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A FLOATING BODY APPROACH TO FEFFERMAN’S
HYPERSURFACE MEASURE

DAVID E. BARRETT∗

Abstract

The floating body approach to affine surface area is adapted to a holomorphic context providing
an alternate approach to Fefferman’s invariant hypersurface measure.

1. Introduction

In [2, p. 259] Fefferman introduced a measureσZ on an arbitrary smooth strictly
pseudoconvex hypersurface Z in Cn. Viewing σZ as a positive (2n− 1)-form,
it is characterized by the equation

(1.1) σZ ∧ dρ = 22n/(n+1)M(ρ)1/(n+1)ωCn

where ωCn is the euclidean volume form, ρ is a defining function for Z (i.e., Z
is the zero set of ρ and the derivative of ρ is positive on vectors transverse to
Z and pointing to the pseudoconcave side of Z), and M denotes the complex
Monge-Ampère operator defined by

(1.2) M(ρ) = (−1)n det

(
ρ ρzj
ρzk̄ ρzj z̄k

)
.

(The subscripts denote differentiation.)
The interest in σZ stems in part from the transformation law

(1.3) G∗σG(Z) = ∣∣detG′∣∣2n/(n+1)
σZ

valid for G biholomorphic near Z (or for G a CR diffeomorphism on Z).
In the case of a tube hypersurface Z = X× iRn ⊂ Rn × iRn = Cn it is easy

to check (see §2 below) that

(1.4) σZ = κ
1/(n+1)
X sX · ωiRn;
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here ωiRn is the euclidean volume form on iRn, sX is euclidean surface area on
X, and κX is the Gaussian curvature of X.

The factor σ̃X
def= κ

1/(n+1)
X sX above defines a measure on X which has a

longer history; it is the “affine surface measure” studied by Blaschke [1]. It
satisfies the transformation law

(1.5) F ∗σ̃F (X) = ∣∣det F ′∣∣(n−1)/(n+1)
σ̃X

for F affine.
In the case of R2 Blaschke provided an alternate description which applies

to general convex curves. In recent years several works have provided similar
results in higher dimensions. (For an overview see [8].) Some of these ap-
proaches do not seem to lend themselves to natural generalization to several
complex variables, but one approach is promising for this purpose, namely
that taken in papers by Leichtweiß [9] and by Schütt and Werner [12] using
“floating body” theory, building on earlier work of Blaschke.

A convex body K ⊂⊂ Rn and a positive quantity δ determine a convex
floating body defined to be the intersection of all closed half-spaces H such
that K \ H has volume δ. It is common to denote this object by Kδ , but for
notational convenience in this paper we will let Kδ denote the portion of K
lying outside the convex floating body.

For n = 3 and K strictly convex with analytic boundary, Blaschke showed
[1] that the affine surface area of bK coincides with

(1.6)
√
π lim

δ↘0

vol(Kδ)√
δ

.

For general n and K strictly convex with C2 boundary, Leichtweiß showed [9]
that the affine surface area of bK coincides with

(1.7) lim
δ↘0

cn
vol(Kδ)

δ2/(n+1)
,

where
cn = (2π)(n−1)/(n+1)

(
�

(
n+1

2

))2/(n+1)
.

In [12] it is shown that for any bounded convex body K in Rn the limit

(1.8) lim
δ↘0

cn
vol(Kδ)

δ2/(n+1)

exists and is finite, coinciding with the affine surface area whenever K has C2

boundary. (See §4 below for more on this result.)
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In this paper we provide a generalization of the results (1.6) and (1.7) to
Fefferman’s measure.

Let� ⊂ Cn be a bounded strictly pseudoconvex domain withC3 boundary.
For M > 0 let PM(�) denote the set of C3 functions h on �̄ satisfying the
conditions

(1) h is holomorphic on �;

(2) h and all its derivatives of order ≤ 3 are bounded in absolute value by
M on �̄;

(3) �̄ ∩ h−1(0) is a non-empty subset of b�;

(4) |dh| ≥ M−1 on �̄ ∩ h−1(0).

Note that while PM(�) is not in general biholomorphically invariant, if
G : �̄1 → �̄2 is a C3 diffeomorphism holomorphic on �1 then for M > 0
there are M! > M" > 0 so that PM"

(�2) ◦G ⊂ PM(�1) ⊂ PM!
(�2) ◦G.

For δ > 0 let

(1.9) �M,δ =
⋃

h∈PM(�)

{
z ∈ � : vol ({w ∈ � : |h(w)| ≤ |h(z)|}) < δ

}
.

Theorem 1. For � as above and for all M ≥ M0(�) we have

(1.10) Cn lim
δ↘0

vol(�M,δ)

δ1/(n+1)
=

∫
b�
σb�,

where Cn denotes the constant

(
22n−2πn− 1

2 �
(
n
2

)
(n+ 1)�

(
n+1

2

)
�(n)

) 1
n+1

.

This theorem will be proved in §3. §2 has more information concerning
the construction of Fefferman’s measure. The final section lays out some open
questions.

It may strike some readers at this stage that when generalizing the floating
body construction to the holomorphic setting it would seem natural to focus
on sublevel sets of Re h rather than |h|. Let us address this first in the one-
dimensional setting, where σb� is the standard element of arc length |dz|
(see §2 below). Attempts to understand the volume of small sublevel sets
Re h lead to consideration of second-order information about b� – but such
information simply doesn’t appear in the integral

∫
b� σb� = length(b�). But

for h ∈ PM(�) and ε > 0 small the set � ∩ |h|−1([0, ε]) is approximately a
half-disk, and the parameter M gives us enough uniformity to assert that for
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small δ > 0 the set �M,δ is a collar about b� of normal width approximately√
2δ/π , hence √

π/2 lim
δ↘0

vol(�M,δ)√
δ

= length(b�)

as claimed in the theorem.
In higher dimensions the focus on |h| rather than Re h allows us to restrict

our consideration of second-order information to the complex directions in
the tangent spaces of b�. A related point is that the small sublevel sets of |h|
reflect the non-isotropic structure of b� (see for example [11, §5.1]).

2. On the construction of Fefferman’s measure

LetZ be aC2 strictly pseudoconvex hypersurface in ann-dimensional complex
manifold M equipped with a smooth positive 2n-form ω. We will explain
how to construct a positive (2n − 1)-form σZ,ω on Z in such a way that the
transformation law

G∗σG(Z),ω̃ =
(
G∗ω̃
ω

)n/(n+1)

σZ,ω

holds for G biholomorphic.
Let J denote the complex structure tensor (thus in Cn we have J ∂

∂xj
= ∂

∂yj
,

J ∂
∂yj

= − ∂
∂xj

).
The Levi-form L of Z may be naturally defined as a symmetric TM/TZ-

valued form on TZ ∩ JTZ characterized by the identity

L (Y1, Y2) ≡ [Y1, JY 2] mod TZ ∩ JTZ

for TZ ∩JTZ-valued vector fields Y1 and Y2. The Levi-form is (real-)hermitian
(i.e., L (JY 1, JY 2) = L (Y1, Y2) ). (The hermitian property follows directly
from the integrability condition J ([Y1, Y2] − [JY 1, JY 2]) = [JY 1, Y2] +
[Y1, JY 2]; the symmetry of L follows from the hermitian property and the
antisymmetry of the bracket operation.) Note also that L (Y, JY) = 0.

We carry out the construction first in the two-dimensional case.
Let Y be a non-zero vector in TZ ∩ JTZ . Then Y, JY ,L (Y, Y ) gives a basis

for TZ . We describe σZ,ω by the identity

(2.1) σZ,ω
(
Y, JY ,L (Y, Y )

) = ω2/3
(
Y, JY ,L (Y, Y ), JL (Y, Y )

)
.

(We assume here that orientations have been chosen so thatY, JY ,L (Y, Y ) and
Y, JY ,L (Y, Y ), JL (Y, Y ) are positive bases for TZ and TM respectively.)

If Y is replaced by Ỹ = αY + βJY then both sides of (2.1) pick up a factor
of (α2 + β2)2; it follows that σZ,ω does not depend on the choice of Y .
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In higher dimension we choose a complex basis Y1, . . . , Yn−1 of TZ ∩ JTZ .
LetLj,k = L (Yj , Yk)−i L (JYj , Yk). (Thus

(
Lj,k

)
is the (complex-)hermitian

matrix representing L with respect to the given basis.) Using the Levi-form
to orient TM/TZ , note that det1/(n−1)

(
Lj,k

)
defines a vector in TM/TZ . We

then describe σZ,ω by the identity

(2.2) σZ,ω

(
Y1, JY 1, . . . , Yn−1, JYn−1, det

1
n−1

(
Lj,k

))

= ω
n

n+1

(
Y1, JY 1, . . . , Yn−1, JYn−1, det

1
n−1

(
Lj,k

)
, J det

1
n−1

(
Lj,k

))
.

If Y1, . . . , Yn−1 are replaced by
∑

α1,kYk + ∑
β1,kJY k, . . . ,

∑
αn−1,kYk +∑

βn−1,kJY k , (with αj,k and βj,k real) then both sides of (2.2) pick up a factor
of |det(α + iβ)|2n/(n−1); as before if follows that σZ,ω does not depend on the
choice of Y1, . . . , Yn−1.

We claim that for M = Cn equipped with the euclidean volume form ω the
form σZ,ω defined in (2.2) coincides with the form σZ defined in (1.2). It will
suffice to check this at the origin under that assumption that ρ is locally of the
form ψ(z1, . . . , zn−1,Re zn) − Im zn with ψ and its gradient vanishing at 0.
Then

(2.3) σZ = 2
2n
n+1M(ρ)

1
n+1 dx1 ∧ dy1 . . . ∧ dxn−1 ∧ dyn−1 ∧ dxn

at 0; setting Yj = 4 Re
(
∂ρ

∂zn

∂
∂zj

− ∂ρ

∂zj

∂
∂zn

)
, 1 ≤ j ≤ n− 1, in (2.2) and checking

that Lj,k = 4ρzj ,z̄k · ∂
∂xn

and det
(
Lj,k

) = 22nM(ρ)
(

∂
∂xn

)n−1
at 0 we have

2
2n
n−1M(ρ)

1
n−1 σZ,ω

(
∂

∂x1
,
∂

∂y1
, . . . ,

∂

∂xn−1
,

∂

∂yn−1
,
∂

∂xn

)

= 2
4n
n−1

n
n+1M(ρ)

2
n−1

n
n+1

at 0; with a little further manipulation of exponents we find that σZ,ω = σZ as
claimed.

Note that using (2.3) we may write σZ in completely euclidean terms – up
to a multiplicative constant – as | det L |1/(n+1) sZ , where sZ is the euclidean
surface area on Z and the bars on | det L | indicate measurement with respect
to the euclidean structure. In the case of a tube domain Z = X × iRn, L

is essentially just the second fundamental form of X, so | det L | is just the
Gaussian curvature of X. To check that no multiplicative constant is missing
from (1.4) one can trace through the construction or test both sides against the
hypersurface {(z1, . . . , zn) : x2

1 + · · · + x2
n = 1}. (Remark: In [2], Fefferman

allows a dimension-dependent constant factor in the definition of σZ; we have
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chosen the constant 2(2n+1)/(n+1) in (1.1) to arrange that (1.4) holds. A different
choice appears in [5].)

For n = 1 many of the above computations are problematic, but we can see
that in this case the natural analogue of the above construction is given by the
formula

σZ,ω (Y ) = ω1/2 (Y, JY)

converting a positive area form onM to a positive one-form onZ. In particular,
for M = C equipped with the euclidean area form ω, σZ,ω is the standard arc
length form, agreeing with σZ given by (1.1).

3. Proof of main theorem

Fix for the moment a function h ∈ PM(�) and a point p ∈ b� where h

vanishes.
Choose a unitary system of coordinates (w1, . . . , wn) vanishing at p so that

the tangent space to b� is given by Imwn = 0. Since the zero set of h must
be tangent to b�, we have dh = hwn

dwn at 0. Replacing h by h−1
wn
(0) · h we

may assume that dh = dwn at 0, this at the cost of squaring M .
Let γ be the local solution to the ordinary differential equation

γw1hwn
− γwn

hw1 = 1

subject to the initial condition

γ (0, w2, . . . , wn) = 0.

Then the functions z1, . . . , zn defined by

z1 = γ (w)

zj = wj for 2 ≤ j ≤ n− 1

zn = h(w)

define a volume-preserving holomorphic change of coordinates near p.
Note that ∂zj

∂wk
(0) = δj,k; thus this change of coordinates preserves distances

up to a factor of 1 +O(‖z‖).
With this set up we wish to study the volumes of the sets

Sη
def= {z ∈ � : |zn| < η}

where � is locally described by an inequality

Im zn > ψ(z1, . . . , zn−1,Re zn)
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and satisfies

(3.1) zn �= 0 in �.

Let us focus for the time being on the case n = 2. Set z1 = z, z2 = u+ iv.
Then we may write

(3.2) ψ(z, u) = λ(u)|z|2 + Reµ(u)z2 + Re ν(u)z + ξ(u)+O(|z|3)
with ν(0) = ξ(0) = ξ ′(0) = 0.

The strict pseudoconvexity of � implies that λ(0) > 0 and condition (3.1)
implies that |µ(0)| ≤ λ(0)

Let λ̃ = √
λ2 + |µ|2. Note that 2|µ(0)|2 ≤ λ(0)2 + |µ(0)|2 = λ̃2(0), so

(3.3) |µ(0)| ≤ 1√
2
λ̃(0)

Let

ψ̃(z, u) = ψ(z, u)+ (
λ̃(u)− λ(u)

)|z|2
= λ̃(u)|z|2 + Reµ(u)z2 + Re ν(u)z + ξ(u)+O(|z|3),(3.4)

and let �̃ ⊂ � be a domain defined near p by the inequality v > ψ̃(z, u).
For η small we may use (3.3) and (3.4) to conclude that on b�̃∩Sη we have

(
1 − 1√

2

)
λ̃(0)|z|2 ≤ λ̃(0)|z|2 + Reµ(0)z2

= v +O (η(η + |z|))+O(|z|3);
thus |z|2 = O(η(1 + |z|)) and |z| = O(

√
η), so λ̃(0)|z|2 + Reµ(0)z2 =

v +O(η3/2).
Quoting the fact that {z : A|z|2 + ReBz2 < V } has area equal to πV +√

A2−|B|2
when |B| < A we find that

{
z : (z, u+ iv) ∈ �̃

}
has area equal to

πv+ +O(η3/2)√
λ̃2(0)− |µ(0)|2

= πv+ +O(η3/2)

λ(0)
.
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Thus

vol
({
(z, u+ iv) ∈ � : |u+ iv| < η

})

≥ vol
({
(z, u+ iv) ∈ �̃ : |u+ iv| < η

})

=
∫∫

u2+v2<η2

πv+ +O(η3/2)

λ(0)
du dv

=
2π∫

0

η∫
0

πr sin+ θ +O(η3/2)

λ(0)
r dr dθ(3.5)

= 2πη3 +O(η7/2)

3λ(0)
= 8πη3 +O(η7/2)

3
(
σZ
sZ
(0)

)3 .

The above estimates are uniform in p and show that �M,δ is contained in a

collar about b� of normal thickness
((

3δ
8π

)1/3 +O
(
δ1/2

))
σZ
sZ
(0).

Thus

(3.6)

(
8π

3

)1/3

lim sup
δ↘0

vol(�M,δ)

δ1/3
≤

∫
b�
σb�.

To get an estimate in the other direction we make use of that fact that when
M is large enough, for each p ∈ b� we can find hp ∈ PM(�) such that

• �̄ ∩ h−1
p (0) = {p};

• ‖dhp(p)‖ = 1;

• � ∩ |hp|−1([0, ε]) = {z ∈ � : |hp(z)| ≤ ε} is connected for ε < ε0

(with ε0 independent of p);

• after introducing new coordinates as above we have µ(0) = 0.

(See [4, §2.4], [7, §5.2].) Then (3.5) can be revised to read

vol
({
(z, u+ iv) ∈ � : |z| < η

}) = 8πη3 +O(η7/2)

3
(
σZ
sZ
(0)

)3 .

As above, it follows that�M,δ contains a collar about b�of normal thickness((
3δ
8π

)1/3 +O
(
δ1/2

))
σZ
sZ
(0), implying that

(3.7)

(
8π

3

)1/3

lim inf
δ↘0

vol(�M,δ)

δ1/3
≥

∫
b�
σb�.
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Combining (3.6) and (3.7) we have (1.10) in the case n = 2.
To treat the case n > 2 we modify the argument as follows. We now set

(z1, . . . , zn−1) = z′, zn = u+ iv. The expansion (3.2) now reads

ψ(z′, u) =
n−1∑
j,k=1

λj,k(u)zj z̄k + Re
n−1∑
j,k=1

µj,k(u)zj zk

+ Re
n−1∑
j=1

νj (u)zj + ξ(u)+O(‖z′‖3)

with νj (0) = ξ(0) = ξ ′(0) = 0, λk,j = λ̄j,k , µk,j = µj,k .
We may choose an invertible linear map T = (T1, . . . , Tn−1) : Cn−1 →

Cn−1 and φj ≥ 0 so that

ψ(z′, 0) =
n−1∑
j=1

(∣∣Tjz′∣∣2 + Re φj
(
Tjz

′)2
)

+O(‖z′‖3).

(See for example Lemma 4.1 in [13].)
Condition (3.1) implies that each φj ≤ 1.
Let

(
λ̃j,k

)
be the hermitian matrix satisfying

n−1∑
j,k=1

λ̃j,kzj z̄k =
n−1∑
j=1

√
1 + φ2

j

∣∣Tjz′∣∣2
.

In analogy to (3.3) we have

(3.8) Re
n−1∑
j,k=1

µj,k(0)zj zk ≤ 1√
2

n−1∑
j,k=1

λ̃j,kzj z̄k.

We now let

ψ̃(z′, u) = ψ(z′, u)+
n−1∑
j,k=1

(
λ̃j,k − λj,k(u)+O(|u|)

)
zj z̄k

=
n−1∑
j,k=1

λ̃j,kzj z̄k + Re
n−1∑
j,k=1

µj,k(u)zj zk

+ Re
n−1∑
j=1

νj (u)zj + ξ(u)+O(‖z′‖3),
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where the O(|u|) term is chosen so that there is a domain �̃ ⊂ � defined near
p by v > ψ̃(z′, u). On b�̃ ∩ Sη we have as before ‖z′‖ = O(

√
η), and

n−1∑
j,k=1

λ̃j,kzj z̄k + Re
n−1∑
j,k=1

µj,k(0)zj zk = v +O(η3/2).

The set

{
z′ :

n−1∑
j,k=1

λ̃j,kzj z̄k + Re
n−1∑
j,k=1

µj,k(0)zj zk < V

}

=
{
z′ :

n−1∑
j=1

√
1 + φ2

j

∣∣Tjz′∣∣2 + Re φj
(
Tjz

′)2
< V

}

has volume

|det T |−2
n−1∏
j=1

1√
1 + φ2

j + φj

1√
1 + φ2

j − φj

· vol
({z′ : ‖z′‖ < V })

= πn−1(V +)n−1

(n− 1)! |det T |2 ;

thus

vol
({
(z′, u+ iv) ∈ � : |u+ iv| < η

})

≥ vol
({
(z′, u+ iv) ∈ �̃ : |u+ iv| < η

})

=
∫∫

u2+v2<η2

πn−1(v+)n−1 +O
(
ηn− 1

2
)

(n− 1)! |det T |2 du dv

=
2π∫

0

η∫
0

πn−1rn−1
(
sin+ θ

)n−1 +O
(
ηn− 1

2
)

(n− 1)! |det T |2 r dr dθ

= πn− 1
2 ηn+1�(n2 )+O

(
ηη+ 3

2
)

(n+ 1)�(n+1
2 )�(n)| det T |2 = 22n−2πn− 1

2 ηn+1�(n2 )+O
(
ηη+ 3

2
)

(n+ 1)�(n+1
2 )�(n)

(
σZ
sZ
(0)

)n+1 .

Using this estimate as before we find that

Cn lim sup
δ↘0

vol(�M,δ)

δ1/(n+1)
≤

∫
b�
σb�.
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Quoting as before the existence of peaking functions hp based on the Levi
polynomial we get the complementary estimate

Cn lim inf
δ↘0

vol(�M,δ)

δ1/(n+1)
≥

∫
b�
σb�.

Combining the estimates we have (1.10).

4. Comments

(1) The proof of Theorem 1 can easily be adapted to yield the following result:

Theorem 2. Let � be a relatively compact strictly pseudoconvex domain
with C3 boundary inside a complex manifold equipped with a smooth positive
2n-form ω. Let �M,δ,ω be defined as in (1.9). Then

(4.1) Cn lim
δ↘0

volω(�M,δ,ω)

δ1/(n+1)
=

∫
b�
σb�,ω.

(2) It would be interesting to know if a result like Theorem 1 holds also for
weakly pseudoconvex domains (possibly involving some reformulation of the
family PM(�)), and if a limit like (1.10) can be shown to exist (independent
of the choice of M ≥ M0) also in non-smooth settings.

Note that in the case of a polydisk, the limit (1.10) does exist and in fact it
vanishes.

(3) For a general bounded convex body K in Rn it is known that the limit
(1.8) coincides with the integral

(4.2)
∫

bK
κ

1/(n+1)
bK sbK,

where sbK denotes (n − 1)-dimensional Hausdorff measure and κbK denotes
the Gaussian curvature of bκ which exists in a suitable pointwise sense almost
everywhere with respect to sbK (so in essence the singular part of the curvature
is discarded). (See [12], [8, §2.7].)

In the holomorphic setting there is no evident way to similarly interpret
Fefferman’s measure on boundaries of arbitrary bounded pseudoconvex do-
mains. But if we impose additional hypotheses such an interpretation may be
possible. It would be interesting to know if this can be carried out in particular
for domains with Lipschitz boundary which admit strictly plurisubharmonic
defining functions.

(4) A number of results have been proved relating affine surface area to
the complexity of approximating polytopes (see the survey [3]). It would be
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interesting to have similar results in the holomorphic setting concerning ap-
proximation by analytic polyhedra. (Some natural-sounding notions of com-
plexity of analytic polyhedra definitely will not work for this purpose: see [6,
Lemma 5.3.8].)
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