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ON BOUNDARY CRITICAL POINTS FOR SEMIGROUPS
OF ANALYTIC FUNCTIONS

M. D. CONTRERAS, S. DÍAZ-MADRIGAL and CH. POMMERENKE∗

Abstract

We analyze the relationship between boundary fixed points of semigroups of analytic functions
and boundary critical points of their infinitesimal generators. As a consequence, we show two
new inequalities for analytic self-maps of the unit disk. The first one is about angular derivatives
at fixed points of functions belonging to semigroups of analytic functions. The second one deals
with angular derivatives at contact points of arbitrary analytic functions from the unit disk into
itself.

1. Introduction and statement of the results

1. A (one-parameter) semigroup of analytic functions is any continuous homo-
morphism � : t �→ �(t) = ϕt from the additive semigroup of non-negative
real numbers into the composition semigroup of all analytic functions which
map D into D. That is, � satisfies the following three conditions:

a) ϕ0 is the identity in D,

b) ϕt+s = ϕt ◦ ϕs , for all t, s ≥ 0,

c) ϕt (z) tends to z as t tends to 0, uniformly on compact subsets of D.

These type of semigroups appear in many different areas of Analysis.
Among them, we cite the theory of composition operators, the theory of Markov
stochastic processes, optimization theory or the theory of planar vector fields.
In this paper, we are interested in this last aspect which we expose in detail for
the sake of completeness.

Given a semigroup � = (ϕt ), it is well-known (see [10], [1]) that there
exists a unique analytic function G : D → C such that,

∂ϕt (z)

∂t
= G(ϕt(z)) = G(z)

∂ϕt (z)

∂z
for all z ∈ D and t ≥ 0.
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To simplify the notation, we denote ϕ′
t (z) = ∂ϕt (z)

∂z
. In what follows, G will

be called the vector field associated with � or the infinitesimal generator of
�. There is a very nice representation, due to Berkson and Porta [1], of those
analytic functions on the disk which are generated in this way:

An analytic function G : D → C is the infinitesimal generator of a
semigroup of analytic functions � if and only if there is a point b ∈ D
and an analytic function p : D → C with Re p ≥ 0 such that

G(z) = (b − z)(1 − bz)p(z), z ∈ D.

Moreover, such a representation is unique. The point b is called the
Denjoy-Wolff point of � and p is called the Carathéodory function as-
sociated to �.

Looking at the above representation, we see that, whenever b ∈ D, the
associated dynamical system has a critical point. However, G never vanishes
if b ∈ ∂D. So it is natural to wonder about “critical points” belonging to ∂D.
Since, in our hypothesis, G and the functions (ϕt ) are only defined in D, this
comment requires a clarification and this leads us to recall some concepts from
Complex Function Theory [7], [8].

Let ϕ : D → C be an analytic function and a ∈ ∂D. We say that L ∈ C∞ is
the angular limit of ϕ in a when z tends to a if, for every α ∈ (0, π/2),

lim
z∈S(a,α), z→a

ϕ(z) = L,

where S(a, α) = {z ∈ D : |Arg (1 − az)| < α} denotes the Stolz angle of
opening angle α with vertex a. The number L is commonly denoted by
� limz→a ϕ(z). When � limz→a ϕ(z) = a, the point a is called a boundary fixed
point of ϕ. If we suppose that ϕ(D) ⊂ D and that � limz→a ϕ(z) = b ∈ ∂D, it
is well-known that

� lim
z→a

ϕ(z) − b

z − a

always exists. This value is denoted by ϕ′(a). It satisfies that abϕ′(a) ∈
(0,+∞) ∪ {∞}. When ϕ′(a) �= ∞, the limit � limz→a ϕ

′(z) also exists and
is equal to ϕ′(a). In particular, if a is a boundary fixed point, we have that
ϕ′(a) ∈ (0,+∞)∪{∞}. Following standard usage in iteration theory, we will
say that a is attractive if ϕ′(a) ∈ (0, 1]; repulsive if ϕ′(a) ∈ (1,+∞) and
superrepulsive if ϕ′(a) = ∞. These definitions are coherent with the intuitive
geometric meaning of a repulsive or an attractive point, thanks to the celebrated
Denjoy-Wolff Theorem [9, Section 5.1].

Now, we come back to the semigroup � = (ϕt ) and its associated vector
field G. A point a ∈ ∂D is called a boundary fixed point of � if a is a boundary
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fixed point for each ϕt , where t ≥ 0. By [3], “for each ϕt” can be replaced
by “for some ϕt (t > 0)”. What is more, a point a ∈ ∂D is attractive (resp.
repulsive, superrepulsive) for some t > 0 if and only if the same happens for
all t (see Lemmata 3 and 1 below). It is a non-trivial fact that the Denjoy-Wolff
point is common for all the iterates belonging to a non-elliptic semigroup (that
is, when the functions of the semigroup have no fixed point in the unit disk).

2. Our main result characterizes boundary critical points of vector fields with
finite angular derivatives in terms of non-superrepulsive fixed points.

Theorem 1. Let (ϕt ) be a semigroup of analytic functions and denote by
G its infinitesimal generator. Let a ∈ ∂D. Then the following are equivalent:

(1) The point a is a non-superrepulsive fixed point of the semigroup.

(2) The angular limit
� lim

z→a

G(z)

z − a

exists finitely.

(3) The angular limit
� lim

z→a
G(z) = 0,

and the angular limit � limz→a G
′(z) exists finitely.

Moreover if one of the above assertions holds, then

(i) � limz→a
G(z)

z−a
= � limz→a G

′(z) ∈ R.

(ii) If we denote by β := � limz→a
G(z)

z−a
, then

ϕ′
t (a) = eβt for all t ≥ 0.

It is worth pointing out that it can be proved that whenever � limz→a G(z) =
0, the limit � limz→a

G(z)

z−a
always exists in C∞ (it can take the value ∞).

Moreover, it is even possible to have

� lim
z→a

G(z) = 0 and � lim
z→a

G(z)

z − a
= ∞,

and, at the same time, a is not a fixed point of the semigroup. For example,
consider the semigroup given by

ϕt (z) = 1 − [
1 − e−t/2 + e−t/2

√
1 − z

]2

for all t ≥ 0 and z ∈ D. In this case, the Denjoy-Wolff point is zero and (ϕt )

has no boundary fixed point. But the infinitesimal generator of this semigroup
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is G(z) = 1−z−√
1 − z. Therefore, � limz→1 G(z) = 0 and � limz→1

G(z)

z−1 =
∞.

3. In [4], Cowen and Pommerenke showed that if ϕ is an analytic and uni-
valent function in D with ϕ (D) ⊂ D, with Denjoy-Wolff point b ∈ D, and
ξ1, ξ2, . . . , ξn are distinct fixed points of ϕ (different from b), then:

a: If b ∈ ∂D, then
n∑

j=1

1

logϕ′(ξj )
≤ − 1

logϕ′(b)
.

Moreover, equality holds if and only if

ϕ(z) = σ−1 (σ (z) + 1)

where

σ(z) =
n∑

j=1

1

logϕ′(ξj )
Log

[
b + z

b − z
− b + ξj

b − ξj

]
.

b: If b = 0, then
n∑

j=1

1

logϕ′(ξj )
≤ 2 Re

1

B

where B = lim
r→1−

log ϕ(rξj )

ϕ′(0)rξj (this limit is independent of j , we choose

the branch of log ϕ(z)

ϕ′(0)z that is zero at z = 0). Moreover, equality holds
if and only if

ϕ(z) = σ−1
(
ϕ′(0)σ (z)

)
where

σ(z) = z

n∏
j=1

(
1 − ξj z

)− B

logϕ′(ξj ) .

Note that the inequality (a) says nothing if ϕ′(b) = 1. In [4, Theorem 6.1],
they also obtained another inequality for the case ϕ′(b) = 1. However the
authors remarked that is not the best possible and in some particular cases
gives no information (see [4, page 284]). This problem was also considered
by Li [5] who used a different approach. Using the above theorem we can
give a new sharp inequality for those functions which can be embedded in a
semigroup of analytic functions.

Theorem 2. Let (ϕt ) be a semigroup of analytic functions with Denjoy-
Wolff point b ∈ ∂D and denote by G its infinitesimal generator. If ξ1, ξ2, . . . , ξn
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are distinct repulsive fixed points of ϕ (different from b) with ϕ′(ξj ) = eβj t for
all j and for all t ≥ 0 (note that βj ∈ (0,+∞)) then

n∑
j=1

1 − Re(bξj )

βj
≤ Re

1

bG(0)
.

Moreover, equality holds if and only if

ϕt (z) = σ−1 (σ (z) + t)

where

σ(z) = z

(1 − bz)G(0)

+ 2
n∑

j=1

1 − Re(bξj )

βj

[
bξj

(1 − bξj )2
log

[
1 − bz

1 − ξj z

]
+ ξj

1 − ξjb

z

1 − bz

]
.

4. We finish the paper giving some applications of Theorem 1 to inequalities
involving points of the set ϕ−1(λ). In [4], Cowen and Pommerenke proved that
if ϕ is analytic in D with ϕ(D) ⊂ D, λ ∈ ∂D and z1, z2, . . . , zn are distinct
points of ∂D with ϕ(zj ) = λ for all j = 1, . . . , n, then

n∑
j=1

1

|ϕ′(zj )| ≤ Re
λ + ϕ(0)

λ − ϕ(0)

and equality holds if and only if ϕ is a Blaschke product of order n. Now we
present another inequality.

Theorem 3. Let ϕ be an analytic in D with ϕ(D) ⊂ D, b, a ∈ ∂D, with
ϕ(b) = a, λ ∈ ∂D, with λ �= a, and z1, z2, . . . , zn are distinct points of ∂D
with ϕ(zj ) = λ for all j = 1, . . . , n, then

n∑
j=1

1 − Re(λa)

1 − Re(zjb)

1

|ϕ′(zj )| ≤ |ϕ′(b)|

and equality holds if and only if

ϕ(z) =
1 + (1 − λa)

∑n
j=1

1
|ϕ′(zj )|

zj
b−zj

z−b
z−zj

1 − (1 − λa)
∑n

j=1
1

|ϕ′(zj )|
zj

b−zj

z−b
z−zj

for all z ∈ D.
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2. Proofs

The proof of our main theorem depends on considering a model flow where
the trajectories become straight lines or spirals but they fill in a more involved
planar domain �. This domain � is constructed by means of the theory of
univalent functions [1]. If the Denjoy-Wolff point b of the semigroup belongs
to ∂D, then there is a unique univalent function σ : D → C with σ(0) = 0
verifying the property

� + t ⊂ �, for each t > 0, where � := σ(D),

and such that

ϕt (z) = bσ−1(σ (bz) + t), t ≥ 0, z ∈ D.

Then � := σ(D) ⊂ C is called the associated planar domain of �. In this
case, we have that G(z) = b

σ ′(bz) for all z ∈ D.

Likewise, if the Denjoy-Wolff point b belongs to D, then there is a unique
univalent function σ : D → C with σ(0) = 0 and σ ′(0) = 1, verifying the
geometric condition

“there is c ∈ C with Re(c) > 0 such that, for each t > 0, e−ct� ⊂ �

where � := σ(D)”

and such that

ϕt (z) = σ−1
b (e−ctσb(z)), t ≥ 0, z ∈ D,

where σb = σ ◦ mb. As usual, mb is the elliptic automorphism of the disk
associated to b, that is,

mb(z) = b − z

1 − bz
, z ∈ D.

The set � = σ(D) ⊂ C is again called the associated planar domain of �

and, in this case, we have that G(z) = −c σb(z)

σ ′
b(z)

for all z ∈ D.

Lemma 1. Let (ϕt ) be a semigroup of analytic functions with Denjoy-Wolff
point equal to 1. Suppose that a is a fixed point of (ϕt ). Then there exists
β ∈ R ∪ {∞} such that ϕ′

t (a) = eβt for all t > 0. If β ∈ (0,+∞), then there
is a real number c such that the open strip

V =
{
z ∈ C : c − π

2β
< Im z < c + π

2β

}
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is contained in � and the curve γ (t) = σ−1 (w − t) converges to a nontan-
gentially as t goes to +∞ for all w ∈ V . Moreover, given a curve γ :
[0, 1) → D such that γ (r) converges to a nontangentially, then there exist
r0 ∈ (0, 1) and ε > 0 such that for all r ≥ r0, we have that σ(γ (r)) ∈ V and
dist (σ (γ (r)), ∂V ) > ε.

The proof of this lemma can be found in [2, Lemma 20] when γ (r) = ra,
but the proof can be easily adapted to this nontangential case.

Lemma 2. Let g, h : D → D be two analytic functions and consider f =
g ◦ h. If f (1) = h(1) = 1, then g(1) = 1 and f ′(1) = g′(1)h′(1) (note that
derivatives could be infinite).

Proof. The curve C = {h(r) : 0 ≤ r < 1} ends in h(1) = 1. We have that

g(h(r)) = f (r) → 1 as r → 1.

That is, limz→1, z∈C g(z) = 1. Therefore, by the Lehto-Virtanen Theorem [8,
Chapter 4], we know that g(1) = 1. Moreover, we have that

(2.1)
1 − f (r)

1 − r
= 1 − g (h(r))

1 − h(r)

1 − h(r)

1 − r
.

If h′(1) is finite, then C is in a Stolz angle and, by (2.1), we have that f ′(1) =
g′(1)h′(1).

Now, suppose that h′(1) = ∞ and f ′(1) is finite. Consider the function

p(z) = 1 − g (z)

1 − z
for all z ∈ D.

Since f ′(1) is finite and h′(1) = ∞, we have that limz→1,z∈C p(z) = 0.
Moreover, we have that p(z) /∈ (−∞, 0] for all z ∈ D. So, we have that
|Im logp(z)| < π for all z ∈ D. Therefore, logp is a Bloch function and
p is normal. Now, we can apply the Lehto-Virtanen Theorem to obtain that
g′(1) = p(1) = 0. But, by the Julia-Wolff Lemma, g′(1) > 0. Therefore, if
h′(1) = ∞ then f ′(1) = ∞ and we are done.

Lemma 3. Let (ϕt ) be a semigroup of analytic functions with Denjoy-Wolff
point equal to 0. Suppose that a is a fixed point of (ϕt ). Then there exists
β ∈ (0,+∞)∪ {∞} such that ϕ′

t (a) = eβt for all t > 0. If β ∈ (0,+∞), then
there are a real number θ0 and d ∈ ∂D such that the open spiral sector

V = {
w ∈ C : w = de−ct eiθ , with − θ0 < θ < θ0, t ∈ R

}
is contained in � and the curve γ (t) = σ−1

(
ectw

)
converges to a nontan-

gentially as t goes to +∞ for all w ∈ V . Moreover, given a curve γ :
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[0, 1) → D such that γ (r) converges to a nontangentially, then there exist
r0 ∈ (0, 1) and ε > 0 such that for all r ≥ r0, we have that σ(γ (r)) ∈ V and
dist (σ (γ (r)), ∂V ) > ε |σ(γ (r))|.

Proof. Let us denote α(t) = ϕ′
t (a) for all t ≥ 0. On the one hand, by

the chain rule, we have that α(t + s) = α(t)α(s). On the other hand, α(t) =
ϕ′
t (a) = limn→∞ ϕ′

t

((
1 − 1

n

)
a
)
. For each n, the function t �→ ϕ′

t

((
1 − 1

n

)
a
)

is continuous, so α is measurable. Since the only measurables solutions of
the functional equation α(t + s) = α(t)α(s) are exponentials, there is β ∈
(0,+∞) ∪ {∞} such that ϕ′

t (a) = eβt for all t ≥ 0.
Let us consider the invariant subset of � given by

V (�) = ∩n≥0e
−ct�.

If V (�) is non-void and since it is open, we can write V (�) as the union of
the countable family of its different connected components. These components
will be denoted by Vj (�) (j ∈ J ). It can be proved that given t > 0, we
have that e−ctVj (�) = Vj (�) for all j . Thus, each Vj (�) is a open spiral
sector. Now, by [6, Theorem 3.1], given a component Vj (�), there is a unique
repulsive boundary fixed point ξ(Vj (�)) of (ϕt ). Moreover the map ξ , between
the connected components and the repulsive boundary fixed points, is bijective.
Moreover, following the proof of [6, Theorem 3.1], it can be checked that the
curve γ (t) = σ−1(ectw) converges to ξ(Vj (�)) nontangentially as t goes to
+∞ for all w ∈ Vj (�).

Now, take a curve γ : [0, 1) → D such that γ (r) converges to a repulsive
boundary fixed point ξ = ξ(Vj (�)) nontangentially. Arguing as in the proof of
[6, Claim 4.3], there is a connected component Vl(�) such that γ (r) ∈ Vl(�)

for r large enough. There is r0 such that for r ≥ r0, we have that

|ξ − ϕt (γ (r))| ≤ (ϕ′
t (ξ ) + 1) |ξ − γ (r)| .

Therefore,
|γ (r) − ϕt (γ (r))| ≤ (ϕ′

t (ξ ) + 2) |ξ − γ (r)| .

Hence, estimating the hyperbolic distance along the segment [γ (r), ϕt (γ (r))],
we get

ρD (γ (r), ϕt (γ (r))) ≤ 2
∫

[γ (r),ϕt (γ (r))]

ds(x)

dist (x, ∂D)

≤ 2
(ϕ′

t (ξ ) + 2) |ξ − γ (r)|
1 − |γ (r)| .
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Since γ (r) converges to ξ = ξ(Vj (�)) nontangentially, we have that there is
a constant c such that |ξ−γ (r)|

1−|γ (r)| ≤ c for r large enough. So

ρ�(σ(γ (r)), e
−ctσ (γ (r))) = ρD(γ (r), ϕt (γ (r))) ≤ 2(ϕ′

t (ξ ) + 2)c.

Finally, by the Distance Lemma [9, Chapter 9], we obtain that

4(ϕ′
t (ξ ) + 2)c ≥ log

(
1 + |σ(γ (r)) − e−ctσ (γ (r))|

min
{
dist(σ (γ (r)), ∂�), dist(e−ctσ (γ (r)), ∂�)

})

≥ log

(
1 + |1 − e−ct ||σ(γ (r))|

dist(σ (γ (r)), ∂�)

)
.

Therefore, there is ε > 0 such that dist (σ (γ (r)), ∂�) > ε |σ(γ (r))| for r large
enough. Since lim

r→1

dist(σ (γ (r)),Vl (�))

dist(σ (γ (r)),∂�)
= 1, we obtain that dist (σ (γ (r)), Vl(�)) >

ε |σ(γ (r))| for r large enough. Finally, by [2, Lemma 17],

ξ = lim
r→1

σ−1 (σ (γ (r))) = lim
t→+∞ σ−1(ectw) = ξ (Vl(�))

for all w ∈ Vl(�). That is j = l.

Proof of Theorem 1. (2) implies (3). This is general theory (see, for
instance, [7, Theorem 10.5]).

(3) implies (1). Denote β = � limz→a G
′(z) ∈ C. Then G′ is bounded on

the radial segment [0, 1]a, that is, there is c such that |G′(xa)| ≤ c for all
0 ≤ x ≤ 1. Since G(a) := � limz→a G(z) = 0, we have that

|G(xa)| = |G(xa) − G(a)| =
∣∣∣∣
∫ xa

a

G′(s) ds
∣∣∣∣

≤
∫ xa

a

|G′(s)| ds ≤ c |xa − a| = c(1 − x)

for all 0 ≤ x < 1. Since the infinitesimal generator satisfies that ∂ϕt (z)

∂t
=

G(z) ϕ′
t (z) and ϕt (D) ⊂ D, we see that∣∣∣∣∂ϕt

∂t
(xa)

∣∣∣∣ = |G(xa)| |ϕ′
t (xa)| ≤ c(1 − x)|ϕ′

t (xa)|

≤ c(1 − x)
1 − |ϕt (xa)|2

1 − x2
≤ 2c (1 − |ϕt (xa)|) .

Therefore, ∣∣∣∣ ∂∂t log(1 − aϕt (xa))

∣∣∣∣ =
∣∣ ∂ϕt

∂t
(xa)

∣∣
|1 − aϕt (xa)| ≤ 2c.
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Moreover, since ϕ0(xa) = xa, we obtain that

|log (1 − aϕt (xa)) − log (1 − x)| ≤ 2ct.

This implies that ϕt (a) = a for all t and

|arg(1 − aϕt (xa))| ≤ π

4
for all 0 < x < 1, 0 ≤ t ≤ π

8c
.

Since the infinitesimal generator satisfies that ∂ϕt (z)

∂t
= G(ϕt(z)), we have that

∂
∂z

(
∂ϕt (z)

∂t

) = G′ (ϕt (z)) ϕ
′
t (z) and, therefore,

∂

∂t
log

(
ϕ′
t (z)

) =
∂
∂z

(
∂ϕt (z)

∂t

)
ϕ′
t (z)

= G′ (ϕt (z)) .

Now, take 0 ≤ t ≤ π
8c and 1 a Stolz sector with vertex a and angle π

4 . We have
that ϕt (xa) ∈ 1 for all 0 < x < 1 and for all 0 ≤ t ≤ π

8c . So ϕt (xa) converges
nontangentially to a as x goes to 1 and, therefore, G′ (ϕt (xa)) converges to β

as x goes to 1. Finally, bearing in mind that G′ is bounded on 1∪ {a} and the
Dominated Convergence Theorem, we have

log
(
ϕ′
t (xa)

) − βt =
∫ t

0

(
G′ (ϕs(xa)) − β

)
ds → 0

as x → 1. That is, ϕ′
t (a) = eβt for all 0 ≤ t ≤ π

8c . But this implies that
ϕ′
t (a) = eβt for all t ≥ 0 and, in particular, β ∈ R.

(1) implies (2). When a is the Denjoy-Wolff point, the result was proved
by Shoikhet [10, Proposition 4.6.2].

Now, suppose that a is a repulsive fixed point. Firstly, we assume that the
Denjoy-Wolff point is equal to 1. By Lemma 1, we know that ϕ′

t (a) = eβt for
all t ≥ 0. Take V the open strip given by that lemma and consider the Riemann
map from D onto the strip V given by

k(z) = β

π
Log

(
1 − az

1 + az

)
+ ci

for all z ∈ D. Notice that k(ra) = β

π
log

(
1−r
1+r

) + ci and so the curve r �→
σ−1 (k(ra)) converges to a nontangentially as r goes to 1.

Set �̃ = σ−1 (V ) ⊂ D. Then the map g = σ−1 ◦ k is a Riemann map from
D onto �̃ and a is a fixed point of g. In particular, there exists the angular
derivative of g at a and g′(a) ∈ (0,+∞]. Moreover, using Lemma 1, we have

Claim. Given a curve γ : [0, 1) → D such that γ (r) converges to a

nontangentially, then there are a number r0 ∈ (0, 1) and ε > 0 such that for
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all r ≥ r0 we have that γ (r) ∈ �̃ and g−1(γ (r)) = k−1 ◦ σ(γ (r)) converge
to a nontangentially.

Since V + t = V for all t , we get that ϕt

(
�̃

) = �̃, so the semigroup of
analytic functions in the unit disc given by ψt(z) = g−1 ◦ ϕt ◦ g(z) is well-
defined. Let us denote by F the infinitesimal generator of the semigroup (ψt ).
Hence,

∂ψt(z)

∂t
= 1

g′(g−1 ◦ ϕt ◦ g(z))

∂ϕt (g(z))

∂t
g′(z).

In particular, for t = 0,

F(z) = G(g(z)) for all z ∈ D.

Now, notice that

ψt(z) = k−1 ◦ σ ◦ ϕt ◦ σ−1 ◦ k(z)

= k−1 ◦ σ ◦ σ−1
(
σ(σ−1 ◦ k(z)) + t

) = k−1 (k(z) + t)

for all t ≥ 0 and z ∈ D. Therefore,

F(z) = 1

k′(z)
= π

2βa

(
z2 − a2

)
and

G(g(z)) = π

2βa

(
z2 − a2

)
for all z ∈ D.

Take a curve γ : [0, 1) → D such that γ (r) converges to a nontangentially.
By the claim, there are a number r0 ∈ (0, 1) and ε > 0 such that for all
r ≥ r0, we have that γ (r) ∈ �̃ and g−1(γ (r)) = k−1 ◦ σ(γ (r)) converge to a

nontangentially. On the one hand, we have

G(γ (r)) = F
(
g−1(γ (r))

) = − π

2βa

(
a2 − g−1(γ (r))2

)
.

So, � limz→a G(z) = 0. On the other hand, we have

G(γ (r)) − G(a)

γ (r) − a
= π

2βa

(
g−1(γ (r))2 − a2

)
γ (r) − a

= π

2βa

(
g−1(γ (r)) − a

)
γ (r) − a

(
g−1(γ (r)) + a

)

= π

2βa

1
g(g−1(γ (r)))−a

g−1(γ (r))−a

(
g−1(γ (r)) + a

)
.
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Since g−1(γ (r)) converge to a nontangentially, we deduce

lim
r→1

g(g−1(γ (r))) − a

g−1(γ (r)) − a
= g′(a) ∈ (0,+∞].

Therefore, limr→1
G(γ (r))−G(a)

γ (r)−a
= π

β
1

g′(a) ∈ [0,+∞). Hence

� lim
z→a

G(z)

z − a
= π

β

1

g′(a)
∈ [0,+∞).

Now, suppose that the Denjoy-Wolff point is zero. Then, by Lemma 3, there
is β ∈ (0,+∞) such that ϕ′

t (a) = eβt for all t ≥ 0 and take

V = {
w ∈ C : w = de−ct eiθ , with − θ0 < θ < θ0, t ∈ R

}
the open spiral sector given in the lemma. Consider the Riemann map from D
onto the V given by

k(z) = d exp

[
2

π
θ0

Re(c)

|c|2 c Log

(
1 + az

1 − az

)]

for all z ∈ D. Notice that k(ra) = d exp
[

2
π
θ0

Re(c)
|c|2 c Log

(
1+r
1−r

)]
, so the curve

r �→ σ−1 (k(ra)) converges to a nontangentially as r goes to 1.
Set �̃ = σ−1 (V ) ⊂ D. Then the map g = σ−1 ◦ k is a Riemann map from

D onto �̃ and a is a fixed point of g. In particular, there exists the angular
derivative of g at a and g′(a) ∈ (0,+∞]. Moreover, by Lemma 3, we have

Claim. Given a curve γ : [0, 1) → D such that γ (r) converges to a

nontangentially, then there are a number r0 ∈ (0, 1) and ε > 0 such that for
all r ≥ r0, we have that γ (r) ∈ �̃ and g−1(γ (r)) = k−1 ◦ σ(γ (r)) converge
to a nontangentially.

The rest of the computations is similar to the case when the Denjoy-Wolff
point is in the boundary, but for the sake of completeness we detail them.

Since e−ctV = V for all t , we see that ϕt

(
�̃

) = �̃, so the semigroup of
analytic functions in the unit disc given by ψt(z) = g−1 ◦ ϕt ◦ g(z) is well-
defined. Let us denote by F the infinitesimal generator of the semigroup (ψt ).
Hence

∂ψt(z)

∂t
= 1

g′ (g−1 ◦ ϕt ◦ g(z)
) ∂ϕt (g(z))

∂t
g′(z).

In particular, for t = 0,

F(z) = G(g(z)) for all z ∈ D.
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Notice that

ψt(z) = k−1 ◦ σ ◦ ϕt ◦ σ−1 ◦ k(z) = k−1
(
e−ct k(z)

)
for all t ≥ 0 and z ∈ D. Therefore,

F(z) = −c
k(z)

k′(z)
= π |c|2

4θ0 Re(c)a

(
z2 − a2

)
and

G(g(z)) = π |c|2
4θ0 Re(c)a

(
z2 − a2

)
for all z ∈ D.

Now, take a curve γ : [0, 1) → D such that γ (r) converges to a nontan-
gentially. By the claim, there are a number r0 ∈ (0, 1) and ε > 0 such that for
all r ≥ r0, we have that γ (r) ∈ �̃ and g−1(γ (r)) = k−1 ◦ σ(γ (r)) converge
to a nontangentially. On the one hand, we have

G(γ (r)) = F
(
g−1(γ (r))

) = π |c|2
4θ0 Re(c)a

(
g−1(γ (r))2 − a2

)
.

Thus, � limz→a G(z) = 0. On the other hand, we have

G(γ (r)) − G(a)

γ (r) − a
= π |c|2

4θ0 Re(c)a

(
g−1(γ (r))2 − a2

)
γ (r) − a

= π |c|2
4θ0 Re(c)a

(
g−1(γ (r)) − a

)
γ (r) − a

(
g−1(γ (r)) + a

)

= π |c|2
4θ0 Re(c)a

1
g(g−1(γ (r)))−a

g−1(γ (r))−a

(
g−1(γ (r)) + a

)
.

Since g−1(γ (r)) converge to a nontangentially, we deduce

lim
r→1

g
(
g−1(γ (r))

) − a

g−1(γ (r)) − a
= g′(a) ∈ (0,+∞].

Therefore, limr→1
G(γ (r))−G(a)

γ (r)−a
= π |c|2

2θ0 Re(c)
1

g′(a) ∈ [0,+∞). Hence

� lim
z→a

G(z)

z − a
= π |c|2

2θ0 Re(c)

1

g′(a)
∈ [0,+∞).

Proof of Theorem 2. We know that

G(z) = (b − z)(1 − bz)p(z),
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for all z ∈ D, where p : D → C is an analytic function with Re p ≥ 0. By
Theorem 1, it follows

� lim
z→ξj

G(z) = 0 and � lim
z→ξj

G′(z) = βj ∈ (0,+∞)

for all j = 1, 2, . . . , n. Therefore,

� lim
z→ξj

p(z) = 0 and � lim
z→ξj

p′(z) = βj

(b − ξj )(1 − bξj )
,

for all j = 1, 2, . . . , n. Now, consider the semigroup of analytic functions
(ψt ) whose infinitesimal generator is F(z) = −zp(z). Then the Denjoy-Wolff
point of the function ψt is zero for all t ,

� lim
z→ξj

F (z) = � lim
z→ξj

(−zp(z)) = 0

and

� lim
z→ξj

F ′(z) = −� lim
z→ξj

zp′(z) = − ξjβj

(b − ξj )(1 − bξj )
= βj

2 − 2 Re(bξj )

for all j = 1, 2, . . . , n. Again, we apply Theorem 1, but this time to the
semigroup (ψt ), and we obtain that ξj is a repulsive fixed point of ψt and
ψ ′

t (ξj ) = eαj t , where αj := � limz→ξj F
′(z) = βj

2−2 Re(bξj )
. Now, by [4, The-

orem 7.1], we have that

n∑
j=1

1

logψ ′
t (ξj )

≤ 2 Re
1

B
,

where B = lim
r→1−

log ψt (rξj )

ψ ′
t (0)rξj

(this limit is independent of j , we choose the

branch of log ψt (z)

ψ ′
t (0)z

that is zero at z = 0). The proof of [4, Theorem 7.1] shows
that B = p(0)t . Then

n∑
j=1

2 − 2 Re(bξj )

βj t
=

n∑
j=1

1

αj t
=

n∑
j=1

1

logψ ′
t (ξj )

≤ 2 Re
1

B
= 2 Re

1

p(0)t
.

That is, n∑
j=1

1 − Re(bξj )

βj
≤ Re

1

p(0)
= Re

1

bG(0)
.

Again by [4, Theorem 7.1], equality holds in this last inequality if and only
if

ψt(z) = σ̃−1
(
e−p(0)t σ̃ (z)

)
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where

σ̃ (z) = z

n∏
j=1

(
1 − ξj z

)− B

logψ ′
t (ξj ) = z

n∏
j=1

(
1 − ξj z

)− 2p(0)(1−Re(bξj ))

βj .

Therefore,

−zp(z) = F(z) = ∂ψt(z)

∂t

∣∣∣∣
t=0

= −p(0)
σ̃ (z)

σ̃ ′(z)

= −p(0)z

1 + 2p(0)z
∑n

j=1
(1−Re(bξj ))

βj

ξj

1−ξj z

.

That is, if the equality holds, then the infinitesimal generator of the semigroup
(ϕt ) is

G(z) = b(b − z)2p(z) = b(b − z)2p(0)

1 + 2p(0)z
∑n

j=1
(1−Re(bξj ))

βj

ξj

1−ξj z

.

Bearing in mind that ϕt (z) = σ−1 (σ (z) + t), we have G(z) = ∂ϕt (z)

∂t

∣∣
t=0 =

1
σ ′(z) . That is,

σ ′(z) = b

(b − z)2p(0)
+ 2z

n∑
j=1

(1 − Re(bξj ))

βj

ξj

1 − ξj z

b

(1 − bz)2
.

Finally, taking in account that σ(0) = 0, we get

σ(z) = z

(b − z)p(0)

+ 2
n∑

j=1

(1 − Re(bξj )

βj

[
ξjb

(1 − bξj )2
log

[
1 − bz

1 − ξj z

]
+ ξj

1 − ξjb

z

1 − bz

]
.

Proof of Theorem 3. Consider the function

p(z) = 2a

a − λ

ϕ(z) − λ

a − ϕ(z)
for all z ∈ D.

It is easy to check that p satisfies the following five properties

a: Re p(z) > 0 for all z ∈ D,

b: � limz→b p(z) = ∞,
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c: � limz→b(bz − 1)p(z) = −2
baϕ′(b) ∈ (−∞, 0),

d: � limz→zj p(z) = 0 for j = 1, . . . , n,

e: � limz→zj
p(z)

z−zj
= 2a

(a−λ)2 ϕ
′(zj ).

Now, we introduce the function G(z) = b(bz−1)2p(z) for all z ∈ D. Then
G is the infinitesimal generator of a semigroup of analytic functions (ϕt ) with
Denjoy-Wolff point b ∈ ∂D. Moreover, by (c),

� lim
z→b

G(z)

z − b
= � lim

z→b
(bz − 1)p(z) = −2

baϕ′(b)
= −2

|ϕ′(b)| ∈ (−∞, 0).

So, by Theorem 1, ϕ′
t (b) = exp

( −2
|ϕ′(b)| t

)
for all t . What is more, by (d) and (e),

we have
� lim

z→zj
G(z) = b(bzj − 1)2

(
� lim

z→zj
p(z)

)
= 0

and

� lim
z→zj

G(z)

z − zj
= b(bzj − 1)2

(
� lim

z→zj

p(z)

z − zj

)
= b(bzj − 1)2 2a

(a − λ)2
ϕ′(zj )

= 2
(zj − b)2bzj

(a − λ)2aλ
λzjϕ

′(zj ) = 2
1 − Re(bzj )

1 − Re(λa)
λzjϕ

′(zj )

= 2
1 − Re(bzj )

1 − Re(λa)
|ϕ′(zj )|

for all j = 1, 2, . . . , n. Therefore, again by Theorem 1, we have that zj is a

fixed point of (ϕt ) and ϕ′
t (zj ) = exp

(
2 1−Re(bzj )

1−Re(λa)
|ϕ′(zj )|t

)
for all t . Now, by

[4, Theorem 6.1], we obtain

n∑
j=1

1

2 1−Re(bzj )
1−Re(λa)

|ϕ′(zj )|
≤ |ϕ′(b)|

2
.

That is
n∑

j=1

1 − Re(λa)

1 − Re(bzj )

1

|ϕ′(zj )| ≤ |ϕ′(b)|.

Again by [4, Theorem 6.1], the equality holds in this last inequality if and only
if

ϕt (z) = σ−1 (σ (z) + t)
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where

σ(z) = 1

2

n∑
j=1

1 − Re(λa)(
1 − Re(bzj )

) |ϕ′(zj )|
log

[
b + z

b − z
− b + zj

b − zj

]
.

In this case, G(z) = 1
σ ′(z) . Since

σ ′(z) = (a − λ)2λab2
n∑

j=1

zj

|ϕ′(zj )|
1

(z2 − b2)(b − zj )2 − (z2
j − b2)(b − z)2

,

we compute

p(z) = G(z)

b(bz − 1)2
= 1

b(bz − 1)2σ ′(z)

= 1

b(z − b)2(a − λ)2λa
∑n

j=1
zj

|ϕ′(zj )|
1

(z2−b2)(b−zj )2−(z2
j −b2)(b−z)2

= 1

b(z − b)(a − λ)2λa
∑n

j=1
zj

|ϕ′(zj )|
1

(b−zj )
1

(z+b)(b−zj )−(zj+b)(b−z)

= 2

(z − b)(a − λ)2λa
∑n

j=1
zj

|ϕ′(zj )|
1

b−zj

1
z−zj

.

But p(z) = 2a
a−λ

ϕ(z)−λ

a−ϕ(z)
, so

ϕ(z) = 2λ + (a − λ)p(z)

2a + (a − λ)p(z)

=
λ(z − b)(a − λ)2λa

∑n
j=1

zj
|ϕ′(zj )|

1
b−zj

1
z−zj

+ (a − λ)

a(z − b)(a − λ)2λa
∑n

j=1
zj

|ϕ′(zj )|
1

b−zj

1
z−zj

+ (a − λ)

=
(a − λ)λ

∑n
j=1

zj
|ϕ′(zj )|

1
b−zj

z−b
z−zj

+ aλ

(a − λ)a
∑n

j=1
zj

|ϕ′(zj )|
1

b−zj

z−b
z−zj

+ aλ

=
1 + (1 − λa)

∑n
j=1

zj
|ϕ′(zj )|

1
b−zj

z−b
z−zj

1 − (1 − λa)
∑n

j=1
zj

|ϕ′(zj )|
1

b−zj

z−b
z−zj

,

for all z ∈ D.
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