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TIME-FREQUENCY PARTITIONS FOR THE
GELFAND TRIPLE (S0, L

2, S ′
0)

MONIKA DÖRFLER, HANS G. FEICHTINGER and KARLHEINZ GRÖCHENIG∗

Abstract

We give a new characterization of the Gelfand triple of function spaces in (S0, L
2, S′

0) by means
of a family of time-frequency localization operators. The localization operators are defined by
the short-time Fourier transform and determine the local time-frequency behavior, whereas the
global time-frequency distribution is characterized by a sequence space norm. We also show that
the alternative time-frequency localization method with the Weyl transform fails to yield a similar
characterization of time-frequency distribution.

1. Introduction

In the perception of music, speech, and any other audio signals, the separation
of signal components in the time-frequency domain is a natural ability that
is performed unconsciously by the human ear. For instance, a melody played
by a flute and its accompaniment by a piano can be discriminated easily by
most listeners. In an engineering context, this process can be described as the
separation of signal components in the time-frequency domain by means of a
time-variant filtering procedure. An analogous problem occurs in the quantum
mechanics of many-particle systems. Given a suitable phase-space represent-
ation of a quantum mechanical state, one would like to assign a certain region
in phase-space to each particle.

The mathematical task of extraction and localization of signal compon-
ents (or particle separation in phase-space) is highly non-trivial. This is a
consequence of the uncertainty principle, which implies that no signal can
have compact support in the time-frequency domain. Thus, in a mathematical
sense, two signals can never be clearly discerned and perfectly separated by
their time-frequency characteristics.

In this paper we investigate a simple model for signal/particle separation
that is based on time-frequency localization operators and time-frequency ana-
lysis. In this model we will characterize the global time-frequency distribution
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by means of the local components. Although this model requires further refine-
ments, it already leads to interesting mathematical problems, and these will be
our subject here.

As our main tool for time-frequency analysis we use the short-time Fourier
transform (STFT, with slightly different normalizations also called coherent
state transform, ambiguity function, or Wigner distribution), and the associated
time-frequency localization operators. The short-time Fourier transform of a
function f ∈ L2(Rd) with respect to a window function ϕ ∈ L2(Rd) is defined
as

(1) Vϕf (x, ω) =
∫

Rd

f (t)ϕ̄(t − x)e−2πiω·t dt = 〈f,MωTxϕ〉,

where Txf (t) = f (t − x) and Mωf (t) = e2πiω·t f (t) are translation and
modulation operators, respectively. We will denote a time-frequency shift by
π(z) = Mz2Tz1 for z = (z1, z2) ∈ R2d .

Since Vϕf (z) measures the time-frequency content near the point z in the
time-frequency plane R2d , we would like to construct a projection operator
whose outcome has exactly the STFT Vϕ(P�f ) = χ� ·Vϕf . However, a STFT
can never have support of finite measure [19]. In the literature one therefore
resorts to the following definition of localization operators which are defined
in terms of the STFT.

Definition 1.1 (Time-frequency localization operator). Let ϕ be a given
window-function and σ a bounded non-negative function on R2d . Then the
time-frequency localization operator Hσ corresponding to the window ϕ and
the symbol σ is formally defined as

Hσf =
∫

R2d
σ (z)Vϕf (z)π(z)ϕ dz.

If σ ≡ 1 and ‖ϕ‖2 = 1, then
∫

R2d Vϕf (z)π(z)ϕ dz = f (inversion formula
for the STFT), and so Hσ coincides with the identity. If σ has compact support
in � ⊆ Rd , then Hσf can be interpreted as the part of f that essentially lives
on � in the time-frequency plane, hence the term time-frequency localization
operator. Thus the function Hσf comes as close to being the projection of
f onto the region � in the time-frequency plane as is compatible with the
uncertainty principle. See [8] for a precise statement.

Operators of this kind have been introduced and studied by Daubechies [6],
Ramanathan and Topiwala [21], and Wong [22]. They occur in signal ana-
lysis, in quantization procedures in physics [2], or in the approximation of
pseudodifferential operators [5].
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Next we may consider an entire collection of localization operators {HTkσ :
k ∈ Z2d}. Then the function-valued mapping f → {HTkσ f } can be interpreted
as a decomposition of f into its signal componentsHTkσ f living essentially on
supp Tkσ = k+ supp σ in the time-frequency plane, and each norm ‖HTkσ f ‖2

2
is the energy of this signal component. Conversely, the global time-frequency
distribution of f should be completely encoded in the sequence {‖HTkσ‖2 :
k ∈ Z2d}.

Our main theorem demonstrates that this intuitive picture of localization
operators and signal separation is by-and-large correct. For the exact formu-
lation we need the norm ‖f ‖S0 = ∫

R2d |Vϕf (z)| dz, which measures “good”
time-frequency concentration. The dense embeddings S0(Rd) ↪→ L2(Rd) ↪→
S ′

0(R
d) show that the triple of spaces (S0(Rd), L2(Rd), S ′

0(R
d)) is an example

of a so-called Gelfand triple, see [16].
The main statement can now be formulated as follows:

Theorem1.2. Assume that the symbolσ is a non-negative bounded function
with compact support on R2d such that

0 < A ≤
∑
k∈Z2d

Tkσ (z) ≤ B ∀z ∈ R2d .

Then the mapping f �→ (‖HTkσ f ‖2)k∈Z2d is continuous from (S0, L
2, S ′

0) to
(�1, �2, �∞). Conversely, there exists a constant C > 0 such that

‖f ‖S0 ≤ C
∑
k∈Z2d

‖HTkσ f ‖2, ‖f ‖2
2 ≤ C2

∑
k∈Z2d

‖HTkσ f ‖2
2,

and ‖f ‖S ′
0
≤ C supk∈Z2d ‖HTkσ f ‖2.

This paper is organized as follows. The Gelfand triple will be introduced
in Section 2. We recall some important results about Gabor frames and the
Zak transform, as these will be the main tools in the proof of Theorem 1.2.
Several preliminary results on the localization operators will be given. In Sec-
tion 3 we prove the main statement and formulate some of its consequences.
In the last section we consider an alternative model of time-frequency local-
ization, namely the Weyl transform and show that a corresponding version of
Theorem 1.2 fails. We finally remark on generalizations and future work.

2. Preliminaries

We collect a few concepts and facts about Gabor frames and the Zak transform.
The statements are well-known and already treated in the textbooks [7], [17]
or in various chapters of [13].
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2.1. The Gelfand triple (S0, L
2, S ′

0)

Definition 2.1. Fix a non-zero “window” function ϕ ∈ S (Rd). The space
S0(Rd) is given by

S0(Rd) = {f ∈ L2(Rd) : ‖f ‖S0 := ‖Vϕf ‖L1(R2d ) < ∞}.

The following Proposition summarizes some properties of S0 and its dual,
the distribution space S ′

0.

Proposition 2.2. S0(Rd) is a Banach space and densely embedded in
L2(Rd). The definition of S0 is independent of the window ϕ ∈ S , and different
choices of ϕ ∈ S yield equivalent norms on S0.

By duality, L2(Rd) is densely and weak∗-continuously embedded in S ′
0(R

d)

and can also be characterized by the norm ‖f ‖S ′
0
= ‖Vϕf ‖L∞ .

In general, a triple of spaces (B,H ,B ′) is called a Gelfand triple [16], if
H is a Hilbert space and B a Banach space with dual space B ′, such that B is
densely embedded into H and H is weak∗-dense in B ′. Proposition 2.2 thus
states that the three spaces (S0, L

2, S ′
0) form a Gelfand triple.

For a proof, equivalent characterizations, and more results on S0 we refer
to [10], [15],[12].

2.2. Gabor frames

Let G(ϕ, a, b) denote a set of functions {MmbTnaϕ : m, n ∈ Zd} in L2(Rd),
where a, b > 0 are the time- and frequency shift parameters. The operator

Sϕf =
∑

m,n∈Zd

〈f,MmbTnaϕ〉MmbTnaϕ

is the frame operator corresponding to G(ϕ, a, b). IfSϕ is invertible, G(ϕ, a, b)

is a Gabor frame for L2(R). In this case, ‖Sϕ‖op and ‖S−1
ϕ ‖−1

op are the upper
and lower frame bounds. Note that the frame coefficients of [〈f,MbnTamϕ〉]m,n

correspond to a sampling of the STFT on the lattice & = aZd × bZd .
If we use several windows ϕj , j = 1, . . . , r , and consider the union⋃r
j=1 G(ϕj , a, b), we speak of a multi-window Gabor frame, whenever its

frame operator given by

Sf =
r∑

j=1

∑
m,n∈Zd

〈f,MmbTnaϕj 〉MmbTnaϕj =
r∑

j=1

Sϕj f,

is invertible.
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The reconstruction from the frame coefficients [〈f,MbmTanϕj 〉]j,m,n is pos-
sible by means of a dual frame. The canonical dual frame is given by
S−1MbmTanϕj = MbmTanS

−1ϕj := MbmTanγj (since the frame operator S

commutes with time-frequency shifts on the lattice aZd × bZd ). Then we have

f = S−1Sf =
∑
j,m,n

〈f,MbmTanϕj 〉MbmTanγj

= SS−1f =
∑
j,m,n

〈f,MbmTanγj 〉MbmTanϕj .

Thus the knowledge of the (canonical) dual windows γj = S−1ϕj and their
properties is crucial for the reconstruction.

2.3. The Zak Transform

In this paper we consider only the case of critical sampling ab = 1. By
applying a dilation, we may restrict without loss of generality to a = b = 1.
From now on, we will assume that the lattice is Zd × Zd .

In this case we can apply Zak transform methods to the analysis of Gabor
systems, because the Zak transform diagonalizes the frame operator in the case
of critical sampling.

The Zak transform Zf of a function f on Rd is defined by

Zf (x, ω) =
∑
k∈Zd

f (x − k)e2πik·ω,

whenever the sum makes sense.

Proposition 2.3. (i) The Zak transform maps the time-frequency shift
operators Tk and Ml to multiplication operators:

(2) Z(MlTkf )(x, ω) = e2πi(l·x−k·ω)Zf (x, ω)

for k, l ∈ Zd .
(ii) The Zak transform can be extended to a unitary operator from L2(Rd)

onto L2([0, 1]d × [0, 1]d).
(iii) If f ∈ S0, then Zf is uniformly continuous on R2d and |Zf |2 is a

periodic function (with period Z2d ) with an absolutetly convergent Fourier
series.

(iv) If f ∈ S0(Rd), then Zf must have a zero on [0, 1]2d .

For a proof of Proposition 2.3 see [17, Section 8.2] and [19]. As a con-
sequence of (2), the Zak transform diagonalizes the frame operator on Z2d and
thus leads to a useful characterization of Gabor frames.
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Proposition 2.4. Let ϕj ∈ L2(Rd) for j = 1, . . . , r . Then
⋃r

j=1 G(ϕj ,Z2d)

is a multi-window Gabor frame if and only if

(3) 0 < A ≤
r∑

j=1

|Zϕj (x, ω)|2 ≤ B < ∞ a.a. x, ω.

Proof. The Zak transform diagonalizes the frame operator S in the sense
that

(4) Z(Sϕf ) = |Zϕ|2Zf,
see, for example, [1] or [17, Theorem 8.3.1]. Since the frame operator of a
multi-window Gabor frame can be written as S = ∑

j Sϕj , we have Z(Sf ) =(∑r
j=1 |Zϕj |2

)
Zf . Consequently, the operator inequality AI ≤ S ≤ BI is

equivalent to (3), and thus S is bounded and invertible if and only if (3) holds.

We now state a characterization of S0 and S ′
0 by means of multi-window

Gabor frames.

Lemma 2.5. Let {π(k)ϕj , k ∈ Zd × Zd , j = 1, . . . , r} be a multi-window
Gabor frame and assume that ϕj ∈ S0(Rd) for all j . Then the dual windows γj
are also in S0(Rd). As a consequence, f belongs to S0(Rd) if and only if each
coefficient sequence

(5)
(〈f, π(k)ϕj 〉)k∈Z2d

for j = 1, . . . , r , belongs to �1(Z2d). Furthermore, the norm-equivalence

C1‖f ‖S0 ≤
r∑

j=1

∑
k∈Z2d

|〈f, π(k)ϕj 〉| ≤ C2‖f ‖S0

holds on S0(Rd).
Analogously, f ∈ S ′

0(R
d) if and only if each coefficient sequence (5) is in

�∞(Z2d) for j = 1, . . . , r , with the corresponding norm-equivalence.

Proof. It suffices to show that the dual windows γj are in S0. The character-
ization ofS0 andS ′

0 and the norm-equivalences then follow from Theorem 3.3.1
and Corollary 3.3.2 in [15] or [11].

Since the dual windows γj are given by γj = S−1ϕj , Proposition 2.4 implies
that the Zak transform of γj is

Zγj = Z(S−1ϕj ) =
( r∑

j=1

|Zϕj |2
)−1

Zϕj .
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Since by Proposition 2.3 (iii) each |Zϕj |2 has an absolutely convergent Fourier

series, we conclude from Wiener’s Lemma that
(∑r

j=1 |Zϕj |2
)−1

has also an
absolutely convergent Fourier series, which we may write as

( r∑
j=1

|Zϕj |2
)−1

(x, ω) =
∑
k,l∈Zd

akle
2πi(k·x+l·ω)

for some coefficient sequence (akl) ∈ �1 (depending, of course, on j ). Hence,
by (2), we have

Zγj =
∑
k,l∈Zd

akle
2πi(k·x+l·ω)Zϕj =

∑
k,l∈Zd

aklZ(MkT−lϕj ),

which yields γj = ∑
k,l∈Zd aklMkT−lϕj . Consequently,

‖γj‖S0 ≤
∑
k,l∈Zd

|akl| ‖MkT−lϕj‖S0 = ‖ϕj‖S0‖a‖1

and γj ∈ S0 for all j = 1, . . . , r .

2.4. Properties of the Localization Operators

Next we discuss some elementary properties of the localization operators Hσ .
For an introduction to the general theory we refer to [22], for a detailed study
of boundedness and Schatten class properties to [4].

Lemma 2.6 (Intertwining property). If σ ∈ L∞, ϕ ∈ L2, and k ∈ R2d , then

π(k)Hσπ(k)
∗ = HTkσ .

Proof. Write z = (z1, z2), k = (k1, k2), then π(k)π(z) = e−2πik1z2π(z +
k) and Vϕ(π

∗(k)f ) = (Vϕf )(z + k)e2πik1z2 . Therefore, as a vector-valued
integral,

π(k)Hσπ
∗(k)f =

∫
R2d

σ (z)Vϕ(π
∗(k)f )(z)π(k)π(z)ϕ dz

=
∫

R2d
e2πik1z2σ(z)Vϕf (z + k)e−2πik1z2π(z + k)ϕ dz

=
∫

R2d
σ (z − k)Vϕf (z)π(z)ϕ dz = HTkσ f.
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For estimates of the STFT of Hσf we introduce the formal adjoint of Vϕ ,
namely

V ∗
ϕ F =

∫
R2d

F (z)π(z)ϕ dz,

which maps functions on R2d to functions or distributions on Rd . With the
adjoint mapping we can write the localization operators as

Hσf = V ∗
ϕ

(
σVϕf

)
.

The STFT of V ∗
ϕ F satisfies a fundamental pointwise estimate [17, Proposi-

tion 11.3.2.]:

(6) |Vϕ(V
∗
ϕ F )(z)| ≤ (|Vϕϕ| ∗ |F |)(z) ∀z ∈ R2d .

This estimate is extremely useful for the derivation of norm estimates.
In the following we fix a non-negative symbol σ and investigate the set of

operators {HTkσ : k ∈ Z2d}. To simplify notation we will therefore write Hk

instead of HTkσ , in particular, H0 = Hσ by some abuse of notation.

Lemma 2.7. (i) Assume that σ ∈ L1(R2d), σ ≥ 0 and that ϕ ∈ L2(Rd).
Then each Hk , k ∈ Z2d , is a positive trace-class operator.

(ii) If, in addition, ϕ ∈ S0(Rd), then each Hk is bounded from S ′
0 into S0

(such operators are called regularizing). In particular, all eigenfunctions ϕj
of H0 belong to S0.

Proof. Statement (i) is well-known and has been proved many times, e.g.,
in [3], [14], [22].

(ii) To show the regularizing property, we first use (6)

(7) |VϕV ∗
ϕ (σVϕf )| ≤ |Vϕϕ| ∗ |σVϕf |.

Hence, for f ∈ S ′
0 we obtain

‖Hσf ‖S0 = ‖VϕV ∗
ϕ (σVϕf )‖1

≤ ‖|Vϕϕ| ∗ |σVϕf |‖1(8)

≤ ‖Vϕϕ‖1 ‖σVϕf ‖1.

Since ϕ ∈ S0 if and only if Vϕϕ ∈ L1(R2d) by [17, Prop. 12.1.2], we find that

‖Hσf ‖S0 ≤ C‖σ‖1‖Vϕf ‖∞ = C‖σ‖1‖f ‖S ′
0
,

and thus Hk is bounded from S ′
0 to S0.
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Applying the spectral theorem for compact selfadjoint operators, we obtain
the following spectral representation of Hk = HTkσ .

Corollary 2.8. There exists a positive sequence of eigenvalues c = (cj ) ∈
�1 and an orthonormal system of eigenfunctions ϕj ∈ S0, such that

(9) H0f =
∞∑
j=1

cj 〈f, ϕj 〉ϕj .

It follows that

(10) Hkf = HTkσ f = π(k)Hσπ(k)
∗f =

∞∑
j=1

cj 〈f, π(k)ϕj 〉π(k)ϕj ,

where {π(k)ϕj : j ∈ N} is an orthonormal system of eigenfunctions of Hk .

3. The Main Statement

The following result gives a precise meaning to the intuition that Hkf is the
component of f that “lives” near k in the time-frequency plane.

Theorem 3.1. Let σ ∈ L1(R2d) be a non-negative symbol satisfying the
condition

(11) A ≤
∑
k∈Z2d

Tkσ ≤ B, a.e.

for two constants A,B > 0 and assume that ϕ ∈ S0(Rd).
Then f ∈ S0 if and only if

(12)
∑
k∈Z2d

‖Hkf ‖2 < ∞

and (12) defines an equivalent norm on S0(Rd). Similarly, we obtain the norm-
equivalences

(13) ‖f ‖S ′
0
� sup

k∈Z2d

‖Hkf ‖2

and

(14) ‖f ‖2
2 �

∑
k∈Z2d

‖Hkf ‖2
2

to characterize S ′
0 and L2.
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The statements of Theorem 3.1 can be recast by using the notion of Gelfand
triples.

Corollary 3.2. The map f �→ (‖Hkf ‖2)k∈Z2d is an isomorphism between
the Gelfand triples (S0, L

2, S ′
0) onto a closed subspace of (�1, �2, �∞).

By interpolation we obtain a characterization of the modulation spaces
Mp(Rd). These are the Banach spaces defined by the norm ‖f ‖Mp = ‖Vϕf ‖p,
and can also be characterized as interpolation spaces between S0 = M1 and
S ′

0 = M∞ as [S0, S
′
0]θ = Mp.

Corollary 3.3. Under the assumptions of Theorem 3.1, there exist con-
stants C1 > 0 and C2 > 0, such that for all f ∈ Mp(Rd):

C1

( ∑
k∈Z2d

‖Hkf ‖p2
) 1

p

≤
(∫

R2d
|Vϕf (z)|p dz

) 1
p

= ‖f ‖Mp ≤ C2

( ∑
k∈Z2d

‖Hkf ‖p2
) 1

p

.

The following auxiliary result will be needed in the proof of Theorem 3.1.

Lemma 3.4. Let {ϕj : j ∈ N} be the orthonormal system of eigenfunctions
of H0. Then there exists a finite subset {ϕj : j = 1, . . . r} of eigenfunctions
such that the family {π(k)ϕj : j = 1, . . . , r, k ∈ Z2d} is a multi-window Gabor
frame for L2(Rd).

Proof. By Proposition 2.4, the set {π(k)ϕj : k ∈ Z2d , j = 1, . . . , r} is a
multi-window Gabor frame if and only if the expression

∑r
j=1 |Zϕj (x, ω)|2 is

bounded above and below.
The upper bound

∑r
j=1 |Zϕj |2 ≤ B is clear, since for ϕj ∈ S0 all Zak trans-

forms Zϕj are continuous on [0, 1]2d by Proposition 2.3 (iii). The continuity
of Zϕj further implies that a lower bound

∑r
j=1 |Zϕj |2 ≥ A > 0 holds if and

only if the Zϕj ’s do not have a common zero.
Let Zj = {ξ ∈ [0, 1]2d : Zϕj (ξ) = 0} be the set of zeros of Zϕj . We

first show by contradiction that
⋂∞

j=1 Zj = ∅. Assume that there exists a
ξ = (ξ1, ξ2) ∈ [0, 1]2d such that Zϕj (ξ) = 0 for all j ∈ N. Then we may
define a non-zero functional f by

〈f, ϕ〉 = Zϕ(ξ) ∀ϕ ∈ S0.

Since by a lemma in [10] or [17, Prop. 12.1.4b]

|Zϕ(ξ)| ≤
∑
k∈Zd

sup
x∈[0,1]d

|ϕ(x − k)| ≤ C‖ϕ‖S0 ,
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the functional f is in S ′
0(R

d). Using Proposition 2.3(i), we obtain

〈f, π(k1, k2)ϕj 〉 = Z(π(k1, k2)ϕj )(ξ1, ξ1) = e2πi(k2·ξ1−k1·ξ2)Zϕj (ξ) = 0

for all k = (k1, k2) ∈ Z2d , and so the representation (10) implies that

Hkf =
∞∑
j=1

cj 〈f, π(k)ϕj 〉π(k)ϕj = 0

for all k ∈ Z2d .
On the other hand 〈Hkf, f 〉 = ∫

R2d Tkσ (z)Vϕf (z)〈π(z)ϕ, f 〉 dz =∫
R2d Tkσ (z)|Vϕf (z)|2 dz = 0. Since Hkf ∈ S0, f ∈ S ′

0,Vϕf ∈ L∞, both
sides are well-defined and coincide. Consequently, the continuous function
Vϕf vanishes on the support of Tkσ . The main assumption (11) on σ implies
that

⋃
k∈Z2d supp Tkσ = R2d , and so Vϕf ≡ 0 which is a contradiction to

f �≡ 0. Hence, the Zϕj ’s, j ∈ N cannot have common zeroes.
Finally we show with a compactness argument that there exists a finite subset

{j = 1, . . . , r} ⊆ N, such that
⋂r

j=1 Zj = ∅. Now, in the compact set [0, 1]2d

any family of closed sets with empty intersection contains a finite subfamily
with empty intersection. Since we have already shown that

⋂∞
j=1 Zj = ∅, there

exists a finite index r , such that
⋂r

j=1 Zj = ∅. As a consequence, the Zϕj ,
j = 1, . . . , r , do not have a common zero and thus

∑r
j=1 |Zϕj |2 ≥ A > 0.

This means that the set {π(k)ϕj : k ∈ Z2d , j = 1, . . . , r} is a frame.

Proof of Theorem 3.1. We first show the norm-equivalence for S0.
Assume first that f ∈ S0. By the embedding S0 ↪→ L2(Rd) we have

(15) ‖Hkf ‖2 ≤ Cϕ‖Hkf ‖S0 .

In the following chain of inequalities we use the fundamental estimate (8),
Fubini-Tonelli for the interchange of summation and integration, and the hy-
pothesis (11) on σ in the final step. Hence,∑

k

‖Hkf ‖2 ≤ Cϕ

∑
k

‖Hkf ‖S0(16)

= Cϕ

∑
k

‖Vϕ(V
∗
ϕ (TkσVϕf ))‖1

≤ CϕC1

∑
k

‖TkσVϕf ‖1

= CϕC1

∫
R2d

∑
k

Tkσ (z)|Vϕf (z)| dz

≤ CϕC1B‖f ‖S0 ,
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so the mapping f → (‖Hkf ‖2) is bounded from S0 to �1.
Conversely, assume that f ∈ S ′

0(R
d) and that

∑
k ‖Hkf ‖2 < ∞. Since

‖Hkf ‖2 = sup‖g‖2=1 |〈Hkf, g〉|, we have the inequality
∑
k

|〈Hkf, gk〉| ≤
∑
k

‖Hkf ‖2 < ∞

for arbitrary sequences gk ∈ L2 with ‖gk‖2 = 1. Using the spectral represent-
ation of Hk from Corollary 2.8, we then obtain

∑
k

∣∣∣∣
∞∑
j=1

cj 〈f, π(k)ϕj 〉〈π(k)ϕj , gk〉
∣∣∣∣ ≤

∑
k

‖Hkf ‖2.

We now fix j0 ∈ N and choose gk = π(k)ϕj0 for k ∈ Z2d . Then

(17)
∑
k

|〈Hkf, gk〉| =
∑
k

|cj0〈f, π(k)ϕj0〉| ≤
∑
k

‖Hkf ‖2 < ∞.

Since (17) holds for every j0, we deduce that for every r ∈ N
r∑

j=1

∑
k

|〈f, π(k)ϕj0〉| ≤
( r∑

j=1

1

cj

) ∑
k

‖Hkf ‖2.

According to Lemma 3.4 we can choose r so large that the set {π(k)ϕj : k ∈
Z2d , j = 1, . . . , r} is a frame for L2. Furthermore, since ϕj ∈ S0, Lemma 2.5
applies, and therefore (17) implies that f ∈ S0 with a norm estimate

(18) ‖f ‖S0 ≤ C

( r∑
j=1

1

cj

) r∑
j=1

∑
k

|〈f, π(k)ϕj 〉|.

Combining the two estimates (16) and (18), we have shown that ‖f ‖S0 and∑
k ‖Hkf ‖2 are equivalent norms on S0.
The statements about L2 and S ′

0 are shown similarly and we only sketch the
necessary modifications.

For the upper bound in the L2-case, we use (7) again and proceed as in (16)
to obtain∑

k

‖Hkf ‖2
2 ≤

∑
k

‖VϕV ∗
ϕ (TkσVϕf )‖2

2 ≤ Cϕ

∑
k

‖TkσVϕf ‖2
2.

Now by hypothesis (11) on σ we have

∑
k

∫
R2d

|Tkσ (z)|2|Vϕf (z)|2 dz ≤ B

∫
R2d

|Vϕf (z)|2 dz = B‖ϕ‖2
2 ‖f ‖2

2.
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Altogether we have obtained the upper bound
∑
k

‖Hkf ‖2
2 ≤ C2‖f ‖2

2.

Assuming, conversely, that
∑

k∈Z2d ‖Hkf ‖2
2 < ∞ for f ∈ S ′

0(R
d), we may

argue in analogy to the S0-case and find that

c2
j0

∑
k

|〈f, π(k)ϕj0〉|2 ≤
∑
k

‖Hkf ‖2
2 < ∞.

Now the assertion of Lemma 3.4 provides the lower bound, and thus we achieve
the norm equivalence

C1‖f ‖2
2 ≤

∑
k∈Z2d

‖Hkf ‖2
2 ≤ C2‖f ‖2

2.

Finally, assume that f ∈ S ′
0. Then again by (7)

sup
k

‖V ∗
ϕ (TkσVϕf )‖2 ≤ C sup

k

‖TkσVϕf ‖2 ≤ C‖Vϕf ‖∞ sup
k

‖Tkσ‖2,

so supk ‖Hkf ‖2 ≤ C‖σ‖2‖f ‖S ′
0
.

Conversely, if supk∈Z2d ‖Hkf ‖2 < ∞, then again by diligent choice as in
(17) we conclude that cj0 supk |〈f, π(k)ϕj0〉| ≤ supk ‖Hkf ‖2 < ∞ for all j0.
Using Lemma 2.5 we find that ‖f ‖S ′

0
≤ C

(
maxj=1,...,r

1
cj

)
supk∈Z2d ‖Hkf ‖2 for

suitable r ∈ N. This concludes the proof of all norm equivalences claimed in
Theorem 3.1.

4. An alternative model

In principle one could study time-frequency localization operators with respect
to other time-frequency representations. It is natural to guess that the form of
the results will be similar to Theorem 3.1. In this section we show that the clean
characterization of time-frequency concentration depends crucially on the type
of time-frequency representation that occurs in the localization procedure. We
will consider time-frequency localization via the Weyl calculus proposed as
a model in [21]. The Weyl transform of a symbol σ is often defined via the
Wigner distribution, which is

Wf (x, ω) =
∫

Rd

f (x + t/2)f (x − t/2)e−2πiω·t dt

for f ∈ L2. The Wigner distribution is an optimal time-frequency repres-
entation with respect to several criteria and is still one of the most popular



94 monika dörfler, hans g. feichtinger and karlheinz gröchenig

time-frequency representations. In practice, however, it is less attractive be-
cause of its lack of positivity and the disturbing presence of cross-terms in the
representation of multi-component signals.

Since, similar to the isometry property of the STFT, the Wigner distribu-
tion satisfies

∫
Rd

∫
Rd Wf (x, ω) dx dω = ‖f ‖2

2, one may define a family of
localization operators for a symbol σ on R2d and k ∈ Z2d by the quadratic
form 〈Lkf, f 〉 = 〈Tkσ,Wf 〉.
The resulting operators Lk are exactly the Weyl transforms of Tkσ and have
been studied extensively in PDE and pseudodifferential operators, see [18] and
[17], [22].

We show that in general the Wigner distribution is not suited for characteriz-
ing the time-frequency concentration of functions by means of time-frequency
partitions. For this, we choose a symbol σ in the form of a Wigner distribution,
i.e. σ = Wϕ for arbitrary ϕ ∈ S0 with ‖ϕ‖2 = 1. Using Moyal’s formula [20],
we obtain that

〈Lkf, f 〉 = 〈W(π(k)ϕ),Wf 〉 = 〈f, π(k)ϕ〉〈π(k)ϕ, f 〉,
and thusLkf = 〈f, π(k)ϕ〉π(k)ϕ is just the orthogonal projection ontoπ(k)ϕ.

We now repeat the construction in the proof of Lemma 3.4. Since ϕ ∈ S0,
its Zak transform has a zero ξ ∈ [0, 1]2d by Proposition 2.3iv). The associated
linear functional f ∈ S ′

0 defined as 〈f, ϕ〉 = Zϕ(ξ) satisfies

〈f, π(k)ϕ〉 = 0 ∀k ∈ Z2d .

Thus we have constructed a non-zero distribution f ∈ S ′
0(R

d) such that

(19)
∑
k

‖Lkf ‖2 =
∑
k

|〈f, π(k)ϕ〉| = 0.

Hence, unlike the assertion of Theorem 3.1, the condition
∑

k ‖Lkf ‖2 < ∞
cannot characterize S0.

Remark 4.1. The above counter-example is related to the amalgam version
of the Balian-Low theorem, [1], [11], which states that G(ϕ,Z2d) cannot be a
frame for L2(Rd) when ϕ ∈ S0. In the language of localization operators, this
means that the expression

∑
k

‖Lkf ‖2
2 =

∑
k

|〈f, π(k)ϕ〉|2

is not equivalent to the L2-norm.
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Remark 4.2. Theorem 3.1 can be generalized to lattices & other than Zd ×
Zd . If & = aZd × bZd and (ab)−1 ∈ N (integer oversampling) or ab ∈ Q
(rational oversampling), then the Zak transform methods of Sections 2 and 3
could be modified to prove a version of Theorem 3.1. However, the case of
general lattices, where either ab �∈ Q or & is not separable, is beyond Zak
transform methods.

Furthermore, one may want to characterize the whole class of modula-
tion spaces (they measure the time-frequency concentration with more refined
norms than S0 and S ′

0) in the style of the main theorem. Both extensions require
completely different methods and will be presented in a separate work [9].
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