0, ..., x). By hypothesis there is 0; € Homg(E,, K) that extends f;, 1 <
J<s.Leto: E:l — K,o(y1,...,y) =01(y1) + -+ 0s(ys).

Ify = (y1,...,y5) € K’NKero then (yr, ..., ¥) = fiyD)+...+f(ys) =
o1(y1) + -+ -+ o5(ys) = 0. Since k* is essential in E3 and k* N Kero = 0 it
follows that Ker o = 0.

So E} >~ o(E}) C K. Therefore k¥’ = o(k’) C o(E;) is an injective
envelope over R/m".

We have ro(y1,...,y) = ror(y1) + - +ros(ys) = o1(ry1) +--- +
o,(rys) = 0, for any r € m", for any (y1,...,ys) € E5. Soo(E}) C {x €
K| |m'x=0}C{xeEKk) |mx=0}=E.

Both o(E}) and E; are injective envelopes of k°, and o (E;) C E;. So
o(E)) = E) as R/m"-modules. Since their structure of R/m"-modules is
givenby (r +m")x =r-x,foranyr+m" € R/m",itfollowsthato (E}) = E;
as R-modules. So E? C K.

“="Wehave E; C K,sok’ C E;, C K.

Let f € Homg(k, K), f # 0. Since k is simple, f is injective, so f (k) =~ k.
Since f(k) Nk* < f(k) and f (k) is simple it follows that f(k) N k* = 0 or
fk)yNkd = f(k). k* is essential in E(k)°, so f(k) N k* = 0 would imply
f(k) =0 < k =0.False. Hence f(k) Nk® = f(k) & f(k) Ck*.

f is an R-homomorphism, so it is also an R/m"-homomorphism.

k —— E,

| |

kS < E} —— K

Since k C E, and k' C E; are injective envelopes over R/m", there is
g € Homg,,n (E,, E;) that extends f.

Foranyr € Rwehave g(r-x) = g((r+m™)x) = (r+m")g(x) =r-g(x).
So g € Homg(E,, E}). The homomorphism i o g extends f.

We use Lemma 6 to prove the following result.

ProposITION 4. Let (R, m, k) be a commutative local noetherian ring such
that every direct sum of DG-injective complexes of R-modules is DG-injective.
Letl > 1.If0 > A — E° — E' — ... is a minimal injective resolution
of an artinian R-module A, then there is ny > 0 such that {x € E" | m'x =
0} C Ker(E" — E"™), forall n > n,.
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PrOOF. Since A is an artinian module, we have E" = E(k)?, for some
B, > 1 (Lemma 3).

Let E; = {x € E(k) | m'x =0}.

Since R/m' has finite length, it follows that Hom(R/m', E(k)) has finite
length ([5], Theorem 3.4.1). So E; ~ Hom(R/m', E(k)) is of finite length.
By [5], Theorem 2.3.17, E; is noetherian, hence finitely generated.

Let K, = Ker(E" — E"*!) for any n > 0.

We prove that there is dy > 0 such that any linear map k — K, can be
extended to a linear map E; — K, for any d > dy.

Suppose no dy > 0 has this property. Then for any j > O there is d; > j
and f;, € Hom(k, K;) that cannot be extended to E; — Ky,.

Each of the complexes

Oth
fa
Jd0=.‘.—>0—> 0 > 0 — Ed% 5 pd+l _ pdo+2 _
Ja
Jy=...»0—> 0 — E41 5 Ea _‘> Ed+l _y pdit2
Ji=...—> 0—> E272 — Eo-I — E¢ L% pari L pae

is DG-injective so, by hypothesis, ®7°J4 is DG-injective.

If 0 = @®2,J4 N 12 Ja, L, F — 0is exact then F is an exact
complex (since ¥ is a quasi isomorphism). Both &7°J,, and 172, J,;, are DG-
injective, so F is a DG-injective complex. Thus F is an injective complex ([6],

Proposition 3.7) and therefore Ker(F" — F"*!) is an injective R-module for
any n € Z. In particular,

Hj.io Ker fa, _ H/QC:)Ode

Ker(F0—>F1): ~ =—=
=0 Ker fy, i=0Ka;

is injective.
=oKa;

Let M = m

Let fq,(1 +m) = x4 and let f : k — M be defined by f(1 +m) =
(Xa)j=0 + D72 Ka;-

Since M is injective there is g € Hom(E;, M) that extends f. Since E,
is finitely generated and &;2,K, is a pure submodule of T2, Ky, it fol-
lows that the sequence 0 — Hom(E;, @j 2oKa) — Hom(El, l'[ oKa) —
Hom(E;, M) — O is exact. So there is u € Hom(E,, IS :oKd) such that
g =0 0u (With0((24)) = (24)j20 + B2 Ko).

If u(l +m) = (yu)jz0 then g(1 +m) = O@(l +m)) = 0((yq),) =
(ya))j=0 + D72 Ka;-
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Since gl = f we have g(1 +m) = f(1 +m) = (x4)>0 + @fioKd/- So
Xa; = yq; for all but finitely many j > 0.

Letj > Obesuchthatxy, =y, andletny, : 11720 Ky, — Ky, wa,((za))1) =
zd4;- We have g o u(1 +m) = 7g,((ya)1) = Ya; = Xa; = f(1 +m).

Hence 74, o u extends f4;. Contradiction.

So there is dy > 0 such that for any d > dy, any linear map k — K, can
be extended to E; — K.

By [5], Corollary 3.1.21, we have Soc K; = Soc E(K,) = Soc E (k)P =
kPi.So kPt K4 foralld > 0.

Since k#* C K; C E(k)?" and any linear map k — K can be extended to
E; — K, it follows (Lemma 6) that E/* ¢ K; < {x € E(k)f* | m'x =0} C
K4. S0 {x € EY | m'x =0} C Ky, forany d > d.

We can prove now the following.

THEOREM 5. Let (R, m, k) be a complete commutative local noetherian
ring with the property that every direct sum of DG-injective complexes of R-
modules is DG-injective. Let M be a finitely generated R-module. If ... —

RE s RB Py 0 is a minimal projective resolution of M then for
eachl > 1 there isn > 1 such that the entries of the matrix that represents f,
are all in m!, for any n > 7.

ProoF. Since E (k) is injective and the complex ... — RP LNy TN
M — 0 is exact, it follows that 0 — M — (R%)" — (RP1)" — ... isan
exact complex.

For each n > 0, (Rf)" = Hom(R", E(k)) ~ Hom(R E (k)P ~ E (k)P
is an injective R-module. So 0 — M" = (R/)" —& (RP)” — ... isan
injective resolution of M".

If u € Hom((R7)", (RP)")is such thatuo fy = fy, then fy" ou’ = f;".

Since R is complete and g M is finitely generated it follows that M >~ M"”
([5], Lemma 3.4.6). Similarly R ~ (RF0)"",

So f3¥ : (RP)" — M""is aprojective cover. Thus fy" ou’ = fy" implies
u’ € Aut(R%)". Then u"’ € Aut(RF)""".

The diagram

(RPo)yY —4 5 (RPoyY

! I

(Rﬂo)vvv u’’ (Rﬁo)vuv

is commutative. So u"” € Aut(R")""” implies that u € Aut(R?)".
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Hence M” — (R™)" is an injective envelope of M". Similarly, (Im f,)"

n o
I (Rﬂ"“)" is an m]ectlve envelope, forany n > 1. So 0 — M' -

(Rﬂo)” (RP1)Y =% ... is a minimal injective resolution of the R-module
M.

The ring R is complete and g M is noetherian, so M" is an artinian R-module
([5], Corollary 3.4.4).

Let! > 1.Let E; = {x € E(k) | m'x = 0}.

By Proposition 4 there is ng > 1 such that {x € (R#)" | m'x = 0} C
Ker f, 1> for any n > no.

Letn > ny.

Let® e (RP)" be defined by f(e|") = y,forsome y € Ej, and@(ef”) =0,
2 < j < B,, where

1 0 0
0 1 0
ef;” =11 eg” =11 - eg’: =1 .
0 0 1

Since m'6 = 0, it follows that f,’ | (#) = 0, whichisequivalenttofo f, 1 = 0.

ai any PN ag,..1 X1
frt 1RO s R = | 0T e
arg, a2, -+ Ay XBus1
for any
X1 aji
olerr whee gt =| | 1228
Yhus ajp,

00 furi(€]™) =0 O(anel” +ane) +-- +ayp,el) =0 andel) +

-+a1ﬁn9(eﬂ;) =0 < a1y = 0. Since a;; € Anny, forany y € E; we
have a;; € Ann E; = m'. Similarly a;; € m' foranyi e {1,..., Buy1}, and
forany j € {1, ..., B,}, forany n > ny.

Theorem 6 shows that we can drop the completeness as part of the hypothesis
of Theorem 5.
The proof of Theorem 6 uses the following.
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LEMMA 7. Let (R, m, k) be a commutative local noetherian ring and let R
bAe the m-adic completion of R. If E is an R-module, then E is an injective
R-module if and only if E is an injective R-module.

PROOF. “=" Since R is a flat R-module and E is an injective Ié—module,
it follows ([5], Theorem 3.2.9) that Hom 1@(1%, E) is an injective R-module.
Homg (Ié, E) >~ E as Ié-modules, so also as R-modules (when restricting the
scalars). Thus E is an injective R-module.

“&” Let J be an ideal of R. Then J = R ®gr I for some ideal I of R.
By [5], Theorem 2.1.10, Homk(li’ ®r I, E) ~ Hompg(l, Homk(ﬁ’, E)) ~
Hompz(/, E). Similarly, Homﬁ(lé ®r R, E) ~ Homg(R, E).

Since 0 — I — R is exact and E is injective it follows that the se-
quence Homg (R, E) — Homg(I, E) — 0 is exact & Hom,%(lé, E) —
Hom(J, E) — 0 1is exact.

So E is an injective R-module.

THEOREM 6. Let (R, m, k) be a commutative local noetherian ring with
the property that every direct sum of DG-injective complexes of R- modules

is DG- injective Let M be a finitely generated R-module. If ... — R N

RFo —> M — 0 is a minimal projective resolution of M then for eachl > 1
there is n > 1 such that the entries of the matrix that represents f, are all in
m! for any n > 7.

PROOF. R is a commutative local noetherian ring with maximal ideal mR
and residue field Ié/mlé ~ (R//\m) = k ([5], pp. 66).

Since the complex ... — RF — i, RP P M S 0 s exact and R is
a flat R- module ([5], Theorem 2.5.18), it follows that ... — R ®g RP —
R ®gr RPP — R Rr M — 01 1s an exact complex

By [5], Theorem 2.5.14, R RQr M >~ M.

Wehave R®g R" ~ R (R®...®R) ~ RQrx RD... ®R®x R ~ R",
forany n > 1.

So...— RF s R L5 J1 5 (s a free resolution of M.

RP> — M is a projective cover, so M/mM (R/m)ﬁo

Since M is finitely generated we have mM = mM So M/mM M/mM

~ M/mM ~ (R/m)ﬁo ~ (R/m)P. Hence RFo L Misa projective cover.
S1m11arly, P s Im fn is a projective cover, for any n > 1. So ... —

R L RPo LN M — 0 is a minimal _projective resolution of M.
By [5], Theorem 3.4.1, E(k) ~ E (R /) as an R- module, so the complex
0> M’ — (RP)Y — (Iéﬂ')” ... is exact. The same argument used in
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the proof of Theorem 5 shows that 0 — M = (Rﬂo)U (Rﬂl)”
is a minimal injective resolution of M v, Since R is complete and RM is

noetherian it follows that M" is an artinian R-module ([5], Corollary 3.4.4).

Let E" = (13’3")" and let K, = Ker(E" — E"*!) for any n > 0. Let
E; = {x € E(k) | m'x = 0}. Since E; ~ Homz(R/s', E(k)) and R/’ has
finite length it follows that E; has finite length. By [5], Theorem 2.3.17, E| is
finitely generated.

We prove that there is dy > 0 such that any linear map k — K, can be
extended to a linear map E; — K, for any d > dy.

Suppose no dy > 0 has this property. Then for any j > O there is d; > j
and f,, € Hom(k, Kg4;) that cannot be extended to E; — K.

Each E” is an injective R-module, therefore an injective R-module (by
Lemma 7). So each of the complexes

Oth
Jy=...-0—> 0 —- 0 — Ed 0 pdott _ pdor2
g
Jy=...50> 0 — E/1 5 Eh 2 gt pdt2
Joy=...—> 0— E=2 5 b=l gl 2% poil | pd2

is DG-injective (over R). By hypothesis, ®;°,J, is DG-injective.
The same argument used in the proof of Proposition 3 shows that
H;io Ker 84; _ H;io de
®jZgKergq, @Ky,

is an injective R-module, therefore an injective R-module (by Lemma 7).

Then the same argument used in the proof of Proposition 4 shows that f,
can be extended to a homomorphism E; — K, for infinitely many j > 0.
Contradiction. So there is dy > 0 such that for any d > dj, any linear map
k — K, can be extended to E; — K.

By [5] Corollary 3.1.21, Soc K4y = Soc E3(Ky) = Soc E(k)Ps = kP, So
kPi c K4,¥d > 0. Since k?* ¢ K; C E(k)?" and any linear map k — K,
can be extended to E; — K, it follows that Elﬁ" C K; & {x € E(b)f |
m'x =0} C K; & {x € E¢ | m'x =0} C K, for any d > d.

The same argument used in the proof the Theorem 5 shows that for each
[ > 1 there is m > 1 such that the entries a;; of the matrix that represents
ﬁ, are all in !, for any n > n. Since g;; are the entries of the matrix that
represents f,, we have a;; € m! N R = m' ([9], Corollaire pp. 26), for any

ie{l, ... B iell,. .., Bucr)
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REMARK 1. Let (R, m, k) be a commutative local noetherian ring such that
every direct sum of DG-injective complexes of R-modules is DG-injective.

If... - R N R LN k — 0 is a minimal projective resolution of k
then, by Theorem 6, for each [ > 1 there is n; > 1 such that the entries a;;
(1 <i<py, 1 <j < pBy_1)of the matrix that represents f, are all in m!,
for any n > n;. It is not known if this condition guarantees the existence of an
n > 1 such that for any n > 7 all g;; are in m!, for any [ > 1, so all a;; are in

Ni=1m' = 0, thatis f, = 0 for all n > 7, and so gl.dim R = projdim k < oo.

As a consequence of Theorem 6 we have that the class of DG-injective
complexes over a commutative local artinian ring R is closed under direct
sums if and only if gl.dim R < oo.

COROLLARY 1. Let (R, m, k) be a commutative local artinian ring. The
following are equivalent:

(1) Every direct sum of DG-injective complexes is DG-injective.
(2) gl.dim R < oo.

PrOOF. “(1)=>(2)” Since R is artinian there is / > 1 such thatm' = 0 ([5],
Proposition 2.3.22).

Let... — RP L% RB L% k 5 0 be a minimal projective resolution
of k. By Theorem 6 there is n; > 1 such that the entries a;; of the matrix
that represents f, are all in m!, for any n > n;. Hence f, = O foralln > n;.
Consequently proj dim k < oco. Since R islocal we have gl.dim R = proj dim k
([11] Corollary 4.4.12). So gl.dim R < oo.

(2)= (1) Let (J;);c; be a family of DG-injective complexes.

Since R is noetherian and each J is injective it follows that ®;c;J is
injective, Vrn > 0. Since gl.dim R < oo any complex of injective R-modules
is DG-injective. So @;<;J; is a DG-injective complex.

Theorem 7 below shows that the result holds for any commutative artinian
ring.

THEOREM 7. Let R be a commutative artinian ring. The following are
equivalent:
(1) Every direct sum of DG-injective complexes of R-modules is DG-injec-
tive.
(2) gl.dim R < oo.

Proor. This follows from the fact that any artinian ring is isomorphic to a
product of local artinian rings. So then the result follows from the equivalence
between the category of R-modules and the product of categories of modules
over the local rings in the decomposition of R.
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Theorem 7 and the same argument as in the proof of Theorem 4 gives us
the following result.

THEOREM 8. If R is a commutative artinian ring then every direct sum of
exact covers is an exact cover if and only if gl.dim R < oo.
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