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TILES WITH NO SPECTRA IN DIMENSION 4

BÁLINT FARKAS and SZILÁRD GY. RÉVÉSZ∗

Abstract

We show by a counterexample that the “tiling ⇒ spectral” part of Fuglede’s Spectral Set Conjecture
fails already in Z4 and R4.

1. Introduction

The Spectral Set Conjecture of Fuglede [1] relates the class of tiling sets of
Rd to some Fourier analytic property, called spectrality. To be able to state
the conjecture precisely we recall the appropriate setting. Let G be a locally
compact Abelian group (we will only consider Zd , Rd and finite commutative
groups), the dual group is denoted by Ĝ. Once for all we fix a Haar-measure
on G, and f̂ will stand for the Fourier transform of a function f : G → C.
Z(f ) denotes the zero set of the function f . Further we use the notation χT
for the characteristic function of the set T ⊆ G.

Definition. An open set T ⊆ G is called spectral with spectrum L ⊆ Ĝ

if L is a complete orthogonal system in L2(T ).

Definition. An open subset T of G is said to be a tiling set (or simply
tile), if the whole group G can be covered by translated disjoint copies of T
up to a set of zero measure. That is there exists a set T ′ ⊆ G, called a tiling
complement of T such that T ′ + T is the whole of G except a set of zero
measure and for all t �= s, t, s ∈ T ′ we have (t + T ) ∩ (s + T ) = ∅.

Remark 1. It is easy to see – and will be used throughout – that the latter
packing condition is equivalent to (T −T )∩(T ′−T ′) = {0}. In fact, for a finite
groupG tiling is equivalent to |G| = |T | · |T ′| and (T −T )∩ (T ′ −T ′) = {0}.

Now, the Spectral Set Conjecture reads as follows.

A domain ⊆ Rd is spectral if and only if it can tile Rd by translations.
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Although there were many results supporting the conjecture (already Fug-
lede himself proved it in case the tiling complement or the spectrum is assumed
to be a lattice), Tao [15] has recently come up with a counterexample, disprov-
ing the “spectral ⇒ tiling” part in dimension 5 and higher. Matolcsi [11] has
reduced this dimension to 4, and later Kolountzakis and Matolcsi [6] disproved
this part in dimension 3. They also clarified a method that could be used to
give counterexamples in lower dimensions. Concerning the other, “tiling ⇒
spectral” direction of the conjecture Kolountzakis and Matolcsi [7] have given
a counterexample in dimension larger or equal to 5. Our aim is to prove

Theorem 1. There exists a tiling set in R4 which is not spectral.

The constructions of Tao [15] and Kolountzakis, Matolcsi [7] are based
on examples in finite commutative groups. Let us describe the now automatic
transition mechanism of transferring a counterexample from a finite Abelian
group to Zd and Rd by quoting the following two results of Kolountzakis and
Matolcsi from [7]. (Hereafter Zn denotes the cyclic group of n elements, for
convenience regarded as Z/nZ.)

Theorem 2 (Kolountzakis-Matolcsi). Let n = (n1, . . . , nd) ∈ Nd and
consider a set A ⊆ G = Zn1 × · · · × Znd . For the set
(1)
T = T (n, k) = {0, n1, 2n1, . . . , (k−1)n1}×· · ·×{0, nd, 2nd, . . . , (k−1)nd}
define B(k) = A+ T . Then, for large enough values of k, the set B(k) ⊂ Zd

is spectral in Zd if and only if A is spectral in G.

Theorem 3 (Kolountzakis-Matolcsi). Suppose B ⊆ Zd is a finite set and
Q = (0, 1)d . Then B is a spectral set in Zd if and only if B +Q is a spectral
set in Rd .

Note that obviously in the above constructions for a tile A ⊂ G we must
also have thatB = B(k) ⊂ Zd tiles Zd (for any k ∈ N) and forB ⊂ Zd tiling Zd

also B +Q tiles Rd . Whence it is now straightforward that our task is reduced
to exhibit a counterexample in a finite group G.

2. Proof of the result

We are going to prove Theorem 1 at the end of this section. First we start
by constructing a counterexample in a finite group, which indeed suffices, as
described in the introduction.

To exhibit a counterexample in R4, we follow the idea of Kolountzakis and
Matolcsi [7], which is based on arguments in Z5

6 and the extension of the finite
counterexamples to Z5 and R5. However, to go down with the dimension to 4,
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we have to modify the starting point, and to construct an example of “tiling �⇒
spectral” first in the group Z4, based on considerations in Z4

6.
When working with d × r matrices over a finite commutative groupG, the

column and row vectors are regarded as elements of Gd and Ĝr , respectively.
Particularly for cyclic groups G = Zn the duality pairing between Gd and Ĝd

in this identification takes the following form

γ (g) = e
2πi
n
γ ·g for g ∈ Gd = Zdn, γ ∈ Ĝd = (Zdn)

�.

We will also “identify” any matrix with the set of its columns or rows; the
meaning should be obvious from the context. For example, consider the mod 6
matrices

T :=



0 1 0 0 0 2
0 0 1 0 0 2
0 0 0 1 0 2
0 0 0 0 1 2


 and L :=




0 0 0 0
0 2 2 4
2 0 4 4
2 4 0 2
4 4 2 0
4 2 4 2



.

Then T ⊆ Z4
6 is a spectral set with spectrum L ⊆ Ẑ4

6. This is so because
L · T = K holds mod 6, with

K :=




0 0 0 0 0 0
0 0 2 2 4 4
0 2 0 4 4 2
0 2 4 0 2 4
0 4 4 2 0 2
0 4 2 4 2 0



,

and 1
6K (considered now as a matrix of real numbers) is a log-Hadamard mat-

rix. (Recall that Matolcsi [11] calls a square matrix H = [hjk]j,k=1,...,n a log-
Hadamard matrix if the entrywise exponential of 2πiH , that is,
[e2πihjk ]j,k=1,...,n, is a complex Hadamard matrix, i.e., a complex matrix with
orthogonal rows and all entries having absolute value 1). The matrix K first
appeared in the context of the Spectral Set Conjecture in Tao [15]. Later,
Kolountzakis and Matolcsi [7] used it to construct a counterexample to the
“tiling ⇒ spectral” part of Fuglede’s conjecture, and also the above decom-
position (originally mod 3) was utilized in [11] to bring down the dimension
in the disproof of the other, “spectral ⇒ tiling” direction of the conjecture.

In finite groups G there is a very straightforward way of justifying that a
subset T ⊆ G is not a tile. Namely, if the number of elements |T | does not
divide the order |G| of the group, then T cannot be a tile. Unfortunately we
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have no such immediate evidence for being not spectral. However, a convenient
reformulation of being a spectrum is the following.

Proposition 1 (Kolountzakis [5] p. 37, Kolountzakis–Matolcsi [7]). The
set S ⊆ Ĝ is a spectrum of the set R ⊆ G if and only if |S| = |R| and
S − S ⊆ Z(χ̂R) ∪ {0}.

Since we want to find a tile which is not spectral, we will use the above
proposition together with a duality argument (see [7]).

Lemma 2. Let R ⊆ G be a subset in G and suppose that there is a subset
L ⊆ Ĝwith |R|·|L| = |G| such thatL is not a tile in Ĝ andZ(χ̂R)∩(L−L) =
∅. Then R can not be spectral.

Proof. If S was a spectrum ofR, then |S| = |R| and S−S ⊆ Z(χ̂R)∪{0} in
view of Proposition 1, and hence the packing condition (S−S)∩(L−L) = {0}
would hold. Since by condition we also have |Ĝ| = |G| = |R| · |L| = |S| · |L|,
this packing condition and Remark 1 ensures that S + L is in fact a tiling of
Ĝ, which is impossible by assumption.

Therefore, ultimately, our goal is to establish the situation presented in the
above lemma, i.e., to construct a tiling setR⊂G together with a corresponding
L ⊂ Ĝ satisfying the above assumptions.

Remark 2. Suppose that the conditions of Lemma 2 are fulfilled and
moreover that R is tiling (this is what we are aiming at). Then for any tiling
complementT ofRwe have |R|·|T | = |G| and alsoχR+T = χG, χ̂G = χ̂R ·χ̂T ,
thus Z(χ̂R)∪Z(χ̂T )∪ {0} = Ĝ. Hence the assumption Z(χ̂R)∩ (L−L) = ∅
leads to Z(χ̂T ) ∪ {0} ⊇ (L − L) and so by |L| = |G|/|R| = |T | we find
that L is a spectrum of T according to Proposition 1. That is, T is tiling with
complementR, and is spectral with spectrumL, but alsoZ(χ̂R)∩(L−L) = ∅
is satisfied. This shows that possible examples of R, T and L satisfying the
condition in Lemma 2 have to be such that R is tiling with complement T
whose spectrum is L.

So as a first step, we construct a set T ⊆ Z4
6 which is tiling and spectral

with some spectrum L and further for each element z ∈ L� − L� (z is 4-
dimensional column vector) there exists a tiling complement Rz of T such
that z� �∈ Z(χ̂Rz). Then with the help of these Rzs and L, in the end we will
construct a larger finite group G , so that the above described situation will
finally be achieved for some (other) R and L .

Given a set T , the easiest way to produce a tiling complement of T is to
apply the pull-back procedure described in the next lemma.

Lemma 3 (Szegedy [14]). Let G be a finite Abelian group, T ⊆ G and
suppose that there exists a homomorphism ϕ : G → H such that ϕ is injective
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on T and ϕ(T ) is a tile in H . Then T tiles also G, and a tiling complement is
given by ϕ−1(T̃ ) where T̃ is a complement of ϕ(T ).

So we have to define a group homomorphism ϕ : Z4
6 → H with some

group H such that ϕ(T ) tiles H and ϕ is injective on T . Then one can apply
Lemma 3 to pull back the tiling complement of ϕ(T ) into Z4

6 showing T
to be a tile. Kolountzakis and Matolcsi [7] have applied this method with
one-dimensional group homomorphisms ϕ : Z5

6 → Z6, in connection with
a 5-dimensional decomposition of the matrix K . Their construction led to a
counterexample in dimension 5.

To reduce the dimension to 4 we need to give a suitable 4-dimensional
decomposition ofK . The above, most straightforward, choiceK = L·T could
be a good candidate, since as remarked T is spectral and also tiling. However,
executing some calculations it turns out that in this case there exist some
vectors z ∈ L� − L� for which there is no one-dimensional homomorphism
producing a tiling complement R′ of T such that it satisfies the above non-
vanishing requirement χ̂R′(z�) �= 0.

Now, there are two possibilities, if we are sticking to Lemma 3. Either we
look for non-one-dimensional homomorphisms or we choose a different T .
Let us observe the instructive number theoretic reason of lacking such good
one-dimensional ϕ-s: the last column of T is 0 mod 2. Thus we modify the
above T so that this obstacle vanishes. To do this, we will keep the above L
and K and alter only T . Since there are only even entries in L, we can freely
add 3 to any of the elements of T , while K = L · T mod 6 will still hold,
showing T to be spectral in Z4

6 with the same spectrum L. First of all, we fix
T mod 3 as in (2), so we have to specify it mod 2. Let

(2) T :=



0 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1


 mod 2,

and hence

(3) T =



0 1 0 0 0 2
0 0 1 0 0 5
0 0 0 1 0 5
0 0 0 0 1 5


 mod 6.

We claim the following

Lemma 4. Consider T ⊆ Z4
6 given in (3). Then for all z� ∈ L− L we find

a tiling complement Rz of T such that z� �∈ Z(χ̂Rz) and Rz is a subgroup of
G.
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Proof. Let us fix z� ∈ L − L. Our idea, as described in the preceding
discussion, is to produce the tiling complement Rz as ker ϕ for some one-
dimensional homomorphism, i.e., we look for the homomorphism in the form
ϕ(x) = v� · x with some v ∈ Z4

6 to be chosen appropriately (column vector,
hence v� is a row vector). Then for the Fourier transform

(4) χ̂Rz(w
�) =

∑
x∈Rz

e
2πi

6 w�·x,

and a choice of v satisfying αv = z with some α ∈ Z6 will ensure

(5) χ̂Rz(z
�) =

∑
x∈Rz

e
2πi

6 αv�·x =
∑
x∈Rz

e
2πi

6 αϕ(x) =
∑
x∈Rz

e0 = |Rz| > 0.

So the homomorphism ϕ should be given in such a way that z� becomes a
scalar multiple of v�.

To find a suitable v we let k := z� · T ∈ K − K . Notice that z has even
coordinates, and k is a permutation of (0, 0, 2, 2, 4, 4)mod 6. Now “divide”
k by 2 (mod 6) (this is because of the above consideration with α); then for
each entry we have two possibilities, as 0 = 2 · 0 = 2 · 3, 2 = 2 · 1 = 2 · 4,
4 = 2 · 2 = 2 · 5.

So we fix e among the possible “halves” of k such that it will be a permuta-
tion of (0, 1, 2, 3, 4, 5) and, moreover that the matrix equation v� ·T = e has a
solution mod 6 in v. Actually, it is enough to solve v�·T = e mod 3 and mod 2,
and then the mod 6 solution is easily recovered. These assumptions will ensure
that the homomorphism ϕ : Z4

6 → Z6 defined by v is surjective (hence tiling)
and injective on T . Observe that K − K consists of all the vectors with first
coordinate 0 and the rest 5 coordinates being any permutation of (0, 2, 2, 4, 4).
Thus for any choice of e, by 2·2 = 1 mod 3 we will have e = 2k mod 3. That is,
a solution v3 of v�·T = e mod 3 undoubtedly exists, becauseL·T = K mod 3,
hence 2 · (L−L) ·T covers 2(K−K) containing e = 2k mod 3. We show that
with an appropriate choice of e one also finds a mod 2 solution. Clearly the
first coordinate e1 of e = (e1, e2, e3, e4, e5, e6) can be fixed as 0. Among the
coordinates of k there are exactly two falling into each of the mod 3 classes.
These we call pairs. Now we have to distinguish between these pairs mod 2.
Notice that we can choose e such that among e2, e3 and e4 exactly two are odd.
Indeed, among these three elements there is either a pair from the same mod 3
class, or all three elements differ mod 3. In either case we can prescribe e2, e3

and e4 such that e2 = 1 mod 2, and e3 and e4 have different parity, while for the
rest two coordinates e5 and e6 of e the only restriction is that the mod 3 pairs
have to be mod 2 different. Choosing e in such a way and using (2) an easy
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calculation shows that v� ·T = (0, v1, v2, v3, v4, v2 + v3 + v4) = e mod 2 has
a solution v2 mod 2.

Now the desired v can be computed from v2 and v3 because the moduli are
relatively primes.

It remains only to show that z� �∈ Z(χ̂Rz), but this is obvious by construc-
tion. In fact, let x ∈ Rz: this means v� ·x = 0. On the other hand, 2v� ·T = 2e
and z� ·T = k = 2e. From this 2v = z follows, whence 0 = 2v� · x = z� · x,
so keeping (5) in mind gives χ̂Rz(z

�) > 0.

Remark 3. Let us make the above proof more comprehensible by means of
a particular example of constructing v and the corresponding homomorphism.
E.g., let z� := (0, 2, 2, 4) ∈ L−L. Then k = z�·T = (0, 0, 2, 2, 4, 4)mod 6.
So e = k/2 = (0, 0, 1, 1, 2, 2)mod 3, and as described above we can choose
e = (0, 1, 1, 0, 1, 0)mod 2, resulting in e = (0, 3, 1, 4, 5, 2)mod 6. The solu-
tion vectors v2 and v3 are v�

2 = (1, 1, 0, 1)mod 2 and v�
3 = (0, 1, 1, 2)mod 3,

hence v� = (3, 1, 4, 5).

Using the above T , its tiling complements Rz := ker ϕ (with the ϕ above
depending on z) and also its spectrumL, we are now in the position to construct
our final counterexample to the “tiling⇒ spectral” part of Fuglede’s Conjecture
in dimension 4.

Proof of Theorem 1. Let L� − L� = {zj : j = 1, . . . , k}, say (zj
is a column vector). Take L ⊆ Ĝ := Z4

6 × Zp to be the set of the elements
of L extended by a 0 in the fifth coordinate (i.e., considering L ⊆ Ĝ ∼=
Ĝ×{0} =: Ĝ0 as imbedded into G , which trivial identification – as well as the
similar, dual imbedding of G into G – we do not mention further on). We put
together the desired tiling but not spectral set from the above constructed tiling
complements Rj := Rzj of T × {0}. So let p ≥ k be relatively prime to 6, and
let us augment the sequence R1, . . . , Rk by listing the Rj s and then repeating
Rk additionally p − k times. Consider the group G = Z4

6 × Zp (which is, on
the other hand, isomorphic to Z3

6 × Z6p) and the set

R =
p⋃
j=1

(
Rj + (0, 0, 0, 0, j)�

)
.

Consider now the sets R and L . First, R + T × {0} is a tiling, as for all
j = 1, . . . , p

(
Rj + (0, 0, 0, 0, j)�

) + T × {0} is a tiling of the translated
subgroups G0 + (0, 0, 0, 0, j)� of G0 := Z4

6 ×{0}. Hence R is a tile of G with
the tiling complement T × {0}.

Moreover,L is a spectrum of T , hence we get |L | = |L| = |T | = |G |/|R|.
(It can also bee seen easily that L is a spectrum of T × {0}, but we do not
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need this here.) We need to show that also Z(χ̂R) ∩ (L − L ) = ∅. So let
0 �= z ∈ L � −L � be any element; it corresponds to zj for some index j ≤ p.
Then the Fourier transform of χR evaluated at z� is

χ̂R(z�) = χ̂R1(z
�)+ · · · + χ̂Rk−1(z

�)+ (p − k + 1)χ̂Rk (z
�) > 0,

because all the terms are non-negative (all Rms being subgroups), and by
construction the j th term is strictly positive in view of Lemma 4. So R and L

fulfill the initial requirements for a pair of sets for a counterexample.
Furthermore, L is not a tile. To see this note that L ⊂ Ĝ0, hence L can

be a tile if only it tiles also the subgroup Ĝ0, that is, if L tiles Ĝ. But since
L consists of vectors with all coordinates even, it is in fact a subset of the
subgroup E ≤ Ĝ with even coordinates, hence in order to tile Ĝ, it has to tile
even E. However, this is not possible since |L| = 6, which does not divide
|E| = 34. Thus we see that the sets R and L provide all the properties of
the construction we were aiming at, whence R is tiling G while being non
spectral.

Having a counterexample in G ∼= Z3
6 × Z6p, the counterexample in Z4 and

R4 is obtained by an application of Theorems 2 and 3.
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