
MATH. SCAND. 98 (2006), 53–68

ON REAL TRIGONAL RIEMANN SURFACES

ANTONIO F. COSTA and MILAGROS IZQUIERDO∗

Abstract

A closed Riemann surfaceXwhich can be realized as a 3-sheeted covering of the Riemann sphere is
called trigonal, and such a covering will be called a trigonal morphism. A trigonal Riemann surface
X is called real trigonal if there is an anticonformal involution (symmetry) σ of X commuting
with the trigonal morphism. If the trigonal morphism is a cyclic regular covering the Riemann
surface is called real cyclic trigonal. The species of the symmetry σ is the number of connected
components of the fixed point set Fix(σ ) and the orientability of the Klein surface X/〈σ 〉. We
characterize real trigonality by means of Fuchsian and NEC groups. Using this approach we obtain
all possible species for the symmetry of real cyclic trigonal and real non-cyclic trigonal Riemann
surfaces.

1. Introduction

A closed Riemann surface X which can be realized as a 3-sheeted covering of
the Riemann sphere is said to be trigonal, and such a covering will be called
a trigonal morphism. Trigonal surfaces have been recently studied, see [3]
and [11]. A trigonal Riemann surface X is called real trigonal if there is an
anticonformal involution σ of X commuting with the trigonal morphism. For
instance, if X is represented by a curve given by the complex solutions of a
polynomial equation with real coefficients of the form: y3 +yb(x)+c(x) = 0,
then X is a real trigonal Riemann surface.

If the trigonal morphism is a cyclic regular (cyclic-Galois) covering, i.e.
its deck-transformations group acts transitively on the preimage of each point
and it is a cyclic group, then the Riemann surface is called real cyclic trigonal.

Given a real trigonal Riemann surface X of genus g the topological type
of the action of the anticonformal involution σ , i.e. the topological type of
the quotient orbifold X/〈σ 〉, is determined by the number of connected com-
ponents, called ovals, of the fixed point set Fix(σ ) and the orientability of the
Klein surface X/〈σ 〉. We say that σ has species +k if Fix(σ ) consists of k
ovals and X/〈σ 〉 is orientable, and −k if Fix(σ ) consists of k ovals and X/〈σ 〉
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is nonorientable (i.e. two surfaces with symmetries of the same species have
topologically conjugate quotients and vice versa). The set Fix(σ ) corresponds
to the real part of a complex algebraic curve representing X, which admits an
equation with real coefficients. The “+” sign in the species of σ means that
the real part disconnects its complement in the complex curve and then we
say that σ separates. By a classical theorem of Harnack the possible values
of species run between −g and +(g + 1), where +k ≡ g + 1 (mod 2) (see
[6]). F. Klein, in [10], obtained the possible species of hyperelliptic Riemann
surfaces, double coverings of the Riemann sphere. For surfaces that are double
coverings of other surfaces the study has been done in [5]. In [7], Section 8,
Gross and Harris study the species of real trigonal surfaces (3-sheeted cover-
ing of the sphere) and they ask for the possible values for the species of some
special types of real trigonal surfaces.

In Section 2 we characterize real trigonality by means of Fuchsian and
NEC groups. Using this approach we obtain all possible species for real cyclic
trigonal and real non-cyclic trigonal Riemann surfaces. More concretely, in
Section 3 the possible species for real cyclic trigonal Riemann surfaces are
calculated: they are −1 for all genera, and also +3 and +1 for even genera.
The species +3 and +1, for the Case 2 in the proof of Theorem 3.1, correspond
to cases (2) and (1) in page 179 of [7] (three real components of degree 1 over
P1(R) and one real component of degree 3 over P1(R)); the species −1 and +1,
for the Case 1 in Theorem 3.1, correspond to curves with one real component
of degree 1 over P1(R).

In Theorem 4.1 of Section 4 we show that the only restrictions on the
species of real non-cyclic trigonal Riemann surfaces are given by the theorem of
Harnack. The surfaces constructed in Theorem 4.1 correspond to real trigonal
curves of type (4) in [7], answering the question raised by Gross and Harris.

Acknowledgment. The authors are grateful to Emilio Bujalance, Göran
Bergqvist and Peter Turbek for helpful revision of the preliminary version of
this paper.

2. Trigonal Real Riemann surfaces and Fuchsian and NEC groups

Let Xg be a compact Riemann surface of genus g ≥ 2. The surface Xg can
be represented as a quotient Xg = D/� of the complex unit disc D under
the action of a Fuchsian group �, that is, a cocompact orientation-preserving
subgroup of the group G = Aut(D) of conformal and anticonformal auto-
morphisms of D . A discrete, cocompact subgroup � of Aut(D) is called an
NEC (non-euclidean crystallographic) group. The subgroup of � consisting
of the orientation-preserving elements is called the canonical Fuchsian sub-
group of �. The algebraic structure of an NEC group and the geometric and
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topological structure of its quotient orbifold are given by the signature of �:

(1) s(�) = (h; ±; [m1, . . . , mr ]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk )}).
The orbit space D/� is an orbifold with underlying surface of genus h, having
r cone points and k boundary components, each with sj ≥ 0 corner points, j =
1, . . . , k. The signs ‘+’ and ‘−’ correspond to orientable and non-orientable
orbifolds respectively. The integers mi are called the proper periods of � and
they are the orders of the cone points of D/�. The brackets (ni1, . . . , nisi ) are
the period cycles of �. The integers nij are the link periods of � and the orders
of the corner points of D/�. The group � is called the fundamental group of
the orbifold D/�. We shall use the notation mu for m, u. . ., m in signatures (u
may be 0).

A group � with signature (1) has a canonical presentation with four types
of generators:

1. Hyperbolic generators a1, b1, . . . , ah, bh if D/� is orientable or glide
reflection generators: d1, . . . , dh if D/� is non-orientable,

2. Elliptic generators: x1, . . . , xr

3. Connecting generators (hyperbolic or elliptic transformations):
e1, . . . , ek

4. Reflection generators: cij , 1 ≤ i ≤ k, 1 ≤ j ≤ si + 1.

And relators:

1. x
mi

i , i = 1, . . . , r ,

2. c2
ij ,

3. (cij−1cij )
nij ,

4. ci0e
−1
i cisi ei , i = 1, . . . , k, j = 2, . . . , si + 1,

5. The long relation: x1 . . . xre1 . . . eka1b1a
−1
1 b−1

1 . . . ahbha
−1
h b−1

h or
x1 . . . xre1 . . . ekd

2
1 . . . d

2
h , according to whether D/� is orientable or

not.

The hyperbolic area of the orbifold D/� coincides with the hyperbolic area
of an arbitrary fundamental region of � and equals:

(2) µ(�) = 2π

(
εh − 2 + k +

r∑
i=1

(
1 − 1

mi

)
+ 1

2

k∑
i=1

si∑
j=1

(
1 − 1

nij
)

)
,

where ε = 2 if there is a “+” sign and ε = 1 otherwise. If �′ is a subgroup of
� of finite index then �′ is an NEC group and the following Riemann-Hurwitz
formula holds:

(3) [� : �′] = µ(�′)/µ(�).
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The orbit space D/� is a Klein or Riemann surface, i.e. a surface with a
dianalytic structure of topological genus h, orientable or not according to the
sign “+” or “−”, and possibly having k boundary components and we say that
� uniformizes D/�.

An NEC or Fuchsian group � without elliptic elements is called an NEC
or Fuchsian surface group and it has signature (h; ±; [−], {(−), k. . ., (−)}) or
(h; [−]). Given a Riemann (resp. Klein) surface represented as the orbit space
X = D/�, with � a Fuchsian (resp. NEC) surface group, a finite group G

is a group of automorphisms of X if and only if there exists an NEC group
� and an epimorphism θ : � → G with ker(θ) = �. The NEC group � is
the lifting of G to the universal covering π : D → D/� and is called the
universal covering transformations group of (X,G).

Definition 2.1. A trigonal Riemann surface is a pair (X, f ), where f :
X → Ĉ is a 3-sheeted covering from the Riemann surfaceX onto the Riemann
sphere. Iff is a cyclic regular covering then (X, f ) is called cyclic trigonal. The
covering map f will be called the cyclic (resp. non-cyclic) trigonal morphism.

By [1] and Lemma 2.1 in [2], if the surface X has genus g ≥ 5, then the
trigonal morphism is unique, hence any automorphism of X must commute
with the trigonal morphism. From now on we shall consider surfaces with
genera greater than 4, and then we shall identify the pair (X, f ) with the
surface X.

Theorem 2.2. A Riemann surface X admits a cyclic trigonal morphism f

if and only if there is a Fuchsian group �+ with signature

(4) (0, [3g+2])

and an index three normal surface subgroup � of �+, such that � uniformizes
X.

We are using the notation 3g+2 for 3, g+2. . ., 3.
Proof. Let (X, f ) be a cyclic trigonal surface. Then there is an order three

automorphism ϕ : X → X such that X/〈ϕ〉 is the Riemann sphere and ϕ is
a deck-transformation of the covering map f . Let � be a Fuchsian surface
group uniformizing X and let ϕ̃ be a lifting of ϕ to the universal covering
D → D/� = X. We call�+ = 〈�, ϕ̃〉 the universal covering transformations
group of (X, 〈ϕ〉). Since f : D/� → D/�+ is a 3-sheeted regular covering,
by the Riemann-Hurwitz formula the signature of �+ is (0, [3g+2]) and � is
an index three normal surface subgroup of �+.

Let now �+ be a Fuchsian group with signature (0, [3g+2]) and � an index
three normal surface subgroup of �+, such that X = D/�. Then f : X =
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D/� → D/�+ is a cyclic trigonal morphism and (X, f ) is a cyclic trigonal
surface.

Theorem 2.3. A Riemann surfaceX of genus g admits a non-cyclic trigonal
morphism f if and only if there is a Fuchsian group �+ with signature

(5) (0, [2u, 3v]) where u + 2v = 2g + 4, u ≡ 0 (mod 2), u �= 0,

and an index three non-normal subgroup � of �+, with signature (g, [2u])
such that D/� is conformally equivalent to X.

Proof. Let (X, f ) be a non-cyclic trigonal surface, and let f : X → Ĉ be
the trigonal morphism, this is a 3-sheeted branched covering map. Let B be
the set of branch points of f . The monodromy of f is ω : π1(̂C − B) → %3,
where %3 is the symmetric group of three elements {0, 1, 2} and f∗(π1(X −
f −1(B))) = ω−1(Stab(0)), where 0, 1, 2 are the labels of the three sheets of
the covering f . See Chapter 8 in [12] for a classical reference about mono-
dromy and coverings. Then ker ω defines a regular covering f̃ : X̃ → Ĉ,
branched on B and with deck-transformations group %3. Thus there is an ele-

ment t of order two in %3 such that X̃ → X̃/〈t〉 = X
f→ X̃/%3 = Ĉ. Hence

there is a Fuchsian group �+, the universal covering transformations group
of (X,%3), and an epimorphism θ : �+ → %3, such that ker θ is a Fuch-
sian surface group uniformizing X̃. Now X is uniformized by the subgroup
θ−1(〈t〉) = � of�+ with index three. The elements of%3 have orders 1, 2 or 3,
then�+ has signature (0, [2u, 3v]) and, since X̃ = D/ ker θ → D/� = X is a
double covering, the signature of� is (g, [2u]). The condition u+2v = 2g+4
follows from Riemann-Hurwitz formula.

Assume now that we have a Fuchsian group �+ with signature (5) and an
index three non-normal subgroup � of �+, with signature (g, [2u]) such that
D/� is conformally equivalent to X. The meromorphic function f : D/� →
D/�+ is a trigonal morphism and (X, f ) is a non-cyclic trigonal surface.

Definition 2.4. A real Riemann surface is a pair (X, σ ), where X is a
Riemann surface and σ : X → X is an anticonformal involution (symmetry)
of X. A real trigonal Riemann surface is a triple (X, f, σ ) where (X, σ ) is a
real Riemann surface, (X, f ) is a trigonal Riemann surface and f ◦σ = c ◦f ,
with c the complex conjugation.

By [1] the condition f ◦ σ = c ◦ f is automatically satisfied for genera
g ≥ 5.

We give now a characterization of real cyclic trigonal surfaces via NEC
groups.
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Theorem 2.5. Let X be a Riemann surface with genus g ≥ 5. The surface
X admits a symmetry σ and a meromorphic function f such that (X, f, σ ) is
a real cyclic trigonal Riemann surface if and only if there is an NEC group �

with signature

(6) (0,+, [3u], {(3v)})

where 2u + v = g + 2, such that there is an epimorphism θ : � → G, with
G isomorphic to either D3 = 〈r, s : r3 = s2 = rsrs = 1〉 or Z6 = 〈r, s : r3 =
s2 = rsr−1s = 1〉, where X is conformally equivalent to D/ ker θ and ker θ
is a Fuchsian surface group.

Proof. Let (X, f, σ ) be a real cyclic trigonal surface. Then there is an order
three automorphism ϕ : X → X such that X/〈ϕ〉 is the Riemann sphere and ϕ
is a deck-transformation of the covering f . Let � be a Fuchsian surface group
uniformizing X, ϕ̃ being a lifting of ϕ to the universal covering D → D/� =
X and σ̃ being the lifting of σ . Since f ◦ σ = c ◦ f , σ̃ is a lifting of c on

Ĉ by the chain of coverings D → D/� = X
f→ Ĉ. We set � = 〈�, ϕ̃, σ̃ 〉

and �+ = 〈�, ϕ̃〉. Note that �+ is the canonical Fuchsian group of �. Since
f : D/� → D/�+ is a 3-sheeted regular covering, the signature of �+ is
(0, [3g+2]) and the signature of � is (6). Moreover G = 〈ϕ, σ 〉 is D3 or Z6

because the trigonal morphism is unique and then σϕσ = ϕ±1. The action of
� on the �-cosets gives us the required epimorphism θ : � → G.

Let� be an NEC group with signature (6) such that there is an epimorphism
θ : � → G, whereG is isomorphic to eitherD3 = 〈

r, s : r3 = s2 = rsrs = 1
〉

or Z6 = 〈
r, s : r3 = s2 = rsr−1s = 1

〉
, with ker θ a Fuchsian surface group.

Let X be the surface uniformized by ker θ . Then the canonical Fuchsian group
�+ of � has signature (4) and the meromorphic function f : X = D/� →
D/�+ is a cyclic trigonal morphism. The quotient X = D/� → D/θ−1(〈s〉)
provides a symmetry σ ofX in such a way that (X, f, σ ) is a real cyclic trigonal
surface.

We give now a characterization of real non-cyclic trigonal surfaces via NEC
groups.

Theorem 2.6. Let X be a Riemann surface of genus g ≥ 5. The surface X
admits a symmetry σ and a meromorphic function f such that (X, f, σ ) is a
real non-cyclic trigonal Riemann surface if and only if there is an NEC group
� with signature

(7) (0,+, [3u1 , 2u2 , 4u3 ], {(3v1 , 2v2 , 4v3 , 3v4 , 2ν5 , . . .)}), u2 + ∑
iv3i+2 > 0,
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such that there is an epimorphism θ : � → G, with G isomorphic to either

(8) D6 = 〈
t, p, s : t2 = p2 = s2 = (tp)3 = (ps)2 = (ts)2 = 1

〉 = %3 × Z2

or

(9) %4 = 〈
t, p, s : t2 = s2 = p2 = (ts)2 = (tp)3 = (sp)4 = 1

〉
,

ker θ is a Fuchsian surface group andX is conformally equivalent toD/θ−1〈t〉.
The groupD6 in (8) is the dihedral group of 12 elements with a non-standart

presentation.

Proof. Let (X, f ) be a non-cyclic trigonal surface, then f : X → Ĉ is a
3-sheeted branched covering. Let B be the set of branch points of f . As in the
proof of Theorem 2.3, the monodromy of f isω : π1(̂C−B) → %3, where%3

is the symmetric group of three elements {0, 1, 2} and f∗(π1(X−f −1(B))) =
ω−1(Stab(0)). Then ker ω defines a regular covering f̃ : X̃ → Ĉ, branched on
B and with automorphism group %3 = 〈

p, t : p2 = t2 = (tp)3 = 1
〉
. There-

fore X̃ → X̃/ 〈t〉 = X
f→ X̃/%3 = Ĉ.

Before continuing the proof we prove the following

Lemma 2.7. The symmetry σ lifts to a symmetry s of X̃.

Proof. To find a lift of σ we begin by lifting c by X̃ → X̃/%3 = Ĉ. The
branching points of X̃ → Ĉ have order 2 or 3. Since the symmetry σ is 1-1 and
f ◦σ = c◦f , the branching points are sent by c to branching points of the same
order. If γ ∈ ker ω then γ lifts to three loops {γi : i = 0, 1, 2} inX. As σ is 1-1
then {σ(γi)} consists of three loops and cγ ∈ ker ω. Hence c∗(ker ω) = ker ω.
Therefore c can be lifted to X̃. Let s be a lift of c that is also a lift of σ .
Since X̃ → X is 2-sheeted, s has order 4 or 2. Suppose that s has order 4.
Then s2 = t , and using the uniqueness of f given by [1] stps = (tp)±1, so
s2tps2 = tp. But using the presentation of %3 s

2tps2 = t tpt = pt , that is a
contradiction.

Now let �̃ be a Fuchsian surface group uniformizing X̃ and � = θ−1(〈t〉).
Let σ̃ be the lifting of s, ρ the lifting of p and τ the lifting of t to D by
D → D/�̃. We set � = 〈

�̃, τ, ρ, σ̃
〉
and �̂ = 〈

�̃, τ, ρ
〉
the universal covering

transformations groups of (X̃, 〈t, p, s〉) and (X̃,%3). By construction� and �̂
have signatures (7) and (5) respectively. Moreover, the group G = 〈p, t, s〉 ⊂
Aut(X̃) is a Coxeter group which contains commuting generating involutions
t and s. Thus G is D6 or %4, and the order of ps is 2 or 4 respectively. If ps
has order 2, then �̂ is the canonical Fuchsian subgroup of � and the orders of
the ramification points are 3 or 2. If ps has order 4, then the orders of the conic
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and corner points are 2, 3 or 4. The meromorphic function D/� → D/�̂ is
the trigonal morphism. The action of � on the �-cosets gives us the required
epimorphism θ : � → G.

Assume now that we have an NEC group � with signature (7) and an epi-
morphism θ : � → G, where G is isomorphic to either D6 with presentation
(8) or%4 with presentation (9), and ker θ is a Fuchsian surface group. LetX be
the surface uniformized by � = θ−1〈t〉. Thus � is an index three non-normal
subgroup of �̂ = θ−1〈p, t〉, with signature (g, [2u]) such that D/� is con-
formally equivalent to X. The meromorphic function f : D/� → D/�̂ is
a trigonal morphism and the quotient X = D/� → D/θ−1(〈s, t〉) provides
a symmetry σ of X in such a way that (X, f, σ ) is a real non-cyclic trigonal
surface.

3. Real cyclic trigonal surfaces

A Riemann surface represented by an algebraic curve given by an equation of
the form:

y3 =
∏

(x − ai)
∏

(x − bj )
2,

where the coefficients of the polynomial
∏
(x − ai)

∏
(x − bj )

2 are real is an
example of real cyclic trigonal surface.

The complex conjugation in the x-plane induces an involution on the above
curve and the fixed point set is exactly the set of real points of the curve. A
natural problem is to determine the possible number of connected components
of such a set and the topological type of the action of the involution induced
by conjugation. The following result gives the answer to such questions:

Theorem 3.1. Let (X, f, σ ) be a real cyclic trigonal surface, with X of
genus g ≥ 5. Then the possible species of σ are: −1 for odd genus g and +3,
+1 and −1 for even genus g.

Proof. By Theorem 2.5 there exists an NEC group � with signature

(0,+, [3u], {(3v)}),
with 2u+ v = g+ 2 (by the Riemann-Hurwitz formula), and an epimorphism
θ : � → G, whereG is isomorphic to eitherD3 = 〈

r, s : r3 = s2 = rsrs = 1
〉

or Z6 = 〈
r, s : r3 = s2 = rsr−1s = 1

〉
, and X is conformally equivalent to

D/ ker θ , with ker θ a Fuchsian surface group. We consider two cases:
Case 1. G = D3 = 〈

r, s : r3 = s2 = rsrs = 1
〉
. The species of σ is determ-

ined by the signature of the group θ−1(〈s〉) = / becauseX/〈σ 〉 = D//. As all
the link periods are odd, by [6], there is a unique conjugacy class of generating
reflections in/, so the species ofσ is ±1. Let us now study the sign. To determ-
ine the sign of the species of σ , we study the Schreier coset graph G of / in �
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given by a canonical presentation of �. Equivalently the Schreier coset graph
of 〈s〉 in D3 given by the image by the epimorphism θ of the canonical gener-
ators. The graph G consists of three vertices {0 = 〈s〉, 1 = r〈s〉, 2 = r2〈s〉}.
The sign in the species of σ is − if and only if there is a cycle (that is not a
loop) in G with an odd number of edges produced by generators of � that are
orientation reversing transformations, see Theorem 2 of [9]. This fact happens
if and only if at least one of the following three conditions are satisfied:

1. The signature of � contains proper periods,

2. The epimorphism θ maps the connecting generator e of � to an element
different from the identity,

3. The generating reflections of � are mapped by θ on more than two
involutions of D3.

If one of the above properties is satisfied, either xε1c1 (for some power ε), eεc1

or a product of three generating reflections of � mapped to three different
involutions of D3 provides the cycle in G telling us that the species is −1.

If the conditions 1, 2 and 3 are not satisfied, then applying the Riemann-
Hurwitz formula we have that the genus of the surface X is even.

Now we shall prove the existence of the cyclic trigonal surfaces in the
conditions of the Theorem for this case. Let� be an NEC group with signature
(0,+, [32], {(3g−4)}). The following epimorphism

θ1 : � → 〈
r, s : r3 = s2 = rsrs = 1

〉
defined by:

θ1(x1) = r, θ1(c1) = s,

θ1(c2) = sr, . . . , θ1(cg−3) = s or sr (according to the parity of g),

θ1(e) = rε such that θ1(c1e
−1cg−3e) = 1,

and θ1(x2) = rµ such that 1 + ε + µ ≡ 0 (mod 3),

provides, by Theorem 2.5, a real cyclic trigonal surface with a symmetry of
species −1.

For even genera the signature (0,+, [−], {(3g+2)}) and the epimorphism

θ2 : � → 〈
r, s : r3 = s2 = rsrs = 1

〉
defined by:

θ2(c1) = s, θ2(c2) = sr, . . . , θ2(cg+3) = s, θ2(e) = 1

yield, by Theorem 2.5, a real cyclic trigonal surface with a symmetry of species
+1.
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Case 2. G = Z6 = 〈
r, s : r3 = s2 = rsr−1s = 1

〉
. The species of σ is

determined by the signature of the group θ−1(〈s〉) = /. In this case the NEC
group�must have signature (0,+, [3u], {(−)}), with 2u = g+2, and then the
surface X must have even genus. The species of σ is ±1 if θ(e) �= 1, and the
species of σ is ±3 if θ(e) = 1. Since the index of / in � is three and so odd,
the symmetry σ has sign + in its species by Corollary 2 of [9]. Clearly there
exists NEC groups with signature (0,+, [3u], {(−)}) and epimorphisms on Z6

providing, by Theorem 2.5, real cyclic trigonal surfaces with both possible
species, see the next example for genus g = 6.

Example 3.2. Consider an NEC group�with signature (0,+,[34],{(−)}),
and define epimorphisms θ1, θ2 : � → 〈

r, s : r3 = s2 = rsr−1s = 1
〉

by

θ1(c1) = s, θ1(xi) = r, i = 1, . . . , 4, θ1(e) = r−1, and

θ2(c1) = s, θ2(x1) = r, θ2(x2) = r−1, θ2(x3) = r, θ2(x4) = r−1, θ2(e) = 1.

The first epimorphism provides a separating symmetry on D/ ker θ1 with one
oval, and the second epimorphism gives a separating symmetry on D/ ker θ2

with three ovals.

From the proof of the Theorem 3.1, we have:

Remark3.3. Let (X, f, σ )be a real cyclic trigonal surface, withX of genus
g ≥ 5. Let ϕ be a deck transformation of the covering f . IfX is represented by
an algebraic curve given by an equation of the form y3 = ∏

(x−ai)
∏
(x−bj )

2

with real coefficients, then the group G = 〈ϕ, σ 〉 is D3. In this case the surface
X is included in Case 1 of the proof of Theorem 3.1. Furthermore Fix(σ ) is
a closed simple curve and Fix(σ ) is a covering of degree one over P1(R) in
Ĉ. If G = 〈ϕ, σ 〉 is Z6 (Case 2 in the proof of Theorem 3.1) then Fix(σ )
consists in one or three closed curves covering with degree three or one over
P1(R) respectively. Hence the real cyclic trigonal surfaces for this last case are
represented by real trigonal curves of type (1) and (2) in the classification in
page 179 of [7].

4. Real non-cyclic trigonal surfaces

A Riemann surface X represented by a curve given by a polynomial equation
with real coefficients of the form

y3 + yb(x) + c(x) = 0,

and b(x) not identically 0 is a real non-cyclic trigonal surface.
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The next theorem will tell us the possible species for the symmetry of the
complex algebraic curve defined by the complex conjugation, so we know the
number of connected components of the real part of the curve.

We recall the action of the elements of order 2 in D6 with presentation (8)
on the 〈t, s〉-cosets. Let δ : D6 → %3 be the representation of the action of
D6 by left multiplication on

D6/〈t, s〉 = {0, 1, 2} = {〈t, s〉, tp〈t, s〉, (tp)2〈t, s〉},
the set of 〈t, s〉-cosets. Then δ(t) = (1, 2), δ(p) = (0, 2), δ(s) = id.

Using the above action and the structure of NEC groups (see [8] and [13]),
we have the following claims that will be useful in the proof of the next theorem:

Let � be an NEC group with signature (0,+, [−], {(2v)}) and let θ : � →
D6 be an epimorphism as in Theorem 2.6. The permutation δ(s) fixes all three
〈t, s〉-cosets and δ((tp)wts) fixes one 〈t, s〉-coset. The generating reflections
of / correspond to fixed 〈t, s〉-cosets. According to [8] there is a presentation
of / = θ−1(〈s, t〉) such that each generating reflection cj of � gives rise to
three generating reflections cj0, cj1, cj2 of / if θ(cj ) = s, and cj induces one
generating reflection cjk if θ(cj ) = (tp)wts, δ(θ(cj ))(k) = k. Furthermore,
as cj cj+1 and, therefore, θ(cj cj+1) have order two, then, given two consecut-
ive generating reflections cj , cj+1, either θ(cj ) = s or θ(cj+1) = s. Now if
δ(θ(cj cj+1)) = (k)(m, n) and θ(cj ) = s, then cjm is conjugated to cjn and cjk
is conjugated to c(j+1)k . If δ(θ(cj cj+1)) = (k)(m, n) and θ(cj+1) = s, then
cjk is conjugated to c(j+1)k and c(j+1)m is conjugated to c(j+1)n. The index j

ranges in Zυ .

Theorem 4.1. Let (X, f, σ ) be a real non-cyclic trigonal surface, with X

of genus g ≥ 5. Then there is no restriction to the species of σ besides the ones
given by Harnack’s theorem.

Proof. Consider, as in Theorem 2.6, an NEC group � with signature

(0,+, [−], {(22g+4)})
and an epimorphism θ : � → D6 such that ker θ is a Fuchsian surface group.
By Theorem 2.6 the required real non-cyclic trigonal surface X will be the
Riemann surface uniformized by � = θ−1(〈t〉) defined in Theorem 2.6. As in
Theorem 2.6, let / = θ−1(〈s, t〉). The surface X admits a symmetry σ given
by the action of //� on X. We separate the proof in two cases according
whether σ separates or not. We shall construct epimorphisms θ providing all
the possible species for σ .

Case 1. The species of σ is +k, in this case k ≡ g + 1 (mod 2). We
define θ : � → D6 by θ(c2m+1) = s, 0 ≤ m ≤ g + 1, θ(c2j ) = ts,
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Figure 1

0 ≤ j ≤ k, θ(c2k+4l+2) = (tp)2ts, θ(c2k+4l+4) = ts, 0 ≤ l ≤ (g − 1 − k)/2,
θ(c2g+4) = (tp)2ts.

First, we compute the number of ovals of σ , i.e. the number of conjugacy
classes of generating reflections of/. By the algorithm above, each generating
reflection c2m+1 induces three generating reflections c2m+1,0, c2m+1,1, c2m+1,2

of /; each generator c2j induces the generator c2j,0, each generator c2k+4l+2

and c2g+4 gives rise to the generators c2k+4l+2,1 and c2g+4,1. Finally each gen-
erator c2k+4l+4 induces the generating reflection c2k+4l+4,0 of /. Using the
claims given before the statement of the theorem, we have that the conjugacy
classes of reflections of / correspond to the connected components of the
graph G+ given in Figure 1 whose vertices represent the above generating
reflections of /. The graph G+ consists of k connected components, namely
Cm = {c2m+1,1, c2m+1,2}, 1 ≤ m ≤ k − 1 and Ck = G+ − ⋃k−1

m=1 Cm. Thus σ
has k ovals.

To determine the sign of the species of σ , we describe the Schreier graph
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G of / in �, or equivalently the Schreier graph of 〈s, t〉 in D6 induced by the
epimorphism θ . The graph G consists of three vertices {0, 1, 2} and the edges
which are not loops connect either 1 and 2, or 0 and 2. Then, the partition
{0, 1} ∪ {2} shows that G is bipartite and σ separates, see Corollary 3 of [9];
note that all (non-trivial) generators of the canonical presentation of � are
orientation reversing transformations (the connecting generator e is in this
case trivial).

Case 2. The species of σ is −k, 1 ≤ k ≤ g. We define θ : � → D6 by

θ(c2m+1) = s, 0 ≤ m ≤ g + 1, θ(c2j ) = ts, 0 ≤ j ≤ k,

θ(c2g+2) = (tp)ts, θ(c2g+4) = (tp)2ts, and

θ(c2k+4l+2) = (tp)2ts, θ(c2k+4l+4) = ts,

0 ≤ l ≤ (g − 2 − k)/2 for g − k ≡ 0 (mod 2), and

θ(c2k+4l+2) = (tp)2ts, θ(c2k+4l+4) = ts,

0 ≤ l ≤ (g − 3 − k)/2, θ(c2g) = (tp)2ts, for g − k ≡ 1 (mod 2).

As in Case 1, each generating reflection c2m+1 induces three generators c2m+1,0,
c2m+1,1, c2m+1,2, of /; each generator c2j induces the generator c2j,0, each
generator c2k+4l+2 and c2g+4 gives rise to the generators c2k+4l+2,1 and c2g+4,1.
Each generator c2k+4l+4 induces the generator c2k+4l+4,0. Finally the generator
c2g+2 induces the generator c2g+2,2 of /. Again, to compute the number of
ovals of σ , i.e. the number of conjugacy classes of reflections of /, we have
to compute the number of connected components of the graph G− given in
Figures 2 and 3 whose vertices represent the above generators ci,j . The graph
G− consists of k connected components, namely Cm = {c2m+1,1, c2m+1,2},
1 ≤ m ≤ k − 1 and Ck = G− − ⋃k−1

m=1 Cm. Thus σ has k ovals.
To determine the sign of species of σ , we study the Schreier graph G of

/ in �, or equivalently the Schreier graph of 〈s, t〉 in D6 induced by the

epimorphism θ . The graph G contains the following 3-cycle 0
(tp)2ts−→ 1

ts−→
2

(tp)ts−→ 0. Thus, G is not bipartite and σ is non-separating.

Remark 4.2. The non-cyclic trigonal surfaces (X, f, σ ) constructed in the
proof of the above theorem admit a symmetry σ such that Fix(σ ) has a connec-
ted component having degree one over P1(R), and the remaining components
having degree zero over P1(R). These curves belong to type (4) of [7]. Hence
with Theorem 4.1 we give the answer to a question of Gross and Harris.

The real trigonal curves of type (3) following the classification of [7] rep-
resent real non-cyclic trigonal surfaces:
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Figure 2. (case g−k even) Figure 3. (case g−k odd)

Example 4.3. Consider an NEC group � with signature

(0,+, [2g+2], {(−)}),
where g ≥ 5 is odd, and an epimorphism θ : � → D6, defined by

θ(e) = t,

θ(c) = s,

θ(xi) = p, i = 1, . . . , g + 1,

θ(xg+2) = t,

where D6 has presentation (8). Then the real non-cyclic trigonal surface X

uniformized by � = θ−1(〈t〉) with symmetry σ satisfies that Fix(σ ) has two
connected components, one of them of degree one over P1(R), and the other
one of degree two over P1(R). Hence X is of type (3).
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5. Antipodal trigonal surfaces

Any symmetry of the Riemann sphere is conjugate to the complex conjugation
or the antipodal map. There are trigonal Riemann surfaces (X, f ) admitting a
symmetry σ such that σ induces the antipodal map a on Ĉ by D → D/� =
X

f→ Ĉ. In this case the symmetry σ has no fixed points and the surface
X/σ has no boundary and it is non-orientable. These surfaces will be called
antipodal trigonal surfaces, they correspond to real trigonal curves without
real points.

With the same methods as in Theorem 2.5, it is easy to see that an antipodal
cyclic trigonal surface is uniformized by a surface Fuchsian group� = ker(θ),
where θ is an epimorphism θ : � → G, with G isomorphic to D3 or Z6 and
� has signature

(10) (1,−, [3u])

Note that D/� is topologically the real projective plane.

Remark 5.1. Applying the Riemann Hurwitz formula and using the pos-
sible signatures (10) it is possible to show that antipodal cyclic trigonal surfaces
must have even genera. And, by an argument as the used in Theorem 3.1, there
are antipodal cyclic trigonal surfaces for any given even genus.

With the same procedure as in Theorem 2.6, it can be proved that an
antipodal non-cyclic trigonal surface is uniformized by the Fuchsian group
� = θ−1〈t〉, for appropriate epimorphisms θ : � → G, where G = D6 with
presentation (8) or G = %4 with presentation (9) and � has signature

(11) (1,−, [2u1 , 3u2 , 4u3 ])

Remark 5.2. By an argument as the used in Theorem 4.1, given an integer
g ≥ 5 it is possible to find an NEC group with signature (1,−, [2v1 , 3v2 ]) and
an epimorphism θ : � → D6, such that the Fuchsian group θ−1〈t〉 uniformizes
an antipodal non-cyclic trigonal surface of genus g.
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