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REGULARIZATION BY ERASEMENT

JUAN-ENRIQUE MARTÍNEZ-LEGAZ and JEAN-PAUL PENOT∗

Abstract

We study an approximation method for sets and functions which erases corners but keeps smooth
parts. Basic properties of such a method are pointed out in a general and simple way. Several
convergence results are provided, essentially in the framework of variational analysis.

1. Introduction

Several regularization processes are known; all of them have advantages and
drawbacks. Integral convolution with mollifiers is convenient for regularizing
functions in finite dimensional spaces, in particular for the study of partial dif-
ferential equations but is not of common use for optimization problems. The
Moreau regularization is valid in any normed vector space and for any func-
tion with values in R ∪ {+∞} and it has the advantage of preserving infima
and the set of minimizers; thus it is widely used in optimization theory (see
[26] for a general approach). However it requires the function to be bounded
below by a function of quadratic decrease, and it yields a function the growth
of which is at most quadratic, hence may be very different from the growth
of the original function. These two weaknesses can be eliminated by consid-
ering a regularizing kernel of sufficiently strong growth (see [13], [41], for
instance). Nonetheless it must be observed that the value of the function is
usually changed at points of smoothness (while the value of the function at
nonsmoothness points may be preserved, as in the case of the absolute value
function on R). In particular, the regularized function of a regular function
usually differs from the original function.

It is our purpose here to study a regularization process for sets and functions
which leaves unchanged sets and functions which are regular enough. This
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careful reading and criticisms.

Received October 18, 2004.



98 juan-enrique martínez-legaz and jean-paul penot

process is closely related to a double approximation procedure introduced in
geometrical terms by Benoist ([7], [8]) following a method previously devised
for functions by Lasry and Lions ([25]). However, as shown in the last section
of the present paper, our process differs from the one of Benoist by several
features, the main one being that our approximation sets are smaller than the
original set, whereas the approximation sets of Benoist are larger. Our approx-
imations are also closely related to the ones in Clarke, Stern and Wolenski [16]
and Clarke, Ledyaev and Stern [14], [15]. In these references, as in the works
of Cornet and Czarnecki [17], [18], [19], the authors stress the smoothness of
the approximations of epi-Lipschitzian subsets of Rn; here we do not make
such an assumption and the space is a general Banach space. We give some
attention to the case the set (or the function) is convex, as in [24], where a strik-
ing application of the rolling ball regularization method introduced by Seeger
[47] is made to show the relationships between the main results of dynamic
optimization. Our process is well suited for that case, but is inefficient for the
case of continuous concave functions.

In the next section we present the general version of our approximation
method; although the main case of interest is the case in which the “round-
ing” set B is a ball, we devise basic properties valid with a general choice
of this set. In particular, choosing for B the epigraph of a quadratic func-
tion one would recover the Lasry-Lions method; one could also choose for
B the epigraph of a smooth convex function of different growth, in view of
the observation made in [13, section 2] and completed in [1] that growth con-
ditions are crucial. The study of this regularization procedure for functions
is conducted in section 3 in which the links between the two processes are
clarified. Various convergence results are displayed in section 4; although we
reach convergence for the important Painlevé-Kuratowski, Wijsman, Mosco
and bounded(-Hausdorff) convergences, the study is by no means compre-
hensive. For instance, we do not consider the strong convergence results of
[17], [18], [19] in which one gets convergence of the normal cones. We devote
section 5 to a short account of some algebraic aspects of our procedure. Some
extensions and some comparisons with previous works are delineated in the
last section.

In order to illustrate our method, one can imagine the regularized set cor-
responds to the place cleaned by some robot with a zone of action B inside a
room E; inasmuch B is a round area, the corners of E cannot be reached; but
the smooth parts of the boundary are attained, especially if B is small enough.
The result is quite different from the one obtained while cleaning a polluted sea
area E by approaching it from the outside; in this second process the extreme
points are approached but the cleaned area may be remote from the smooth
parts of the polluted zone.
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2. Regularization of sets

Given a normed vector space X and a nonempty subset B, we define the B-
regularized set associated with a closed subset E of X as the set

EB := cl((E � B)+ B),
where C +D denotes the Minkowski sum {c + d : c ∈ C, d ∈ D}, cl stands
for closure and

C �D := {x ∈ X : x +D ⊂ C}.
This last operation has been used by several authors (see [2], [34], [40] and their
references). It enjoys useful properties. Among them we note that C � D is
convex whenC is convex andC�D = C�cl(D)whenC is closed; moreover,
for eachx ∈ X one has (x+E)�B = x+E�B andE�(x+B) = −x+E�B.
In some favorable cases, the definition of EB can be simplified, and then one
says that the regularization is exact whenEB = E′

B withE′
B := (E�B)+B,

i.e. when E′
B is closed.

Lemma 2.1. One has EB = (E � B) + B when one of the following
assumptions is fulfilled:

(a) B is compact;
(b) B is weakly compact and E is weakly closed;
(c) B andE are convex, one of them is locally compact and their asymptotic

cones satisfy (−B)∞ ∩ E∞ = {0} or, more generally, (−B)∞ ∩ (E �
B)∞ = {0}.

Proof. The first two criteria obviously ensure that (E �B)+B is closed.
The third one is a special case of the Dieudonné criterion; it can be generalized
to the nonconvex case by using the notion of asymptotic compactness (see
[38]).

Let us display some elementary properties of our process.

Proposition 2.2.
(a) If E ⊂ F , then one has EB ⊂ FB .
(b) If B ⊂ A ⊂ cl(B), then one has EA = EB = cl((E � B)+ A).
(c) If B + C ⊂ A ⊂ cl(B + C), then one has EA ⊂ EB .
(d) If B + C ⊂ A ⊂ cl(B + C), B ⊂ A and C ⊂ 0+E := E � E then

EA = EB .
(e) (x + E)B = x + EB , Ex+B = EB .
(f) If λ 
= 0, then one has (λE)B = λE 1

λ
B .

(g) E � F ⊂ EB � FB .
(h) If B and E are convex, then EB is convex.
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In view of assertion (e) there is no loss of generality in assuming that 0 ∈ B.

Proof. Assertions (a), (e), (f) and (h) are obvious, taking into account the
properties of the operation � mentioned above. Assertion (b) is a consequence
of the equality E �A = E �B when E is closed and B ⊂ A ⊂ cl(B) and of
the equality cl((E � B)+ B) = cl((E � B)+ cl(B)).

To prove (c), sinceEB is closed andA ⊂ cl(B+C), it suffices to show that
when x ∈ E�A and a = b+ c, with b ∈ B, c ∈ C then one has x + a ∈ EB .
By assumption, for each b′ ∈ B we have x + b′ + c ∈ x + A ⊂ E, so that
x + c ∈ E � B. Then x + a = (x + c)+ b ∈ (E � B)+ B ⊂ EB .

(d) Given x ∈ E � B, we have x + B ⊂ E, hence, by our assumption,
x + B + C ⊂ E, so that x ∈ E � A and x + B ⊂ x + A ⊂ EA. Since EA is
closed, we get EB ⊂ EA.

We shall now prove (g). If x ∈ E � F then x + F ⊂ E whence, by (c) and
(a), x + FB = (x + F)B ⊂ EB .

Notice that EB ⊂ E, so that, in contrast with most existing regulariza-
tion notions, our regularized sets are inner approximations. When B is solid
(i.e. such that B is the closure of int(B)), the preceding inclusion can be
strengthened:

Proposition 2.3. If B is solid, then one has EB ⊂ cl(int(E)).

Proof. If x ∈ (E � B)+ B then x − b ∈ E � B for some b ∈ B; thus

x ∈ x − b + B = x − b + cl(int(B)) = cl(int(x − b + B))
⊂ cl(int((E � B)+ B)) ⊂ cl(int(E)).

Thus, when x ∈ EB := cl((E � B)+ B), one also has x ∈ cl(int(E)).

The preceding result shows that when B is solid, the B-regularization is
useless for sets with an empty interior. One may wonder whether one can get
some relativization of the preceding proposition when B is relatively solid in
the sense thatB is the closure of its interior with respect to the relative topology
of aff(B), the smallest affine subspace containing B. The following example
shows that one cannot expect that EB ⊂ cl(intE−B+aff(B)(E)).

Example. Let X := R2, B := [−1, 1]× {0}, E := [−1, 1]2 ∪ [1, 2]. Then
EB = E but cl(intE−B+aff(B)(E)) = [−1, 1]2.

Remark. However one has the inclusionEB ⊂ cl
(⋃

M∈M(B) intM(E∩M)
)
,

where M(B) denotes denotes the family of translates x + aff(B) as x ∈ X
(or even x ∈ E � B, yielding the smaller family M(B,E)). To see that, let
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x ∈ EB . There exists some b ∈ B such that y := x − b ∈ E � B; then
x ∈ M := y + aff(B) ∈ M(B,E). Thus

x ∈ y + B ⊂ y + cl(intaff(B)(B)) = cl(inty+aff(B)(y + B)).
Since (y + B) ∩M ⊂ E ∩M , we get x ∈ cl(intM(E ∩M)).

The fixed points of the B-regularization operator will be called B-regular
subsets:

Definition 2.4. A closed set E ⊂ X is said to be B-regular if EB = E. It
is said to be exactly B-regular if E′

B := (E � B)+ B = E.

From Proposition 2.3 it follows that, if B is solid, every B-regular set E is
solid too.

Proposition 2.5. E is B-regular if and only if there exists a set C such
that cl(C + B) = E.

Proof. To prove the “only if” part, take C = E � B. Conversely, assume
that there exists a set C such that cl(C + B) = E. Clearly, C ⊂ E � B.
Therefore, one has

E = cl(C + B) ⊂ cl((E � B)+ B) = EB ⊂ E,
so that E is B-regular.

Corollary 2.6. The B-regularization operator is idempotent: (EB)B =
EB for every closed subset E of X.

Proof. By Proposition 2.5, the set EB is B-regular.

Corollary 2.7. EB is the largest B-regular subset of E.

Proof. We already know that EB is a B-regular subset of E; if F ⊂ E is
B-regular then, by Proposition 2.2 (a), one has F = FB ⊂ EB .

Corollary 2.8. If A = B + C and E is A−regular, then E is B-regular,
too.

Proof. This follows from the inclusion EB ⊂ E, combined with Proposi-
tion 2.2 (c): E = EA ⊂ EB ⊂ E.

A characterization ofB-regularity can be deduced from the last proposition
by using support functions. Recall that the support function of a subset E of
X is the function σE on X∗ given by σE(x∗) := sup{〈x∗, x〉 : x ∈ E}.
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Corollary 2.9. If B is bounded and convex, a nonempty closed convex
set E is B-regular if and only if the function σE − σB is convex, weak∗ lower
semicontinuous and does not take the value −∞.

Proof. IfE isB-regular then cl((E�B)+B) = E, whence σE�B+σB =
σE , so that σE−σB is the convex function σE�B which is lower semicontinuous
and does not take the value −∞ as E � B is nonempty. Conversely, if B is
bounded and convex and if σE − σB is convex, weak∗ lower semicontinuous
and does not take the value −∞, then, as it is also positively homogeneous,
one has σE − σB = σC for some closed convex set C; from this equality it
follows that cl(C + B) = E and hence, by Proposition 2.5, E is B-regular.

In the sequel, we will be mostly interested in the case B := εBX, where ε
is a positive number and BX is the closed unit ball of X. To simplify notation
and terminology, we set Eε := EεBX and shall use the terms ε-regularized
and ε-regular instead of εBX−regularized and εBX-regular, respectively. The
following proposition summarizes the specialization of the basic properties we
have proved so far to this specific context:

Proposition 2.10.
(a) If E ⊂ F , then one has Eε ⊂ Fε.
(b) If ε ≥ ε′ > 0 then Eε ⊂ Eε′ .
(c) (x + E)ε = x + Eε.
(d) If λ 
= 0 then (λE)ε = λE ε

|λ| .

(e) E � F ⊂ Eε � Fε.
(f) E is ε-regular if and only if there exists a subset C of X such that

cl(C + εBX) = E. Thus E is ε-regular if and only if E is the closure of
a union of balls of radius ε.

(g) (Eε)ε = Eε.
(h) Eε is the largest ε-regular subset of E.

(i) If ε ≥ ε′ > 0 and E is ε-regular then it is ε′-regular, too.

Corollary 2.11. (Eε)ε′ = Eε∨ε′ .
Proof. We use properties (a), (b), (g) and (h) of Proposition 2.10. By the

inclusion EB ⊂ E, one has (Eε)ε′ ⊂ Eε ⊂ E. From this last inclusion, using
(a), it follows that (Eε)ε′ ⊂ Eε′ . Thus (Eε)ε′ ⊂ Eε ∩ Eε′ = Eε∨ε′ by (b). To
prove the opposite inclusion, we consider two cases: ε ≤ ε′ or ε′ ≤ ε. If ε ≤ ε′
then, by (b), Eε′ ⊂ Eε, whence, using (g) and (a), one gets Eε∨ε′ = Eε′ =
(Eε′)ε′ ⊂ (Eε)ε′ . If ε′ ≤ ε then, by (g) and (b), Eε∨ε′ = Eε = (Eε)ε ⊂ (Eε)ε′ .

Let us note the following consequence of assertion (f) of Proposition 2.10.
It stems from the equality cl

(⋃
i∈I cl(Ci + εBX)

) = cl
(⋃

i∈I Ci + εBX
)
.



regularization by erasement 103

Corollary 2.12. The closure of the union of a family of ε-regular subsets
of X is ε-regular.

Corollary 2.13. Any solid subsetE ofX whose complementEc is convex
is ε-regular for any ε > 0.

Proof. Since E is solid and since by the Hahn-Banach theorem intE is
the union of a family of closed half-spaces, using Corollary 2.12 it suffices to
prove the result for a closed half-space. Let E = h−1(R+), where h ∈ X∗ has
norm 1. Let (un) be a sequence of unit vectors such that (h(un))→ 1. Given
ε > 0 and x ∈ intE, let yn := x + εun. Then x ∈ yn + εBX and for any
w ∈ yn + εBX and any n large enough, we have

h(w) ≥ h(yn)− ε = h(x)+ εh(un)− ε > 0

since h(x) > 0. Thus yn + εBX ⊂ intE and E = cl(intE) is the closure of a
union of ε-balls.

The following results confirm the remark following the proof of Proposi-
tion 2.3.

Proposition 2.14. Setting E′
ε := (E � εBX)+ εBX, one has

int(E) ⊂
⋃
ε>0

E′
ε ⊂

⋃
ε>0

Eε ⊂ cl(int(E)).

Proof. For any x ∈ int(E) there exists ε > 0 such that x+ εBX ⊂ E, that
is, x ∈ E � εBX; thus one has x = x + ε0 ∈ (E � εBX)+ εBX ⊂ Eε. This
proves the first inclusion. The last one follows from Proposition 2.3.

Corollary 2.15. For any closed subset E of X one has

cl
(⋃
ε>0

Eε

)
= cl

(⋃
ε>0

E′
ε

)
= cl(int(E)).

Moreover, if E is solid one has

int
(⋃
ε>0

Eε

)
= int

(⋃
ε>0

E′
ε

)
= int(E).

Corollary 2.16. Eε 
= ∅ for some ε > 0 if and only if int(E) 
= ∅.

For a convex setB, theB-regularization has the nice property of preserving
convexity, as seen in Proposition 2.2 (h); in the case of balls centered at 0 of
arbitrary small radius, more can be said.
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Proposition 2.17. IfE is convex thenEε is convex for every ε. Conversely,
if all the sets Eε are convex then int(E) is convex, hence E is convex if it is
solid.

Proof. The first assertion being obvious, we shall only prove the second
one. If Eε is convex for every ε then, by Proposition 2.10 (b), the set

⋃
ε>0 Eε

is convex, whence, in view of Corollary 2.15, int(E) is convex.

The following result is a consequence of Corollary 2.9, since the support
function of εBX is ε‖·‖X∗ , ‖·‖X∗ denoting the dual norm.

Proposition 2.18. A closed convex set E is ε-regular if and only if the
function σE − ε‖·‖X∗ is convex and weak∗ lower semicontinuous.

WhenX is reflexive, σE−ε‖·‖X∗ is weakly lower semicontinuous whenever
it is convex (as it is lower semicontinuous).

Corollary 2.15 yields a partial description of the sets E′ := ⋃
ε>0 E

′
ε and⋃

ε>0 Eε. Since int(E) ⊂ E′ ⊂ ⋃
ε>0 Eε ⊂ E, to give a full description one

just has to characterize those boundary points of E that belong to E′. This
will be done in the following proposition. We will use the following notion of
ε-(metrically) normal set to S at x ∈ S (or ε-perpendicular set to S at x), with
ε ∈ R+:

Nε(S, x) = {u ∈ X : ‖u‖ = ε = d(x + u, S)}
= {u ∈ X : ‖u‖ = ε, int(x + u+ εBX) ∩ S = ∅},

with d(w, S) := min{‖w − s‖ : s ∈ S} for w ∈ X. Let us recall from [11],
[21], [36] that the metrically normal cone to S ⊂ X at x ∈ S is

Nm(S, x) = {λ(w − x) : λ ≥ 0, w ∈ X, ‖w − x‖ = d(w, S)}
=

⋃
ε≥0

Nε(S, x).

This cone is related to the proximal normal cone to S ⊂ X at x ∈ S which is
the subset ofX∗ given by J (Nm(S, x)), where J : X ⇒ X∗ is the duality map
given by

J (x) := {x∗ : x∗ ∈ X∗, 〈x∗, x〉 = ‖x‖2, ‖x∗‖ = ‖x‖}.
In particular, when X is a Hilbert space identified with its dual X∗, Nm(F, x)
coincides with the set of proximal normals.

Proposition 2.19. Let x be a boundary point of E. Then x ∈ E′
ε :=

(E � εBX) + εBX with ε > 0 if and only if Nε(cl(X\E), x) 
= ∅. Thus
x ∈ E′ := ⋃

ε>0 E
′
ε if and only if Nm(cl(X\E), x) 
= {0}.
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Proof. Let x be a boundary point of E. Suppose first that x ∈ E′
ε :=

(E� εBX)+ εBX for some ε > 0. Then x− εb ∈ E� εBX for some b ∈ BX.
Hence, x−εb+εBX ⊂ E, so that d(x−εb, cl(X\E)) ≥ ε ≥ ‖x−εb−x‖ ≥
d(x−εb, cl(X\E)). We thus have ‖(x−εb)−x‖ = d(x−εb, cl(X\E)) = ε,
which implies −εb ∈ Nε(cl(X\E), x).

Conversely, suppose that there exists some u ∈ Nε(cl(X\E), x) : ‖u‖ = ε
and int(x+u+ εBX) ⊂ E. Then, E being closed, one has x+u+ εBX ⊂ E,
so that x + u ∈ E � εBX; hence x = x + u− u ∈ (E � εBX)+ εBX = E′

ε.

Corollary 2.20. A boundary point x of E belongs to Eε whenever

(1) lim sup
x ′(∈bd(E))→x

Nε(cl(X\E), x ′) 
= ∅.

Proof. Let x be a boundary point of E such that (1) holds. Then there
exist some sequences (xn) → x in bd(E) and (un) → u 
= 0 in X with
un ∈ Nε(cl(X\E), xn) for each n ∈ N. Then xn ∈ E′

ε hence x ∈ Eε.
In order to study the regularizing effect of the operator E �→ EB , let us

introduce some terminology. It uses the classical definition of tangent cone to
a subset S at some point x ∈ S which is the set T (S, x) of vectors v ∈ X
such that there exist sequences (vn) → v, (tn) ↘ 0 satisfying x + tnvn ∈ S
for each n ∈ N. When S is convex, T (S, x) = cl(R+(S − x)). The normal
cone N(S, x) to S at x ∈ S is the polar cone of T (S, x). It is easy to show
that if the norm of X is Gâteaux-differentiable off 0, then N(S, x) contains
the proximal normal cone J (Nm(S, x)). The interior tangent cone (or cone of
interior displacements, in the terminology of [20]) to S at x is the set I (S, x) of
vectors v ∈ X such that there exists ε > 0 for which x+ (0, ε)(v+εBX) ⊂ S.
It is easy to see that

I (S, x) = X\T (X\S, x).
In the following definition, we use the expression “half-space” to mean an
homogeneous half-space [f > 0] or [f ≥ 0] defined by a continuous linear
form f ; in fact, in view of homogeneity arguments, the involved containments
are not affected by this abuse of language.

Definition2.21. A closed subsetS ofX is said to be blunt (resp. one-sided)
at some boundary point x of S if the interior tangent cone (resp. the tangent
cone) to S at x contains (resp. is contained in) some open (resp. closed) half-
space. A closed subset S of X is said to be blunt (resp. one-sided) if at each
boundary point x of S it is blunt (resp. one-sided).

If S is both blunt and one-sided (at some point x ∈ S), it is said to be smooth
(at x).
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Thus, S is blunt at x if and only if X\S is one-sided at x. If S is one-sided
at some boundary point x of S then the normal cone N(S, x) contains some
half-line. Any convex set S with a nonempty interior is one-sided; thus it is
smooth at x ∈ S if and only if it is blunt at x. The Farkas lemma ensures that
when a set S is smooth at x, the normal coneN(S, x) is a half-line and T (S, x)
is a half-space whose interior is I (S, x).

Proposition 2.22. If B is blunt, then EB is blunt at each boundary point
of EB belonging to E′

B := (E � B)+ B.
In particular, if E is convex and B is convex, solid and smooth and if

E′
B := (E � B)+ B is closed, then EB is smooth.

Proof. Let x ∈ E′
B be a boundary point of EB and let b ∈ B be such that

y := x − b ∈ E � B. Hence x = y + b ∈ y + B ⊂ (E � B) + B ⊂ EB
and therefore x is a boundary point of y + B. If H is a half-space contained
in I (B, b) one has

H ⊂ I (B, b) = I (y + B, y + b) ⊂ I (EB, x).
The second assertion follows from the fact that, under its assumptions, the set
EB is convex with a non empty interior, so that the smoothness of EB = E′

B

is a consequence of the fact that it is blunt.

Corollary 2.23. If B is convex, weakly compact, solid and smooth then
every B-regular convex set is smooth.

Since BX is smooth when the norm of X is smooth off 0 (the Slater con-
dition being automatically satisfied), we get the following special case of the
proposition.

Corollary 2.24. IfX is reflexive and if the norm ofX is Gâteaux differen-
tiable on X\{0}, then for any weakly closed subset E of X and for any ε > 0
the setEε is blunt and for any closed convex subsetE ofX the setEε is smooth.

Next we are going to prove that, in the Euclidean space case, for a convex
set, ε-regularity is equivalent to a weak convexity property of its complement.
We need some definitions, in particular an extension of the notion of weak
convexity with respect to ε > 0 of [51] and the notion of ε-proximinal set
(or set of positive reach in [21]); we will also use a combination of these two
notions used in [16, Thm. 4.1].

Definition 2.25.
(a) A closed subset F of a n.v.s. X is ε-weakly convex if for any x in the

boundary bd(F ) of F one has Nε(F, x) = Nm(F, x) ∩ εBX, i.e. if for
any u ∈ Nm(F, x) ∩ εBX one has int(x + u+ ‖u‖BX) ∩ F = ∅.
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(b) It is said to be philonormal if for any x in the boundary bd(F ) of F the
metrically normal cone to F at x is not reduced to {0}.

(c) It is said to be ε-proximinal if for any x ∈ X such that d(x, F ) < ε there
exists some y ∈ F such that ‖x − y‖ = d(x, F ).

(d) It is ε-proximally smooth if it is both ε-proximinal and ε-weakly convex.

Condition (c) is obviously satisfied when F is a weakly closed subset of
a reflexive Banach space, in particular when F is a closed subset of a finite
dimensional space. The notion of ε-proximally smooth subset corresponds to
the notion of proximally smooth subset for a specific radius ε introduced and
characterized in [16, Thm. 4.1] when X is a Hilbert space. In [16, Cor. 4.15
and Remark 4.16] it is proved that when X is a finite dimensional Hilbert
space, any ε-proximally smooth subset is philonormal. In infinite dimensional
Hilbert spaces one can find closed convex subsets which are not philonormal
(see [12], [37, Example 3.1]). However, in any Hilbert space, any solid convex
subset is philonormal. In finite dimensional Hilbert spaces, a characterization
of ε-weakly convex subsets has been given in [51]: introducing for ε > 0 the
ε-lens of x1, x2 ∈ X by

Dε(x1, x2) =
⋂

x∈(x1+εBX)∩(x2+εBX)
(x + εBX).

(which is well defined, i.e., the intersection is over a nonempty family) if and
only if ‖x1 − x2‖ ≤ 2ε, in which case [x1, x2] ⊂ Dε(x1, x2)) it is proved in
[51, Prop. 3.5] that F is ε-weakly convex if and only if

Dε(x1, x2) ∩ F 
= {x1, x2}
for any x1, x2 ∈ F with x1 
= x2 and ‖x1 − x2‖ < 2ε.

Using [51, Prop. 3.4], one can easily check that a closed subset is convex
if and only if it is ε-weakly convex for any ε > 0. An example of a nonconvex
ε-weakly convex set is the complement of any open ball with radius ε > 0
[51, Prop. 3.1] in an Euclidean space.

Theorem 2.26. Let E be a solid subset of a n.v.s. X. If F := cl(X\E) is
ε-proximally smooth and philonormal, then E is exactly ε-regular.

Conversely, if a closed subset E of X is exactly ε-regular, then E is solid
and the closure F := cl(X\E) of its complement is philonormal. If moreover
E is one-sided, and if X is smooth and strictly convex, then F is ε-weakly
convex. If moreover X is reflexive and F is weakly closed, F is ε-proximally
smooth.
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Proof. Assume first that F := cl(X\E) is ε-weakly convex, ε-proximinal
and philonormal and let x ∈ E. If x + εBX ⊂ E then x ∈ E � εBX ⊂ Eε.
Suppose now that x + εBX 
⊂ E. Then there exists some z ∈ X\E ⊂ int(F )
such that ‖x−z‖ ≤ ε; it follows that α := d(x, F ) < ε. As F is ε-proximinal,
there exists y ∈ F such that ‖x − y‖ = α. Let us first consider the case
α > 0; then y ∈ bd(F ) and one has x − y = αu, with u ∈ Nm(F, y) and
‖u‖ = 1. Since F := cl(X\E) is ε-weakly convex, for w := y + εu, we have
int(w+εBX)∩cl(X\E) = ∅, hence (w+εBX)∩(X\E) = ∅ andw ∈ E�εBX.
Then we have x = w− (ε−α)u ∈ (E� εBX)+ εBX = E′

ε. When α = 0, we
have y = x ∈ F ; as E is solid, we cannot have x ∈ int(F ), since otherwise
we would have int(F )∩ cl(int(E)) 
= ∅, hence int(F )∩ int(E) 
= ∅, a fortiori
cl(X\E) ∩ int(E) 
= ∅ and (X\E) ∩ int(E) 
= ∅, a contradiction. Hence
x ∈ bd(F ). Then, as F is philonormal, we can find u ∈ Nm(F, x) ∩ εBX,
u 
= 0. As above, settingw := x+εu, we get that int(w+εBX)∩cl(X\E) = ∅
and x = w− εu ∈ (E � εBX)+ εBX = Eε. This proves that E = E′

ε, i.e., E
is exactly ε-regular.

Conversely, let us assume E is exactly ε-regular. We first observe that E
is solid: given x ∈ E we can find w ∈ E � εBX and b ∈ BX such that
x = w+εb and for any sequence (εn) in (0, ε)with limit εwe have x = lim xn
with xn := w + εnb ∈ int(E). Then bd(F ) = bd(E) by [14, Lemma 4.2].
Thus F is philonormal by Proposition 2.19. Now let us assume that the closed
set E is one-sided and X is smooth and strictly convex. Let x ∈ bd(F ) and
u ∈ Nm(F, x)∩BX. Then x − εb ∈ E � εBX for some b ∈ BX and x − εb+
εBX ⊂ E. Since BX is smooth, there exists an open half-space H which is
included in I (x − εb + εBX, x) ⊂ I (E, x) = X\T (F, x). In fact, as easily
seen, H = {w ∈ X : 〈J (b),w〉 < 0}, where J is the duality mapping, i.e.
the derivative of half the square of the norm. Since E is one-sided, its tangent
cone T (E, x) at x is contained in some closed half-space; thus this half-space
contains H , hence coincides with cl(H) and H = I (E, x) = I (int(E), x).
It follows that T (F, x) = X\I (int(E), x) = X\H = − cl(H). Now, as u ∈
Nm(F, x), we have J (u) ∈ N(F, x) i.e. 〈J (u),w〉 ≥ 0 for eachw ∈ T (F, x).
Therefore, by the Farkas lemma, J (u) = −λJ (b) for some λ ≥ 0. Since X
is strictly convex, J is injective and we have u = −λb. Since x ∈ bd(E) and
x ∈ x − εb+ εBX ⊂ E, we deduce that ‖b‖ = 1, whence, as u ∈ BX, λ ≤ 1.
So we conclude that

int(x + εu+ ε‖u‖BX) = int(x − ελb + ελBX)
⊂ int(x − εb + εBX) ⊂ int(E),

which shows that int(x + εu + ε‖u‖BX) ∩ cl(X\E) = ∅ or u ∈ Nε(F, x).
Thus F is ε-weakly convex.
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Corollary 2.27. A closed convex subset with nonempty interior of a finite
dimensional Euclidean space X is ε-regular if and only if the closure of its
complement is ε-weakly convex.

Proof. Such a setE is known to be solid and proximinal. SinceX is smooth
and strictly convex and since any proximally smooth subset is philonormal, E
is (exactly) ε-regular if and only if F := cl(X\E) is ε-proximally smooth or,
equivalently (as X is finite dimensional), ε-weakly convex.

3. Regularization of functions

Let us first observe that when E (resp. B) is the epigraph of a function f
(resp. b) with values in R ∪ {+∞}, then cl(E + B) is the epigraph of the
lower semicontinuous hull f � b of the function f � b obtained by infimal
convolution of f and b:

(f � b)(x) := inf
w∈X(f (x − w)+ b(w)),

with the convention (+∞)+ (−∞) = +∞. The set E�B is the epigraph of
the function f � b obtained by deconvolution of f by b (see [4], [22], [23],
[32], [33]) in the following way:

(f � b)(x) := sup
w∈X
(f (x + w)−

·
b(w)),

with s −
·
t := −(t + (−s)) for s, t ∈ R := R ∪ {+∞,−∞}. Let us prove this

latter fact (which is less classical than the first one) by means of the following
equivalences:

(x, r) ∈ E � B ⇔ (x, r)+ B ⊂ E
⇔ f (x + w) ≤ r + s ∀(w, s) ∈ B
⇔ r ≥ sup

w∈dom b
(f (w + x)− b(w)),

using the observation that for r ∈ R, s, t ∈ R ∪ {+∞}, the relation r ≥ s −
·
t

amounts to t = +∞ or t < +∞ and r ≥ s − t . Let us observe that the same
results hold when B is the strict epigraph epis(f ) of the function b.

Thus, given an extended real-valued function b : X → R, b 
≡ +∞,
we define the b-regularized function associated with a lower semicontinuous
function f : X→ R as the function fb : X→ R whose epigraph is epi(fb) =
epi(f )epi(b). Since

epi(f )epi(b) = cl((epi(f )� epi(b))+ epi(b)) = epi((f � b) � b),
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one has fb = (f � b) � b.
Let us point out two other links between regularization of sets and regular-

ization of functions. First, we observe that when f is the indicator function
ιE of some subset E of X given by ιE(x) := 0 for x ∈ E, ιE(x) := +∞
when x ∈ X\E, and when b = ιB for some subset B of X, then fb = ιEB .
Now, using Proposition 2.2 (c) with a subset B of X × R, C := {0} × R+,
A = B + C = epi(b), E := epi(f ), we get epi(f )epi(b) = EB . We will use
this latter fact in the special case B is a ball in X × R.

In the first part of this section we shall state some results on regularization of
functions that parallel those of Section 2 on regularization of sets. In particular,
according to Proposition 2.2, the following properties hold; here the recession
function 0+f of a function f is the function f �f , so that a function g satisfies
g ≥ 0+f if and only if epi f + epi g ⊂ epi f .

Proposition 3.1.
(a) If f ≤ g, then one has fb ≤ gb.
(b) If b ≤ a ≤ b, where b is the lower semicontinuous hull of b, then

fa ≤ fb.
(c) If b � c ≤ a ≤ b � c, then one has fb ≤ fa .
(d) If b � c ≤ a ≤ b � c, with a ≤ b, c ≥ 0+f , then one has fb = fa .
(e) If w ∈ X, r ∈ R, and f w,r : X → R denotes the function defined by

f w,r (x) = f (w + x)− r , then one has (f w,r )b = (fb)w,r ; if c = bw,r ,
then fc = fb.

(f) If λ > 0 and f λ : X → R denotes the function defined by f λ(x) =
λf (λ−1x), then one has (f λ)b = (fbλ−1 )λ.

(g) For any functions f, g, one has fb � gb ≤ f � g.

(h) If f and b are convex, then fb is convex.

In general, one has f ≤ fb, so that our regularized functions are upper
approximations. Functions for which equality holds will be called b-regular:

Definition 3.2. A lower semicontinuous function f : X → R is said to
be b-regular if fb = f .

According to this definition, a function f is b-regular if and only if epi(f )
is epi(b)-regular. From Proposition 2.5, the following characterization of b-
regular functions follows:

Proposition 3.3. A lower semicontinuous function f is b-regular if and
only if there exists a function g : X→ R such that g � b = f .
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Proof. If f is b-regular then, for g = f � b, one has g � b = (f � b) �
b = fb = f . Conversely, if there is a function g satisfying g � b = f then

epi(f ) = epi(g � b) = cl(epi(g)+ epi(b)),

whence, by Proposition 2.5, epi(f ) is epi(b)-regular.

In view of the preceding proposition, the function fb is b-regular. As a
consequence, one has

Corollary 3.4. The b-regularization operator is idempotent, that is,
(fb)b = fb.
Corollary 3.5. fb is the smallest b-regular majorant of f .

Using Proposition 3.1 (c), one easily gets the next consequence.

Corollary 3.6. If b � c ≤ a ≤ b � c and if f is a-regular, then f is
b-regular, too.

In the same way as in the case of regularization of sets we mostly considered
balls as the regularizing sets, in the case of functions we shall concentrate on
the basic regularizing function b : X→ R defined by

b(x) = −
√

1 − ‖x‖2 if ‖x‖ ≤ 1, +∞ otherwise.

We shall also consider the functions bε : X→ R given by bε(x) = εb(ε−1x).
Using the preceding observations and noting that epi(b) = BX×R + {0} × R+,
we see that, for any function f : X → R, we have epi(fbε ) = (epi(f ))εBX×R ,
BX×R denoting the unit ball of the space X × R normed by ‖(x, r)‖X×R =√‖x‖2 + r2. We shall use the abbreviated notation fε := fbε and the terms ε-
regularized and ε-regular instead ofbε-regularized andbε-regular, respectively.
Thus, using also the abbreviated notation of Section 2, one can write epi(fε) =
(epi(f ))ε; the ε-regularization operation for functions is therefore equivalent
to the ε-regularization of their epigraphs, and a function is ε-regular if and
only if its epigraph is ε-regular. In particular, it follows from Corollary 2.13
that any concave lower semicontinuous function is ε-regular for any ε > 0.

Propositions 2.10 and 3.1 yield the following basic properties of the ε-
regularization operation:

Proposition 3.7.
(a) If f ≤ g, then one has fε ≤ gε.
(b) If ε ≥ ε′ > 0 then fε′ ≤ fε.
(c) If w ∈ X, r ∈ R, and f w,r := f (w + ·) − r , then one has (f w,t )ε =

(fε)
w,t .
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(d) If λ > 0 then (f λ)ε = (f ε
λ
)λ.

(e) fε � gε ≤ f � g.

(f) f is ε-regular if and only if there exists a function g : X→ R such that
g � bε = f .

(g) (fε)ε = fε.
(h) fε is the smallest ε-regular majorant of f .

(i) If ε ≥ ε′ > 0 and f is ε-regular then it is ε′-regular, too.

Similarly, Corollary 2.11 yields a property which has some similarity with
the semi-group property of the Moreau regularization; it might be related to
the so-called max-plus algebra.

Corollary 3.8. (fε)ε′ = fε∨ε′ .
The next result is a direct consequence of Corollary 2.12.

Corollary 3.9. The lower semicontinuous hull of the pointwise infimum
of a family of ε-regular functions is ε-regular.

We observe that this regularization process has some interest only for those
functions whose epigraphs have a nonempty interior, i.e. those functions which
are bounded above on some open subset; this is the case when the domains of
the functions have the Baire property. In fact, by applying Corollary 2.16 to
epigraphs, one obtains the following result:

Proposition 3.10. fε 
≡ +∞ for some ε > 0 if, and only if, f is bounded
from above on some open set.

Since the ε-regularization of sets preserves convexity, the ε-regularization
of functions preserves convexity, too.

Proposition 3.11. If f is convex then fε is convex for every ε. Conversely,
if all the functions fε are convex and f has a solid epigraph then f is convex.

Proof. This is an immediate consequence of Proposition 2.17.

The following result characterizes ε-regularity of convex functions:

Proposition 3.12. A lower semicontinuous proper convex function f is

ε-regular if and only if f ∗ − ε
√

1 + ‖·‖2
X∗ is convex and w∗-lower semicon-

tinuous.

Proof. If f is ε-regular then (f � bε) � bε = f , whence (f � bε)∗ +
(bε)∗ = f ∗, so thatf ∗−ε

√
1 + ‖·‖2

X∗ = f ∗−(bε)∗ is the convex function (f�

bε)∗. Conversely, iff ∗−ε
√

1 + ‖·‖2
X∗ is convex andw∗-lower semicontinuous,
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then, one has f ∗ − ε
√

1 + ‖·‖2
X∗ = g∗ for some lower semicontinuous proper

convex function g. It follows that f ∗ = g∗ + ε
√

1 + ‖·‖2
X∗ = g∗ + (bε)∗ =

(g � bε)∗, and hence f = g � bε. Therefore, by Proposition 3.7 (f), f is
ε-regular.

We say that a function f is ε-regular at x ∈ X if fε(x) = f (x). We recall
that the proximal subdifferential of f at x is the set of x∗ ∈ X∗ such that
(x∗,−1) ∈ J (Nm(E, (x, f (x))), where E is the epigraph of f and J is the
duality mapping of X × R.

Proposition 3.13. Suppose X is reflexive and f is a weakly lower semi-
continuous function. Then f is ε-regular at x ∈ dom f for some ε > 0 if and
only if the metrically normal cone to the epigraph of the lower semicontinuous
hull of −f does not reduce to the origin. In particular, this occurs when f is
continuous and the proximal subdifferential at x of −f is nonempty.

Proof. LetE be the epigraph of f . Clearly, xf := (x, f (x)) is a boundary
point ofE. Since cl((X×R)\E) is the hypograph of the upper semicontinuous
hull of f , its image by the symmetry (x, r) �→ (x,−r) is the epigraph of
the lower semicontinuous hull of −f . Our assumptions ensure that for any
ε > 0 the set E′

ε := (E � εBX×R) + εBX×R is weakly closed, hence it is the
epigraph of fε. It follows from Proposition 2.19 that xf ∈ E′

ε if and only if
Nε(cl((X × R)\E), xf ) does not reduce to the origin.

Let us recall [51] that an extended real-valued function f on a finite di-
mensional Euclidean space is said to be ρ-convex, with ρ ∈ R, if for every
x1,x2 ∈ dom f and λ ∈ [0, 1] one has

f ((1 − λ)x1 + λx2) ≤ (1 − λ)f (x1)+ λf (x2)− ρλ(1 − λ)‖x1 − x2‖2.

Proposition 3.14. Let f be a lower semicontinuous convex function on a
finite dimensional Euclidean space and assume that dom f has a nonempty
interior. Then f is ε-regular if and only if the hypograph of f , the smallest
upper semicontinuous majorant of f , is ε-weakly convex. Hence, if −f is

− 1
2ε -convex then f is ε-regular.

Proof. The first part of the statement is an immediate consequence of
Corollary 2.27. The second part follows from [51, Prop. 5.17].

In the remaining of this section, we consider smoothness questions. We
first assume that X is the Euclidean space Rn, the basic regularizing function
b being the one defined by b(x) = −√

1 − ‖x‖2 if ‖x‖ ≤ 1, +∞ otherwise,
‖·‖ denoting the Euclidean norm.
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Proposition 3.15. If f : Rn → R is convex then, for every ε, fε is differ-
entiable on the interior of its domain.

Proof. Since epi(f ) is convex and the unit ball BRn×R corresponding to
the norm ‖·‖Rn×R given by ‖(x, r)‖Rn×R = √‖x‖2 + r2 is smooth, by Proposi-
tion 2.22, for every ε > 0 the set epi(fε) = epi(f )εBRn×R is smooth, too, which
implies that fε is differentiable on the interior of its domain.

Corollary 3.16. Every ε-regular convex function on Rn is differentiable
on the interior of its domain.

Now let us consider the question of firm smoothness, i.e. of Fréchet dif-
ferentiability. We need a piece of terminology. A modulus is a nondecreasing
function α : R+ → R+ such that α(0) = 0 and is continuous at 0. A gage is
a nondecreasing function γ : R+ → R+ which is positive on P := (0,+∞)
and satisfies γ (0) = 0. We say that a lower semicontinuous proper convex
function f : X→ R is essentially firmly smooth if it is Fréchet differentiable
at each point of the domain of ∂f . This notion seems to be close to the concept
of essential smoothness [5]. It implies that the domain of ∂f coincides with
the interior of the domain of f . A convex function g : Y → R is said to be
essentially firmly convex if for any y in the domain of ∂g there exists a gage γ
and some x ∈ ∂g(y) such that

g(y + z) ≥ g(y)+ 〈x, z〉 + γ (‖z‖) ∀z ∈ Y.
When this inequality holds, we say that γ is is a gage of firm convexity of g at
(y, x). A modulus α such that

|f (x + w)− f (x)− 〈y,w〉| ≤ α(‖w‖)‖w‖ ∀w ∈ X
will be called a modulus of (firm or Fréchet) differentiability of f at x. We
will make use of the following characterization which is similar to [53, The-
orem 2.1], [3, Prop. 3.2], [54, Thm. 3.5.5].

Lemma 3.17. A lower semicontinuous proper convex function f on the
Banach spaceX is essentially firmly smooth if and only if its conjugate g := f ∗
on Y := X∗ is essentially firmly convex. Moreover, γ is a gage of firm convexity
of g at (y, x) if and only if the function α : t �→ t−1γ ∗(t) is a modulus of
differentiability of f at x.

Theorem 3.18. Let X be a reflexive Banach space and let b : X →
R ∪ {+∞} be a lower semicontinuous, proper, coercive and essentially firmly
smooth convex function. Then, for any lower semicontinuous proper convex
function f on X the regularized function fb is essentially firmly smooth. In
particular it is of class C1 on the interior of its domain.
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Proof. We first observe that since b is coercive, b and f � b are convex,
weakly semicontinuous and X is reflexive, the regularization is exact: for
any x ∈ dom fb there exists u, v ∈ X such that u + v = x and fb(x) =
(f � b)(u)+ b(v). Moreover, by a simple and well-known argument, for any
y ∈ ∂fb(x) one has y ∈ ∂(f � b)(u) and y = b′(v); moreover x ∈ ∂f ∗

b (y)

and x = u+ v with u ∈ ∂(f � b)∗(y) and v ∈ ∂b∗(y). If γ is a gage of firm
convexity of b∗ at (y, v), then γ is a gage of firm convexity of f ∗

b at (y, x).
Therefore fb is firmly differentiable at x. The last assertion follows from the
observations above and from a classical fact about continuity of the derivative
of convex Fréchet differentiable functions ([9, p. 86]).

4. An algebraic point of view

It is our purpose to establish a connexion between some notions of regulariza-
tion and the concepts of closure and duality; we refer to [10], [27]–[31], [35],
[39], [46] for generalities about dualities and polarities.

In the following statement, given two maps D1, D2 : G→ F with values
in an ordered space F , we write D1 ≤ D2 if for any g ∈ G we have D1(g) ≤
D2(g). If G is also an ordered space, we say that D : F → G is a homotone
(resp. antitone) mapping if D(f1) ≤ D(f2) (resp. D(f1) ≥ D(f2)) whenever
f1 ≤ f2.

Lemma 4.1. Given two complete lattices F,G and a homotone mapping
D : F → G, there exists a greatest homotone mapping D′ : G → F such
that D′(D(f )) ≤ f for any f ∈ F . It is given by

(2) D′(g) = inf{h ∈ F : D(h) ≥ g}.

Proof. The result is elementary. It also follows from [39] Lemma 3.2,
providing F with the reverse order.

The case when D is a morphism of inf-lattices, i.e. D satisfies the relation

(3) D(inf
i∈I fi) = inf

i∈I D(fi)

for any family (fi)i∈I of F is of special interest. In such a case, D can be
considered as a duality in the sense of [31] when G is endowed with the
reverse order, so that D′ is the reverse duality and the roles of D and D′ are
symmetric (when viewed as dualities). More precisely,D is obtained fromD′
by setting

(4) D(f ) = sup{h ∈ G : D′(h) ≤ f }.
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Lemma 4.2. LetX be a vector space and let b ∈ F := R
X

be a function with
nonempty domain. Then, the reverse mappingD′ associated with the mapping
D : f �→ f � b is the mapping D′ : F → F given by D′(g) = g � b with

(g � b)(x) := sup
w∈dom b

(g(w + x)− b(w)).

IfX is a normed vector space, if F is the set of lower semicontinuous functions
onX and ifD : F → F is given byD(f ) := f � b, then the reverse mapping
of D is also D′ : g �→ g � b.

Proof. Clearly, D and D′ are homotone, hence antitone when the order
is reversed on one side. Moreover, D : f �→ f � b satisfies relation (3), so
that it can be considered as a duality. Let us show thatD′ given by relation (2)
satisfies D′(g) = g � b by noting the following equivalences:

h � b ≥ g ⇔ ∀x ∈ X, ∀w ∈ dom b, h(x)+ b(w) ≥ g(w + x)
⇔ ∀x ∈ X, h(x) ≥ sup

w∈dom b
(g(w + x)− b(w)).

When g, h ∈ F , we observe that the relation h � b ≥ g is equivalent to the
relation h � b ≥ g, hence to h ≥ g � b by what precedes.

Given a duality D and its reverse duality D′, one is led to introduce the
classes

FD := {f ∈ F : D′(D(f )) = f } = {f ∈ F : D′(D(f )) ≥ f },
GD′ := {g ∈ G : D(D′(g)) = g} = {g ∈ G : D(D′(g)) ≤ g},

in view of the fact thatD◦D′ is a closure operator onG andD′ ◦D is a closure
operator for the reverse order on F .

Taking for F and G the power set of a vector space X, what precedes can
be transcribed for the operations D : E �→ E + B and D′ : E �→ E � B
where the Minkowski difference E � B is given by

E � B := {x ∈ X : x + B ⊂ E}.

These set theoretical operations correspond to the preceding ones through the
lattice isomorphisms

E �→ ιE,

f �→ Ef ,
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where Ef is the epigraph of f and where ιE is the indicator function of E
given by ιE(x) = 0 if x ∈ E, ιE(x) = +∞ if x ∈ X\E. Since

(⋃
i∈I
Ei

)
+ B =

⋃
i∈I
(Ei + B),

⋂
i∈I
(Ei � B) =

(⋂
i∈I
Ei

)
� B,

reversing the order in the left hand sides of these relations we get polarities in
the sense of Birkhoff [10] and others.

Convergence results

Let us first deal with the question of convergence as t → 0+ of the family
(Et )t>0 of sets associated with some closed subset E of X. Here B is the
closed unit ball of X and for a subset E of X we set

Et := cl((E � tB)+ tB) t > 0.

We first observe that the containement Et ⊂ E implies that

(5) lim sup
t→0+

Et ⊂ E,

and we state a simple result:

Proposition 4.3. Suppose E is solid. Then (Et ) converges to E for the
Wijsman topology and the Painlevé-Kuratowski convergence.

Proof. By Corollary 2.15, E = cl
(⋃

t>0 Et
)
. According to Proposition

2.10 (b), the family {Et }t>0 is decreasing in t with respect to inclusion;
therefore, for every x ∈ X one has limt→0+ d(x,Et ) = inf t>0 d(x,Et ) =
d
(
x,

⋃
t>0 Et

) = d(x, cl
(⋃

t>0 Et
)) = d(x,E).

lim
t→0+

d(x,Et ) = inf
t>0
d(x,Et ) = d

(
x,

⋃
t>0

Et

)
= d

(
x, cl

(⋃
t>0

Et

))

= d(x,E).
Thus (Et ) converges to E for the Wijsman topology. In particular, we have
E ⊂ lim inf t→0+ Et since for x ∈ E we have d(x,Et )→ 0 as t → 0+. Thus,
by (5), we have Painlevé-Kuratowski convergence.

The study that follows has been inspired by [34, Prop. 1-5-2] for the caseX
is locally compact and the space of subsets of X is endowed with the “myope
topology” (Fell topology) and [44, Thm. 3.2.1] for the case of convex subsets
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with nonempty interiors. Here we give a slight extension to a nonconvex case
and we limit our study to our aim which is the convergence as t → 0+.

Proposition 4.4. Suppose E is solid and weakly closed in X. Then (Et )
converges to E for the Mosco convergence.

Proof. We already know that E ⊂ lim inf t→0+ Et . Now, since Et ⊂ E for
each t > 0 and E is weakly closed, we have w-lim supt↘0 Et ⊂ E. Thus (Et )
converges to E as t ↘ 0 for the Mosco convergence.

Now let us turn to the Pompeiu-Hausdorff convergence. Recall that the star
(or stage) of a subset E of X is the set st(E) of points of E at which the set E
is starshaped:

st(E) := {x ∈ X : ∀t ∈ [0, 1], ∀e ∈ E, x + t (e − x) ∈ E}.
Proposition 4.5. Suppose E is bounded and the interior of st(E) is non-

empty. Then (Et ) → E for the Pompeiu-Hausdorff distance, with a linear
speed of convergence: lim supt↘0 t

−1d(E,Et) < +∞.

More precisely, let c be the infimum of the ratio s/r where (r, s) is a pair of
positive numbers for which there exists some a ∈ E such thatB(a, r) ⊂ st(E)
and E ⊂ B(a, s). Then one has

lim sup
t↘0

t−1d(E,Et) ≤ c − 1.

Note that when E is convex c is a measure of the nonsphericity of the set E.
Proof. Given q > c, we can find a ∈ st(E) and r > 0 such that B(a, r) ⊂

st(E) and E ⊂ B(a, qr). Let t ∈ [0, r]. For each x ∈ E let us check that
y := x + tr−1(a − x) belongs to E � tB. In fact, for each u ∈ B we have
y+tu = x+tr−1(a+ru−x) ∈ E since tr−1 ∈ [0, 1] and a+ru ∈ st(E). Thus
y ∈ E�tB. Now ‖y−x‖ ≤ tq and since z := y+q−1(x−y) ∈ (E�tB)+tB
we have d(x,Et ) ≤ ‖x − z‖ ≤ t (q − 1). Since this estimate is valid for any
x ∈ E and since Et is included in E, we get the result.

An extension to the case of unbounded subsets along the lines of [44] can be
given under the assumption that the recession coneE�E ofE has a nonempty
interior. Another extension is as follows.

Proposition 4.6. Let E be a closed subset of X such that for each p > 0

large enough the interior of st(E ∩ pB) is nonempty. Then (Et )
b→ E , i.e.

(Et ) converges to E for the bounded-Hausdorff distance.

Proof. Given p > 0, replacing E by E ∩ pB in the preceding proof, we
see that d(E ∩ pB, (E ∩ pB)t ) → 0 as t ↘ 0. Since (E ∩ pB)t ⊂ Et , the
result follows.
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Now let us deal with convergence questions for functions. Since variational
convergences are introduced by the means of various convergences for the
epigraphs of the functions (see [6], [42], [45], [49] for instance), the preceding
results readily entail convergence properties for these variational convergences.
In particular, we have the following convergence results. Here we say that a
function f is solid if its epigraph is solid. Since the interior of the epigraph of
a function is the strict epigraph of its upper semicontinuous hull, and since the
epigraph of its lower semicontinuous hull is the closure of its epigraph, we get
that f is solid if and only if it coincides with the lower semicontinuous hull of
its upper semicontinuous hull. This property occurs when f is continuous on
its domain and has a solid domain.

Proposition 4.7.
(a) Let f be solid. Then (ft ) epi-converges to f .

(b) Suppose moreover that f is weakly lower semicontinuous. Then (ft )
converges to f for the Mosco convergence.

(c) If f is a lower semicontinuous convex function which is continuous on

the interior of its domain, then (ft )
b→ f i.e. (ft ) converges to f for the

bounded-Hausdorff distance.

More specific results can also be given. Since the ε-regularizations of f are
majorants of f and, according to Proposition 3.7 (b), they depend on ε in a
nondecreasing way, for every x ∈ X one has

(6) lim
ε→0+

fε(x) = inf
ε>0
fε(x) ≥ f (x).

The next proposition shows that equality holds if x is a continuity point of f .

Proposition 4.8.
(a) If the epigraph of f is solid, then f is the lower semicontinuous hull of

the function x �→ limε→0+ fε(x).

(b) If f is upper semicontinuous at x ∈ int(dom(f )) then

(7) lim
ε→0+

fε(x) = inf
ε>0
fε(x) = f (x).

Proof. (a) If epi(f ) is solid then, by Corollary 2.15,

epi(f ) = cl(int(epi(f ))) = cl
(⋃
ε>0

epi(f )ε
)
= cl

(⋃
ε>0

epi(fε)
)

= cl
(
epi(inf

ε>0
fε)

);

since cl(epi(infε>0 fε)) is the epigraph of the lower semicontinuous hull of
infε>0 fε = limε→0+ fε, the statement follows.
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(b) Let r > f (x). Then, by upper semicontinuity, (x, r) ∈ int(epi(f )),
whence, in view of Proposition 2.14, (x, r) ∈ epi(f )ε0 = epi(fε0) for some
ε0 > 0. Therefore infε>0 fε(x) ≤ fε0(x) ≤ r . Since r > f (x) is arbitrary, this
shows that infε>0 fε(x) ≤ f (x), which, in view of (6), proves (7).

When f is uniformly continuous, the convergence of fε towards f is uni-
form:

Proposition 4.9. Suppose f is uniformly continuous. Then fε converges
uniformly to f as ε→ 0+.

Proof. Let µ be a modulus of uniform continuity of f : µ is a modulus
(i.e. µ : R+ → R+ ∪ {+∞} is nondecreasing, continuous at 0, with µ(0) = 0)
and satisfies f (x) − f (y) ≤ µ(‖x − y‖) for any x, y ∈ X. Then, for any
x ∈ X one has

(f � bε)(x) = sup
w∈εBX

(f (w + x)− bε(w)) ≤ sup
w∈εBX

(f (x)+ µ(‖w‖)+ ε)

≤ f (x)+ µ(ε)+ ε.
Therefore, since bε(0) = −ε,

((f � bε) � bε)(x)− f (x) ≤ (f � bε)(x)+ bε(0)− f (x) ≤ µ(ε).
Since fε ≥ f , we get that supx∈X |fε(x)− f (x)| ≤ µ(ε).

An easy modification of the preceding proof shows that if f is uniformly
continuous on some subset D of its domain then, for any α > 0, fε con-
verges uniformly to f on D � αBX. In particular, if f is uniformly continu-
ous on int(dom(f )) then fε converges uniformly to f on compact subsets of
int(dom(f )).

5. Generalizations and comparisons with other regularization
processes

We observe that for any subsets A,E of X we have

E � A = (Ec + (−A))c,
where Ec := X\E; in fact, x ∈ (E � A)c if and only if there exists some
a ∈ A such that x+a ∈ Ec. It follows from this observation that the following
variant of our regularization

(8) EλA,µB := (E � λA)+ µB λ,µ > 0
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is related to the Benoist regularization ofE [8], [7]; this regularization is given
by

H �→ RλC,µB(H) := ((H + λC)c + µB)c.
Thus,

EλA,µB = (RλC,µB(H))c,
RλC,µB(H) = (EλA,µB)c

with H = Ec, C = −A:RλC,µB(H) is obtained by a passage to the comple-
ment before and after using the regularization (8) with A := −C. In the case
B is symmetric, this amounts to taking the shrinking and the enlargement in a
reverse order:

RλA,µB(H) = (H + λA)� µB.
The effect is quite different. Moreover, when one takes for E the epigraph

of a function f , the complement Ec is not the hypograph of f but its strict
hypograph. For attainment questions, this may introduce slight discrepancies,
even if the result is not essentially different.

Moreover, in the case A = B, λ = µ, the Benoist regularization of E
is larger than E whereas our regularized set is smaller than E. The same
observation is valid for the ε-convex hull Cε(E) of E defined in [43] which
is the special case of the Benoist regularization given by Cε(E) = R−U,U (E)
with U = ε

2 int(BX); in fact in [43] this process is defined in a general metric
space. Let us note the following consequence about the families of regular sets;
here we return to our regularization rather than to its variant (8) which avoids
closure.

Proposition 5.1.WhenA = B = C is symmetric and weakly compact,E is
weakly closed, the setH := Ec is Benoist regular in the sense that it coincides
with its Benoist regularization if and only if E is regular in our sense.

Proof. The set H is Benoist regular if and only if

H = ((H + C)c + B)c = ((E � A)+ B)c = (EB)c,
which is equivalent to E := Hc = EB .

Now let us compare our regularization with the one studied in [14]. There,
for a subset E of X and r > 0, the authors study the outer and the inner
approximations given respectively (with a slight change of notation in order
to avoid confusions) by

E(r) := {x ∈ X : d(x,E) ≤ r},
E(r) := {x ∈ X : d(x, cl(Ec)) ≥ r}.
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Proposition 5.2. For any closed subset E of X and any r > 0 one has
Er = (E(r))(r).
Proof. We first observe thatE(r) = E� rBX. In fact, as already observed,

E � rBX = E � r int(BX) the ball BX being solid; moreover one has x +
r int(BX) ⊂ E if and only if d(x,Ec) ≥ r .

Now let us prove that for any subsetF ofX one hasF (r) = cl(F+rBX). The
inclusion cl(F + rBX) ⊂ F (r) is obvious. Obviously F ′

r := F + rBX ⊂ F (r),
so that cl(F ′

r ) ⊂ F (r). Conversely, let w ∈ F (r). For each ε > 0, there
exists xε ∈ F such that ‖xε − w‖ ≤ d(w, F ) + ε ≤ r + ε. Let us set
yε := xε + r

r+ε (w − xε). Then yε ∈ F + rBX = F ′
r and

‖yε − w‖ =
∣∣∣∣
r

r + ε − 1

∣∣∣∣‖xε − w‖ ≤ ε

r + ε (r + ε) = ε.

Thus w ∈ cl(F ′
r ). The result is a consequence of the equality F (r) = cl(F +

rBX) when one takes F := E(r) = E � rBX.

In [14] the regularizing effect of the operations E �→ E(r) and E �→ E(r)
is disclosed in terms of the aperture (or maximal angle) of the Clarke normal
cone. The analytic version of the regularization E �→ E(r) is studied in [24]
and [47] for the case of convex functions and in [14] essentially in the case of
Lipschitz functions. A double process similar to the one we used (but with two
different parameters, as in the Lasry-Lions [25] process) is also introduced in
[14] and used in connection with Hamilton-Jacobi equations and invariance
issues. In view of the behavior of our regularization process in the convex and
in the concave cases, a double approximation of the function (resp. set) and of
its opposite (resp. complement) would be of interest.
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