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MODULES WITH PERFECT
DECOMPOSITIONS

LIDIA ANGELERI HUGEL and MANUEL SAORIN*

It is well known that a module M over an arbitrary ring admits an indecom-
posable decomposition whenever it has the property that every local direct
summand of M is a direct summand [28]. Recently, J. L. Gébmez Pardo and
P. Guil Asensio [18] have shown that requiring this property not only for M
but for any direct sum M® of copies of M even yields the existence of a de-
composition of M in modules with local endomorphism ring which, moreover,
satisfies many nice properties of decompositions studied in the literature, like
the exchange property, or the property of complementing direct summands.
More precisely, it turns out that all these properties coincide if, instead of
considering a single module M, we pass to the category Add M of all direct
summands of direct sums of copies of M.

In the present paper, we continue the investigation of these modules call-
ing them modules with perfect decompositions. In Section 1, we show that a
module M has a perfect decomposition if and only if for every direct system
(M;, fji); of modules in Add M indexed by a totally ordered set I, the ca-
nonical epimorphism = : @,., M; — li_n)lM,- is a split epimorphism. This
allows to shed a new light on a number of known examples of modules with
perfect decomposition.

The remaining sections are devoted to the role played in this context by
certain finiteness conditions over the endomorphism ring S = End M. In fact,
every module with a perfect decomposition is S-coperfect, that is, it satisfies
the descending chain condition on cyclic S-submodules. Actually, in Section 2,
we even show that M is X-coperfect over S, i.e. any direct sum M ® of copies
of M is S-coperfect.

We thus discuss whether the converse implication also holds true. The best
answer that we can give in full generality is the following (see Section 3): X-
coperfectness over the endomorphism ring implies that the pure epimorphism
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T EBi ag M — h_r)n M; associated to a direct system in Add M as above, is
even €-pure where € is the class of finitely generated R-modules.

We then focus on two main cases where being X -coperfect over S is equi-
valent to the existence of a perfect decomposition. The first case is when M is
a direct sum of finitely generated modules. It is the topic of Section 4, where
we also exhibit examples of modules with perfect decomposition related to the
notion of pure-injectivity (4.4) or to tilting theory (4.6).

The second case, established in Section 5, is the case of CS (or extending)
modules. Actually, here we can even prove that a CS-module has a perfect
decomposition if and only if it is coperfect over its endomorphism ring. We
close the paper with some examples relating our investigations to known results
on decomposition of CS-modules.

1. Perfect decompositions

Let R be an arbitrary ring, and let Mod R be the category of all right R-modules.
By a module M we usually mean a right R-module, and we denote by Add M
the category consisting of all modules isomorphic to direct summands of direct
sums of copies of M.

We start out by collecting some results on direct sum decompositions of
M which are scattered through the literature. First we have to recall some
terminology.

A family (N;);c; of submodules of a module M is called independent
when their sum is direct, i.e. when Ny N Zj#k N; =0forallk € J.Insucha
case, N = @y N; is called a local direct summand when ®;cr N; is a direct
summand of My for each finite subset F C J.

Moreover, a family of modules (M;);¢; is said to be locally semi-T-nilpotent

if for each sequence of non-isomorphisms M;, i> M; i) M;, ..., with
pairwise different indices (i,),en from I, and each element x € M;,, there
exists m = m, € N such that f,, f,,_1... fi(x) = 0. If the same condition
is satisfied also when we allow repetitions in the sequence of indices (i,),en
involved, then the family (M;);¢; is called locally T-nilpotent.

Next, let S be a ring with Jacobson radical J (S). We say that a left module
sM 1is coperfect if it satisfies the descending chain condition for cyclic (or
equivalently, finitely generated) S-submodules [8]. Furthermore, the ring S is
semiregular if §/J(S) is von Neumann regular and idempotents lift modulo
J(9).

Finally, let us recall some properties of direct sum decompositions of mod-
ules. A module M is said to have the exchange property if for any equality of the
form M’ ® A = @, A; with M" = M there exist submodules B; € A; such
that M' ® A = M' @ ,., B;. Furthermore, a decomposition M = &, _, X
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is said to complement direct summands if for each direct summand N of M
there is a subset L C K suchthat M = N @ @, Xi.

The following result subsumes classical and more recent results due to
various authors.

THEOREM 1.1. The following statements are equivalent for a module M.
(1) Every local direct summand of a module in Add M is a direct summand.

2) M = P, Xk, where (Xi)rek is a locally T-nilpotent family of in-
decomposable modules.

(3) M has a decomposition in modules with local endomorphism ring, and
M is coperfect over its endomorphism ring.

(4) M has a decomposition in modules with local endomorphism ring, and
Endy A is semiregular for all A € Add M.

(5) M has an indecomposable decomposition, and every module in Add M
has the exchange property.

(6) Every module in Add M has a decomposition that complements direct
summands.

Ifthese conditions are satisfied, we will say that M has a perfect decomposition.

Proor. By [18, 2.3] it follows from condition (1) that M has a decompos-
ition in modules with local endomorphism ring. Moreover, it is shown in [22,
Proposition E] that conditions (2) and (3) are equivalent. Then the equivalence
of (1), (2) and (4) is a consequence of [21, 7.3.15], as shown in [2, 4.2]. For
the equivalence of (1), (5) and (6), we refer to [18, 2.3].

We now want to characterize modules with perfect decompositions in terms
of a property of direct limits. We collect here for later reference some well-
known facts about direct limits.

LEMMA 1.2. Let I be a directed set and (M;, fj; : M; — M;); be a direct
system in Mod R. Denote by €; : M; — @,_; M; the canonical inclusion.
Fori < j set Mj; = M; and consider the homomorphism F : D, _; Mj; —>
D,.; M; induced by the maps €; —¢€; fii - Mj; — @,; M;. Thenthe following
hold true.

(1) There is an exact sequence @ifj M;; LN &b

T .
M; — limM; — 0
=
inducing a pure-exact sequence

iel

0—>Im(F)—A>@Ml- L>li_n)1M,< — 0

iel
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(2) When I is infinite and totally ordered, Im(F) = Kerm = Ua€ o Na
where (Ny)ues i a chain of direct summands of @iel M; which is
indexed by a set &/ of the same cardinality as 1.

ProoF. (1) is well-known. For (2), we refer to[18, 2.1] where it is shown
that the N; can be takenas D, _,_, Im(e; —¢; f;) with [ € 1.

ProprosITION 1.3. Let M be a module and ¥ a cardinal. Then the following
statements are equivalent.

(1) If (Ny)qess is a chain of direct summands of M®™ such that the cardin-
ality of o is < N, then the union N = .., Ny is a direct summand
of M®™.

(2) If (M;, fji)1 is a direct system where 1 is a totally ordered set of cardin-
ality at most ¥ and M; is isomorphic to a direct summand of M™ for
all i € I, then the canonical epimorphism v : @, , M; —> li_Il)lM,- is
a split epimorphism.

iel

ProoF. (1) = (2): follows from Lemma 1.2.

(2) = (1): We can assume w.l.0.g. that (V;);¢; is a chain of direct summands
of M where I is a totally ordered set of cardinality N. For each i € I
we consider an idempotent ¢; € End M? such that Im(e;) = N; and set
fi =1 — ¢;. In particular, we get ¢;(x) = x for all x € N;, and fori < j we
have N; C Nj, hence eje; = ¢; and f; f; = f;. So, we can construct a direct
system (M, f;;); by taking M; = M and f;; : M; — M; with fj; = 1y
ifi =jand fj; = f;ifi < j.

We adopt the notation of Lemma 1.2. By assumption, the exact sequence
0 — Im(F) SN D, M BN li_n>1M,- — 0 splits. So, there are homo-
morphisms p : @, ., M; —> Im(F) and u : lim M; — D,.; M; such that
oA = limr), Tu = lli_r)nM,- and, moreover, Ap +un = g, M.

Our aim is to show that the canonical surjection v : M) — MD/N is a
split epimorphism.

We start out by constructing a homomorphism ¢ : M/N — lim M;. To
this end, we fix an index k € I, take the canonical map ¢y = we; : My —>
lim M;, and consider the composition g fi : M 0 - lim M;. Note that by
construction ¢ fy = ¢, f; for each [ > k. But then, since for any element
x € N there is an index [y € I such that x € Ker f; for all [ > [, it follows
@« fr (N) = 0. This shows that ¢ f; induces amap ¢ : M)/N — lim M;.

We now investigate the composition of the summationmap V : €9,_, M; —
MWD (x)ier +> Y;o; Xi with upv. Observe first that VF(M;;) C Ime; for
all j > i, hence InVA C N. So, if y € MDD, we see that Vugv(y) =
Vure fr(y) = Vg, , m; — o) (€ fi(¥)) = fi(y) — n for some n € N.
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As y — fi(y) = ex(y) € N, we infer vVupv(y) = v(y). Since v is an
epimorphism, this shows that vVug is the identity map and, hence, v is a split
epimorphism.

As aconsequence, we obtain a new characterization of modules with perfect
decompositions. In the proof, the term fotally ordered direct limit means that
the underlying directed index set is totally ordered.

THEOREM 1.4. The following statements are equivalent for a module M.
(1) M has a perfect decomposition.

(2) If (M;, fi)r is a direct system such that I is a totally ordered set
and M; € AddM for all i € I, then the canonical epimorphism
7P Mi — li_l‘I)lMi is a split epimorphism.

(3) Every direct limit of split monomorphisms in Add M is a split mono-
morphism in Add M.

ProofF. By Theorem 1.1 and [28, 2.16], condition (1) means that the union
of every chain of direct summands of a module in Add M is a direct summand.
The equivalence (1) < (2) is thus an immediate consequence of Proposition 1.3
and Lemma 1.2.

In order to prove (3) = (1), take a chain (&;);¢; of direct summands of a
module X € Add M. Then the sequence 0 — | J;.; N; = X — X/J,.; N
— 0is adirect limit of split exact sequences in Add M, whence it is split-exact
and, by [28, 2.16] again, assertion (1) follows.

We finally prove (2) = (3). Since the case when [ is finite is trivial, we
assume, without loss of generality, that [ is infinite. We need to prove that if
f 1 (Xi)ier —> (Yi)ies is a morphism of direct systems in Add M such that
fi + Xi — Y; is a split monomorphism for every i € I, then the induced
morphism h_r)n X, — h_r)n Y; is a split monomorphism in Add M.

It is not restrictive to assume that / is totally ordered. Indeed, it is known
that if 7 has cardinality card(/) = A, then there is a chain (/,), -, of directed
subsets of I suchthat I = |, _, I, andcard(/,) < A forevery «. By transfinite
induction on A, we suppose the result is true when the underlying directed set

has cardinality < A. Then the induced morphism X (x) =: li_r>nl,E , X, —
li_nQiE[ Y; =: Y(x) is a split monomorphism in Add M for every « < A.

But li_n)l( f): @)lie , X, — li_r)nie ; Y; coincides with the induced morphism
li_n)lK< . X(k) — li_r)nK< . Y (k), which is a totally ordered direct limit of split
monomorphisms in Add M by the induction hypothesis. This proves that the
problem is reduced to the case in which [ is totally ordered.

So, for the rest of the proof, we assume that / is totally ordered. Let 0 —
(X;) — (Y;) — (Z;) — 0 be the corresponding short exact sequence of
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direct systems in Add M, so that 0 — X; — Y; — Z; — 0 is split-exact
for all i € I. We consider the commutative diagram with exact rows:

0— P X; L>Q§Y,-L>GBZ,'—>O

/| 1| gl
0—— limX;, Y > lim¥; —%—> limZ, —— 0
— — —

where the morphisms are the obvious ones. Since by hypothesis r and 8 are
split epimorphism, the same is true for 78 = 8¢, from which we get that § is
a split epimorphism as desired.

ExampLEs 1.5. (1) Every X-pure-injective module has a perfect decom-
position [22, Proposition E]. More generally, M has a perfect decomposition
if it is X-pure-split, i.e. every pure submodule of a direct sum of copies of
M is a direct summand. Indeed, in this case condition (2) of Theorem 1.4 is
satisfied since Ker r is a pure submodule of B, _; M;.

(2) If M is finitely generated, then it has a perfect decomposition if and
only if S = End M is a right perfect ring [1, 29.5].

(3) If M is a direct sum of finitely presented modules, then it has a perfect
decomposition if and only if the class Add M is closed under direct limits [2,
4.4]. This can be seen here as a direct consequence of Theorem 1.4.

(4) Recall that Pext}e(—, —) is the sub-bifunctor of Ext}e(—, —) formed by
taking the pure-exact sequences. Let 2/ be a class of R-modules closed under
direct limits (and thus also closed under direct summands, cf. [13, proof of
Lemma 1]),and B = {B € Mod R | PextkL(A, B) = Oforall A € &/}. If M®™
belongs to &/ N A for every cardinal R, then M has a perfect decomposition.

Indeed, if X = EBae A Xo is a local direct summand of M ®  then the
canonical sequence 0 — X < M® — M®/X — 0 is the direct limit
of the split-exact sequences 0 — Xp — M® — M®/ X — 0, where
Xr = @, Xo for every finite subset F C A. We have X € AddM <
2B and, since &« is closed for direct limits, we also get that M (N)/ X € A.
Consequently, the pure-exact sequence 0 — X «— M® — M®/X — 0
is split-exact. Then every local direct summand of M® is a direct summand,
and therefore M has a perfect decomposition.

Particular cases of this situation are when My is a tilting module in the
sense of [3] such that Add M is closed for direct limits (take o/ = Add M),
and the case when Mp is flat and X-cotorsion (take for .o/ the class of flat
R-modules). Hence, we rediscover, in a more general form, a recent result of
Guil-Asensio and Herzog [20, Prop. 7, Theorem 8].
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(5) Let My be a classical tilting module in the sense of [10], i.e. My is
a finitely presented tilting module of projective dimension at most one. Let
further S = End M, and denote by (&, &) the cotorsion pair cogenerated by
M, thatis, B = M+ = {Xg | Exth(M,X) = 0} and &/ = 1B = (X3 |
Ext}e (X, B) = 0 for all B € AB}. Then Mg, has a perfect decomposition if and
only if the class &/ is closed under direct limits.

In fact, note that & is always closed under direct limits. So, if .o/ is closed
under direct limits, the same holds true for Add M = &/ N A, and M has
a perfect decomposition by Example (4). Conversely, assume that M has a
perfect decomposition. Since M is finitely presented, we then know from [2,
4.4] that every pure submodule of a module in Add M is a direct summand.
We proceed as in the proof of [4, 4.2]. We first show that every module X €
2B which is a direct limit of modules from ./ admits a pure-exact sequence
00— B— A — X — Owith B € # and A € Add M and therefore
belongs to Add M. From this we deduce that . is closed under direct limits.

(6) Every X-CS-module has a perfect decomposition. This is shown by
J. L. Gémez Pardo and P. Guil Asensio in [19, 2.4] and [18, 2.3]. We will see
in Section 5 that a CS-module has a perfect decomposition if and only if it is
coperfect over its endomorphism ring.

Further examples will be discussed in Section 4.

2. Modules which are X-coperfect over their endomorphism ring

We know from Theorem 1.1 that every module with a perfect decomposition
is coperfect over its endomorphism ring. We now want to investigate more
thoroughly the role played by endocoperfectness in this context. To this end
we need to consider a stronger condition. Given a ring S and a positive integer
r, we will say that a left S-module M is r-coperfect if every direct sum of at
most r copies of M is coperfect. Moreover, we will say that M is X-coperfect
if M is r-coperfect for all r € N.

In order to relate these notions to perfect decompositions, we will need the
following result on countable direct limits. Related results can be found in [33]
and in [24], [30], [31], [5].

M, i> M, i> M3 i> ... be asequence of homomorphisms. Consider the
direct system (M, fum)N given by fum = 1y, ifn = mand fo = fu—1... fm

ifn > m. Then the canonical epimorphism v : @, .y My —> li_n)an splits if

and only if there is a sequence of homomorphisms . .. N M; N VAN
M with the following property:
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For each index m € N and each finite subset of elements X = {x1,...,x,}
C M,, there is an index | = [(m, X) > m such that f,,,,(x) = g, fut1.m(x) for
alln >landall x € X.

PrOOF. Let F be as in Lemma 1.2. Observe that Im F' = Im(1 — f) where
1l =1g,_, m, and f € End P,y M, is given by the matrix

0 ...
i 0 ...
0 o O

U E

So, 7 splits if and only if Im(1 — f) is a direct summand of &,y M,, and
the only-if-part of the statement is shown in [39, Lemma 5]. For the if-part,
we define an endomorphism g € End P,y M, by the matrix (g;;); jen With

neN
(—g)(—git1) ... (=gj—1) ifj>i+1;
gij My — M;, g = . P
Ly, — &ifi if j =i;

Ay, — & f) fimr - S if j <.

Letus verify that g is well-defined: If m € Nand x € M,,, then we can interpret
g(x) as the vector whose entries are the homomorphisms in the m-th column of
(gi;) applied on the element x. So, the entries with index n > m have the form
Pry, g8(x) = gum(x) = (lM,, —8&n ) a1+ fn(X) = fum(X)—gn fn+l,m(x)-
Thus we know by assumption that there is an index [ = /(m, x) € N such that
pry, g(x) =0forall n >/, and we conclude that g(x) € D,.cn M.

We now claim that g(1 — f) is an isomorphism. In fact, the (i, j)-th entry of
the matrix representing g(1 — f)is gi; — g j+1 fj, whichequals (15, — g fi)+
gi fi = 1y, ifi = j,andequals zeroifi > j.Thisshowsthatg(1—f) =1—h
where 1 € End @,y M, is represented by an upper triangular matrix. Since
h is then a locally nilpotent endomorphism of €, .y M, the sum ) _\ A"
defines an endomorphism of @, .y M,, which is inverse to g(1 — f).

This proves that 1 — f is a split monomorphism and completes the proof.

Let us now show that modules which are X-coperfect over their endomorph-
ism ring are characterized by a “local version” of the property considered
above.

PRrOPOSITION 2.2. Let M be a module with S = End M, and let r be a
positive integer. Then the following statements are equivalent.
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(1) sM is r-coperfect.

2) If X € M is a subset consisting of at most r elements, then the left
S-module S/ anng(X) is coperfect.

G Irm IR M Lom LN ... is a sequence of endomorphisms and
fum = fu—1 ... fm for n > m, then the following condition is satisfied:

Foreachindexm € Nandeach subset X C M consisting of at most r ele-

. 83 82 81
ments there are a sequence of endomorphisms ... — M — M —

M and an index | = I(m, X) € N such that f,,(x) = gn fat1.m(x) for
alln >l andall x € X.

PROOF. (1)= (2): Use the S-linear embedding S/ anng({xy, ..., x,}) —
M, f = (f(x), ..., f(x).
2)=@B): Fixm € Nand X = {x,...,x,} € M, and consider the des-

cending chain of cyclic S-submodules of S = §/ anng(X)

SmeSferlme---

By assumption there is an index / € Nsuchthat S f,_1... fn = S fu ... fin
for all n > [. Hence for each n > [ there is g, € S such that f,,, = g, fu+1.m>
that is, f,,(x;) = gnfat1.m(x;) for all 1 < i < r. Then the sequence g, =
0,82=0,...,8-1=0,g, &g+, ... has the stated properties.

(3) = (1): Let us consider a descending chain of cyclic S-submodules of

Mr

Sx 2 Sfix 28Hfix2...

with x = (x1,...,x,) € M" and f1, f>,... € S. By assumption there are
an index [ = I(x) € N and a sequence of endomorphisms gi, g»,... of M
such that f,;(x;) = gnfut1.1(x;) foralln > landall 1 < i < r. Since S
acts componentwise on the elements of M”, this means that f,_;... fix €
S fu... fixforall n > [, so our chain is stationary.

Combining Theorem 1.4 with Propositions 2.1 and 2.2 we obtain

COROLLARY 2.3. If a module M has a perfect decomposition, then M is
Y.-coperfect over its endomorphism ring.

The above investigations rise the following questions.

QUESTION 1. Let M be amodule which is X-coperfect over its endomorph-
ism ring. Does it have a perfect decomposition?

QUESTION 2. Let Mg be a module which is coperfect over S = End M. Is
it X-coperfect over S?
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We have not been able to answer these questions in full generality, although
some partial answers will be given in the sequel.

We start with a discussion of Question 2. First of all, note that in general,
direct sums of coperfect modules need not be coperfect, see [9, Example 3].
However, as a consequence of Theorem 1.1 and Corollary 2.3, we obtain

COROLLARY 2.4. Let M be a module having a decomposition in modules
with local endomorphism ring, and let S = End M. If M is coperfect, then
sM is even X-coperfect.

Moreover, we next see that endocoperfectness is preserved under taking
(direct sum) powers.

PropoOSITION 2.5. Let S be a ring, and M a left S-module. Then M is
coperfect over S if and only if for every index set I the direct sum MD is
coperfect over the ring CEM;(S) of column-finite I x I-matrices over S.

ProOOF. Let I be a set, A = CFM;,(S). Consider a descending chain of
cyclic A-submodules of M)

Ax D Aajx D Aara1x 2 ...

with x € MD and ay, ay, ... € A. Note that x is contained in a finite subsum
M of MV, Similarly, a;x is contained in a finite subsum M"? of M), and so
on. We thus only need to consider suitable r,,, | x r,-submatrices a, of a,, and
have to find an index ! = [(X) € N and matrices l;; e §mxmit C A,n >,
such that@, i ...a;x = b,a, ...ayx foralln > [.

For each n € N we write a,,1(x) = d,_; ...a;x as vector and a,, as matrix
as follows:

yi(n)
m@=| 1 |em
Yr, (n)
ap(n) ... ay,n)
&71 — : : e Srn+lxrn
ar,,H,] (n) cee arnHJ’n (I’l)
Then we have the relations

yiln+1) anm) ... ap,m) yi(n)

Yrut (I’l + 1) arn+1,l(n) cee Arr, (I’l) Yru (n)
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showing that yi(n +1),...,y,, (n+1) € Zlfkfrn Syi(n). In other words,
we have a descending chain of finitely generated submodules of s M

Sosum2 Y su@ 2.

1<k<r 1<k=<r,

which is stationary by a well-known result of Bjork [8]. Thus there is an index
I € Nsuchthat 3, . Sy(m) =3, Sye(n+1)foralln > [. But
then for each n > [ we can write

yi(n) bum) ... by, () yi(n+1)

Yr, (n) br,,,l n) ... br,,,r,,ﬂ (n) Yrut (n+1)
for suitable by;(n) € S. This gives rise to the desired matrices b~n € §nxTntt,

COROLLARY 2.6. Let R be a ring, M be a right R-module with S =
Endg (M), and r > 0 an integer. The following assertions are equivalent:

(1) sM is r-coperfect.
(2) MD js r-coperfect over Endg (M D) for every index set 1.
3) MY js r-coperfect over CEM;(S) for every index set 1.

PrOOF. (1) < (3) follows from Proposition 2.5 bearing in mind that (M)
= (M")D as left CFM; (S)-modules, and (2) = (1) is clear.

(3)= (2): Clearly, A =: CFM;(S) is a subring of T =: Endg(M D).
Moreover, for every x € (M")" and every f € T, there is a g¢ € A such that
gx) = f(x).Ifnow Tx 2 Tfi(x) 2 Tfrfi(x)...1is adescending chain of
cyclic T-submodules of (M‘?)", then we can succesively replace f; by g; € A
sothatg;...g1(x) = f;... filx)fori = 1,2, .... Hence we get a descending
chain Ax 2 Agi(x) 2 Agrgi(x) 2 ... of cyclic A-submodules which is
stationary under the hypothesis (3), so that there exist £ > 0 and a sequence
of elements h, € A, n > k, such that h,g,(g,-1---81(x)) = gu—1...81(x)
for all n > k. But then A4, f,(fi—1 ... fi(x)) = fu_1... fi(x) and since h, €
A C T,weconcludethat Tf, f—1... fi(x) =Tfu-1... filx) foralln > k.

We end this section by considering the following aspect of Question 2:

REMARK 2.7. Let R be a ring. The following assertions hold true.
(1) X-coperfectness over the endomorphism ring is a Morita invariant prop-
erty.
(2) Coperfectness over the endomorphism ring is a Morita invariant prop-

erty for R-modules if and only if every endocoperfect R-module is X-
coperfect over its endomorphism ring.
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PrROOF. (1) A module is X-coperfect over S = Endg M if and only if
condition (3) of Proposition 2.2. holds true for every finite subset X € M,
or equivalently, for every finitely generated submodule X of Mg. The latter
property is clearly Morita invariant.

(2) The if-part follows immediately from (1). For the only-if-part, take an
endocoperfect module Mg, and let S = Endg M. The canonical Morita equi-

valence Mod R —> Mod R"*" takes M g to the endocoperfect R"*"-module
M, whose endomorphism ring is also S. Then ¢M" is coperfect for every
r > 0, so that sM is X-coperfect.

3. Endocoperfectness and purity

We now come back to Question 1. Given a module which is X-coperfect over
its endomorphism ring, how far is it from having a perfect decomposition?

We first compare endocoperfectness with X-pure-injectivity. To this end,
we use that a module M is X-pure-injective if and only if it satisfies the
descending chain condition on (finite) matrix subgroups [38]. Recall that, if
Yr is a module and U a subgroup of the abelian group Y, then U is said to
be a matrix subgroup of Y if there is a module Ag and an element x € A
such that U equals the set H4 ,(Y) = {f(x) | f € Homg(A, Y)}. Of course,
every matrix subgroup is a left submodule of Y over the endomorphism ring
Endy Y. Moreover, the functor ¥ +— Hy ,(Y) commutes with products and
coproducts.

We can measure the gap between endocoperfectness and X-pure-injectivity
by comparing Corollary 2.6 with the following result.

PROPOSITION 3.1. The following statements are equivalent.
(1) M is X-pure-injective.
(2) M! is coperfect over End M! for every index set I.
(3) M has a perfect decomposition for every index set I.
ProOF. (1)=> (3): Since M/ is then X -pure-injective for every index set I,
the claim follows from Example 1.5(1). Moreover, (3) = (2) is an application

of Theorem 1.1.
(2) = (1): We use an argument due to W. Zimmermann [40]. Let

MDU DU, D...

be a descending chain of matrix subgroups of M. It is well known that every
matrix subgroup U = Hy (M) of M can be written in the form Hym (M)
by taking the element y = (V)menr € MM defined by y,, = m if m €
Hy (M) and y,, = 0 otherwise, see for instance [36, p. 241]. But then UM =
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(Hym y(M)M = Hym ,(MM) = End MMy is a cyclic End M -submodule
of MM So, the descending chain

MM oulouMo. ..

is stationary, and this shows that the original chain is also stationary.

Next, we remind that by Theorem 1.4 a module M has a perfect decompos-
ition if and only if for every totally ordered direct limit in Add M the canonical
epimorphismn : @, M; — 111)1 M; is a split epimorphism. We don’t know
whether this is true when M is X-coperfect over its endomorphism ring. But
at least we can show that for such M the pure epimorphism 7 is even a €-pure
epimorphism where € is the class of finitely generated R-modules.

We first need some preliminary results. Recall that if € € Mod R is a class
of modules, then an epimorphism p : M —> N in Mod R is called €-pure
provided Homg (C, p) : Homz(C, M) — Homg(C, N) is an epimorphism
for every C € ¥. We start with an elementary observation, whose proof we
leave to the reader:

LEMMA 3.2. Let p : X — Y be an epimorphism in Mod R and € be
a class of modules closed under quotients. If p is a €-pure epimorphism,
then the inclusion Ker(p) — Ker(p) + Z is a split monomorphism for every
submodule Z of X belonging to €.

If € is the class of r-generated modules for some integer r, then also the
converse implication holds true.

The arguments in the proof of the following lemma were given to us by
P. Guil Asensio.

LEMMA 3.3. Let M be an R-module, and X a finitely generated submodule
of M. Let moreover (N;)icy be a chain of direct summands of M with N =
U,<; Ni. The following assertions are equivalent:

(1) The inclusion N < N + X is a split monomorphism.
(2) There is anindex j € I such that X "N C N;.

Moreover, M and X satisfy the above equivalent conditions for every chain of
direct summands if and only if they do so for every countable chain of direct
summands.

ProoF. (1)= (2): Let f : N + X — N be a retraction for the inclusion
N < N + X.Then g = fix : X —> N is an R-homomorphism such that
g(x) = xforall x € X N N. But since X is finitely generated Im(g) € N; for
some j € I. Then X N N C N; as desired.



32 LIDIA ANGELERI HUGEL AND MANUEL SAORIN

(2)= (1): Suppose X N N C N, and let us fix a retraction 7 : M —> N;
for the inclusion N; <> M. Then the assignment n + x + n + 7w (x) gives a
well-defined morphism N + X — N which is a retraction for the canonical
inclusion N — N + X.

For the final statement we only need to prove that if condition 2) holds for
every countable chain of direct summands, then it also holds for an arbitrary
one. Suppose then that condition 2) holds for countable chains and let (&V;);¢;
be an arbitrary chain of direct summands of M. Suppose that X N (Ul el N,-) is
not contained in any N;. Then the set {XNN; : i € I} does not have a maximal
element, and we can find a strictly ascending chain X " N;, C X NN, C ...
So, we get a countable chain (N;, )i=12,... of direct summands of M such that
XN (Uk>0 Nik) is not contained in X N N;, forany / = 1,2, ..., whichis a
contradiction.

Let r > 0 be an integer, and € be the class of r-generated R-modules. We
now want to describe when the canonical epimorphism = : @,., M; —
li_r)nM,- associated to a direct system (M;, fj;) is €-pure. To this end, we
introduce the following notation. Given a module M and an element x =
(X1,...,x.) € M", we write a(x) = {(al, ...,a,) € R" } D oliey XiGi =
0}. Obviously, this is an R-submodule of R" with a(x) = anng(x) when
r = 1. Also, if f : M — N is an R-homomorphism, we denote f(x) =

(f @), .... f(x)) € N".

ProroSITION 3.4. Let (M;, fj;) be adirect system of R-modules, and denote
by ¢; + M; — 1i_n>1Ml- the canonical map. Let further r > 0 be an integer,
and € be the class of r-generated R-modules. The following statements are
equivalent.

(1) The canonical epimorphism w - @,;_, M; —> lim M; is €-pure.
14 14 iel p— P

(2) Foreveryindex j € I and every r-generated submodule X C M, there

is an index n > j such that the composition f,;(X) — M, AN 1i_n)1M,~

is a monomorphism.

(3) For every index j € I and every x € M;', the set {a(fyj(x)) | k €
I, j < k} of submodules of R has a maximal element.

Proor. Denote by €; : M; — P,.; M; the canonical inclusion, so ¢; =
TTE;.

()= (2): Let X be an r-generated submodule of M;. Then ¥ = ¢;(X)
is a r-generated submodule of li_r>nM,~. By hypothesis, there is a morphism
h :Y — €P,.; M; such that wh is the canonical inclusion ¥ — lim M;.
There is a finite subset K C I such that 2(Y) € @, x My. Itis not restrictive
to assume that one of the indices from K, say /, is the largest one, i.e., k </
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forall k € K. Let g : @ke x My —> M; be the homomorphism with the
components ( fix)rek -

We claim that the composition Y _ Drcx M LI VAN H_r)an-
is the inclusion map. Indeed, if y € Y and h(y) = (zi)rex With z; €
My, then ¢,gh(y) = @1(X ek fik(z0)) = Ypek T€ fi(zx). By Lemma 1.2
D ek (€(zi) — e fi(zx)) € Kerm, hence ¢y gh(y) = D i cx mer(z) =
mTh(y) =y, as desired.

Thus for any x € X we have ¢;(f;;(x)) = ¢;(x) = @i1gh(p;(x)), hence
fi1j(x) — gh(g;(x)) belongs to Ker(¢;), and by a well-known property of direct
limits, thereis anindexm > lin I suchthat f,,;(f;; (x)—gh(g;(x))) = 0. Since
X is finitely generated, taking m large enough we obtain the latter equality for
allx € X,s0 f,,j(X) = fugh(Y).Now thefactthatg;gh(y) = yforally € Y
implies that the restriction of ¢,, on f,,;(X) induces a split epimorphism ¢, :
fmj(X) — Y. Then we can decompose f,;(X) = U @ V in such a way that

the restriction of ¢, |y : U — Y is an isomorphism, while ¢,,(V) = 0. Since
V is finitely generated, we see as above that there is an index n > m in I such

that f,,,,(V) = 0. So, if we factor the monomorphism ¢,,|y through f,,,, we

obtain (pmlU U M fnm(U) = fnmfmj(X) = fnj(X) — Mn ﬂ) 1£>an

where the first map is an isomorphism. Hence the restriction @, |, (x) is a
monomorphism.

(2) = (1): We need to prove that if Y C IQQM,- =: M’ is an r-generated
submodule, then the canonical inclusion ¥ < h_r)n M; factors through 7 :
Do, Mi — H_r)nMi. Since M’ = |J,; ¢i(M;) (directed union), there is a
J € I suchthat Y C ¢;(M;), which implies the existence of an r-generated

submodule X C M; such that¢;(X) = Y. By hypothesis, there is an index n >

Jj such that the composition f,;(X) — M, BN li_r)nM,- is a monomorphism.

This means that ¢, induces by restriction an isomorphism ¢q : f,;(X) =y,

—1
We now consider the composition / : Y N fuj(X) = M, N @iel M;,
and easily check that 77 is just the canonical inclusion ¥ — lim M;.
(2) < (3): Condition (2) holds if and only if for every index j € I and every
r-generated submodule X C M;, thereisanindex k > j such thatthe structural

map fi : My —> M, induces an isomorphism }‘; D (X)) = f1;(X)
for all [ > k. If we take a set {x|,..., x,} of » generators of X and put
x = (x1,...,x,) € M;", thena(fi;(x)) € a(f;;(x)) whenever j <k </, and
equality holds if and only if Ker E{ = 0. Now the equivalence of conditions
(2) and (3) follows easily.

We now draw some consequences.
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COROLLARY 3.5. Let M be an an R-module, r > 0 an integer, and let
(Ni)ier be a chain of direct summands of M with N = | J,_; N;. Suppose that

for every sequence M i) M i) M L ... of R-homomorphisms and
every x € M", the set {a(f, --- fi(x)) | n € N} has a maximal element. Then
the inclusion N — N + X is a split monomorphism for every r-generated
submodule X C M.

iel

Proor. By Lemma 3.3, we can assume that the chain is countable and,
hence, that I = N. As in the proof of Proposition 1.3, we form a sequence

VREING VRN Y RN ... of idempotent morphisms such that Im(1 — f;) =
N; and f; fi = f; wheneveri < j, and we define a direct system by taking
M; = M and f;; = f; fori < j.Letmw : MV — lim M; be the canonical
epimorphism, and V : MN — M, (x;) = Y_ x; the summation map. Note
that Ker 7 = Im(1 — f) where f is defined as in the proof of Proposition 2.1,
so it is easy to check that Ker(7) = {(x;) € M®™ | V(x;) € N}. Moreover, by
our hypothesis and Proposition 3.4, the canonical epimorphism 7 : MMN —
li_r)n M, is €-pure, where € is the class of r-generated modules. By Lemma 3.2,
the canonical inclusion Ker(;r) < Ker(;) + Z is then a split monomorphism
for every r-generated submodule Z of M),

Suppose now that X is an r-generated submodule of M. Then for a fixed
J € N, we have X € M; and ¢;(X) is an r-generated submodule of MN,
wheree; : M = M; — M (N is the canonical inclusion. We have that
€j(X) NKer(r) = €;(X N N). Since Ker(r) < Ker(m) + €;(X) is a split
monomorphism, we get a map g : X —> Ker(sr) such that g(x) = €;(x)
whenever €;(x) € Ker(rr). That is, g(x) = €;(x) whenever x € X N N. Now

the composition i : X LI Ker(m) v, N is a morphism such that 2 (x) = x
whenever x € X N N. Then the assignment n 4+ x +— n + h(x) defines an
R-homomorphism, which is a retraction for the inclusion N <— N + X.

PROPOSITION 3.6. Let M be an R-module, r > 0 an integer, and € the class
of r-generated R-modules. If M is r-coperfect over S = Endg(M), then the
following assertions hold true:

(1) Foreverytotally ordered direct system (M;, f;;) in Add M, the canonical
epimorphism 7w : @,;., M;i — lim M; is €-pure.

(2) If M’ € Add M, and (N;)i¢; is a chain of direct summands of M’ with
N = J,c; Ni, then the inclusion N — N + X is a split monomorphism
for every r-generated submodule X of M.

PrROOF. We first prove assertion (1) in case / = N is countable. There is no
loss of generality in assuming that there is a set A such that M; = MY for
all i € N. Then the direct system comes from a sequence of endomorphisms
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MDD Ly @ Ly and M@ s r-coperfect over its endomorphism ring
by Corollary 2.6. So, the module M ) satisfies condition (3) of Proposition 2.2,
which in turn implies condition (2) of Proposition 3.4. Thus 7 : @,y M; —
li_n>1 M; is €-pure.

Combining Proposition 3.4 with Corollary 3.5, we now obtain assertion
(2). Finally, in order to prove assertion (1) in the general case, we recall from
Lemma 1.2 that Ker () is the union of a chain of direct summands of &, _, M;.
The result then follows from assertion (2) and the second part of Lemma 3.2.

We now obtain the announced result as an immediate consequence.

COROLLARY 3.7. If M is X-coperfect over its endomorphism ring, then
for every totally ordered direct system (M;, f;;) in Add M the canonical epi-
morphism w : @, ., M; — h_r)n M; is €-pure, where € is the class of finitely
generated R-modules.

4. Finitely generated endocoperfect modules

We now prove that Question 1 has a positive answer for finitely generated
modules.

We first need two preliminary results. We have discussed in Section 2 how
endocoperfectness behaves with respect to direct sums. As for direct sum-
mands, it is straightforward to verify the following result.

Lemma 4.1. Ifr € N and M is a module which is r-coperfect over End M,
then every direct summand N of M is r-coperfect over End N.

LEMMA 4.2. Let M be a module which is coperfect over S = End M.
Assume that M is finitely generated, or more generally, that there is a finite
subset X = {x1,...,x,} € M such that anng(M) = anng(X). Then S is a left
semiartinian ring, and the Jacobson radical J (S) is left T-nilpotent. Moreover,
if M is indecomposable or X-coperfect over S, then S is a right perfect ring.

PrOOF. By the assumption on M we have an embedding A : ¢S —>
sM”™, f — (f(x1), ..., f(x;)). Since M is coperfect, yM" is semiartinian.
Then S is a left semiartinian ring, and J(S) is left T-nilpotent, see [32, Prop.
VIIIL.2.6]. Furthermore, if M is indecomposable, then S has the only idem-
potents O and 1 and is thus right perfect by [25, 11.6.3]. Finally, ift M X-
coperfect over S, then the above embedding A shows that § satisfies dcc on
cyclic left ideals, hence S is right perfect also in this case.

THEOREM 4.3. Let M be a module with S = End M. Assume that M is
finitely generated, or more generally, that there is a finite subset X € M such
that anng(M) = anng(X). Then the following statements are equivalent.
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(1) sM is Z-coperfect.
(2) S is right perfect.
(3) M has an indecomposable decomposition and sM is coperfect.

(4) M has a perfect decomposition.

6 IfM N M LN M LN ... is a sequence of endomorphisms, and

(M, fum)N is the direct system given by M,, = M, fum = 1y, ifn = m,
and fum = fa_1... fm if n > m, then the canonical epimorphism w :
D,cn My — lim M, is a split epimorphism.

Proor. (1)=(2),(3): S is a right perfect ring by Lemma 4.2, and M has
then an indecomposable decomposition, see [17, 3.14]. For (2) = (1) we refer
to [25, Cor. 11.7.2].

(3)= (4): By Lemma 4.1 and Theorem 1.1 we can assume that My is
indecomposable and only have to verify that S = End M is local. This follows
immediately from Lemma 4.2.

Finally, Theorem 1.4 yields (4) = (5), and Propositions 2.1 and 2.2 give
S)= D).

We now apply Theorem 4.3 to exhibit some cases in which endocoperfect-
ness already entails a perfect decomposition.

ExamPLESs 4.4. (1) A finitely generated pure-injective module M has a
perfect decomposition if and only if it is endocoperfect.

Indeed, if S = End M, then the pure-injectivity of M implies that S/J(S)
is right self-injective and von Neumann regular [37, Theorem 9]. Moreover, if
sM is coperfect, then §/J(S) is semiartinian and J (S) is left T-nilpotent by
Lemma 4.2. From [6, Cor. 4.6] it follows that S/J(S) is semisimple. Thus S
is right perfect.

(2) Let Mg be amodule which is a finite sum of cyclic invariant submodules.
Then M has a perfect decomposition if and only if it is endocoperfect.

In fact, in this case M = x;R + - - - + x, R where each x; R is also an §-
submodule of M for § = End M. In particular, anng(x;) = {f € S| f(x;) =
0} is then a two-sided ideal foreach 1 < i < r. So, if §M is coperfect, we infer
from S/ anng(x;) = ¢Sx; that S/ anng(x;) is a right perfect ring for any i =
1,...,r,and we conclude by [9, Lemma 2.6] that S/ (anng (x;)N. . .Nanng(x,))
is right perfect. But anng(x;) N ... Nanng(x,) = 0, hence S is right perfect.

(3) Let Mg be a finite direct sum of cyclic modules. Then M has a perfect
decomposition if and only if it is endocoperfect.

Indeed, if M is endocoperfect then each of the cyclic summands of M
is endocoperfect by Lemma 4.1, and then, by the foregoing example, has a
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perfect decomposition. In particular, M is then a direct sum of modules with
local endomorphism ring. Now apply Theorem 1.1.

(4) Let R be a Noether algebra, that is, an algebra which is finitely generated
as a module over its noetherian center K. Then a finitely generated R-module
has a perfect decomposition if and only if it is endocoperfect.

Indeed, if My, is finitely generated, then S = Endz (M) is also a Noether
K -algebra, thus S is left and right noetherian. Moreover, if M is coperfect,
then S is also left semiartinian by Lemma 4.2, so we conclude that S is left
artinian and hence right perfect.

Next, we briefly discuss the relationship between perfect decompositions
and the existence of Add M-covers. Here we adopt the terminology of [16].
Notice that covers are also called minimal right approximations.

REMARK 4.5. It is well known that a class of the form Add M is always
precovering. If M has a perfect decomposition, then Add M is even a covering
class [2, 4.1]. The converse implication holds true in case that M is a direct sum
of finitely presented modules [2, 4.4]. The following is a further case where
the converse implication holds true.

ExAMPLE 4.6. Assume that M is a %-module in the sense of [11], or
more generally, that M is a finitely generated module such that the functor
Homg (M, —) is exact on any pure-exact sequence consisting of M-generated
modules. Then M has a perfect decomposition if and only if the class Add M
is covering.

In fact, since M is finitely generated, the covariant functor Homg (M, —) :
Mod R — Mod § induces an equivalence between Add M and the category
of projective S-modules and turns Add M-covers into projective covers. So,
every right S-module of the form Hom(M, X) for some X € Mod R has a
projective cover.

Let us now verify condition (5) in Theorem 4.3. Let M i> M i> M

N ... be a sequence of endomorphisms. We apply the functor H =
Hompz (M, —) and consider the endomorphisms f* = H(f;) : S — § acting
on § as left multiplication by f;. We obtain the following commutative diagram
with exact rows

0— SMN) ST ARN st s Cs —0

: y !

0 —> H(D,en Ma) L5 H(@D, oy M) L2 H(lim M,) —> 0

neN
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where the maps 1 — f and 7 in the second row are defined as in the proof of
Proposition 2.1, and the map 1 — f* in the first row is defined as 1gn — f*
with f* the S-homomorphism given by the matrix

0 ...
o0 L.
0 fr 0

0 £

By a well-known argument of Bass [7] we know that Cy is flat. We then deduce
that Cy is projective since it has a projective cover by the above considerations.
So the above sequences split, and applying — ® s M, we obtain a commutative
diagram

00— SN ey LM e g pf — » CRM —> 0

- Lk

0 7 @neN M, - @neN M, = H_r)nM,, 0

from which we infer that 7 splits.
Let us now push the arguments in Theorem 4.3 a little further.

THEOREM 4.7. Let M be a module with S = End M. Assume that M is
a direct sum of finitely generated modules. Then the following statements are
equivalent.
(1) sM is Z-coperfect.
(2) M has a perfect decomposition.

(3) Endg(M®) is von Neumann regular modulo its Jacobson radical for
every cardinal R.

(4) Endg(M®)) is von Neumann regular modulo its Jacobson radical.

Proor. Write M = ,_, M; with finitely generated modules M;.

(1) = (2): Applying Lemma 4.1 and Theorem 4.3 to all indices i € I, we
getadecomposition M = @;c; X for some family (X;);c, of indecomposable
modules with local endomorphism ring. That this family is right T -nilpotent
follows from [22, Prop. E].

(2) = (1) holds by Corollary 2.3, and (2) = (3) by Theorem 1.1. (3) = (4)
is obvious. So, it remains to prove (4) = (2): Let us denote A = Endz (M ®0)).
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Since End (Mim")) is of the form eAe for some idempotent e € A, we have
that Endg (Mi(x“)) is also von Neumann regular modulo its Jacobson radical.
But, since M; is R-finitely generated, Endg (M l.(x")) is isomorphic to the ring of
column-finite N x N-matrices with entries in Endg (M;). By [12, Theorem 1]
we infer that Endg(M;) is a right perfect ring, for all i € I. Arguing as in
implication (1) = (2), we conclude that M, is a direct sum of indecomposables
with local right perfect endomorphism ring. There is no loss of generality in
assuming from now on that all the M; are indecomposable with local right
perfect endomorphism ring. Then, we need to prove that the family (M;);<; is

right T-nilpotent, for which we adapt the argument in the proof of [12, Prop. 1].

Let M;, l) M;, L M; i) ... be a sequence of non-isomorphisms,

possibly with some of the indices i; repeated. We introduce the new set of
indices A = I x N and define M(; ;) = M; for all (i,n) € A. Now M®) =
@ i.nyea M.y and every element of A can be identified with a column-finite
A x A-matrix (f[(i,m),(j,n)])a where f[(i,m),(j,n)] S HOIIlR (Mj, M,) for all pairs
[(i, m), (j,n)]. We choose f € A such that its [(ix+1, kK + 1), (ix, k)]-entry
is fr for every k = 1,2, ..., while the remaining entries are zero. Since
A/J(A) is von Neumann regular, thereis a g € A suchthat f — fgf € J(A).
Then the [(ix+1, kK + 1), (ix, k)]-entry of f — fgf is fx — fr&k fx,» Where g :
M;.,, —> M, is the [(ix, k), (ix+1, k + 1)]-entry of g. But, since f is not an
isomorphism, gy f is in the Jacobson radical of Endg (M;,) and, hence, there
is a hy € Endg(M;,) such that (IM,-k — g fihy = lM,.k. If we now take the
h € A whose [(ix, k), (ix, k)]-entryis hy forallk = 1, 2, ..., and the remaining
entries are zero, then direct calculation shows that (f — fgf)h is an element
of J(A) whose [(ix+1, k+ 1), (ix, k)]-entry is f forallk = 1,2, .... By using
Zelmanowitz’s criterion from [35, Corollary 1], which is valid here since all
the M; ) are finitely generated, we conclude that f, ... fi = O for n large
enough.

Asan application, we obtain a new characterization of right pure-semisimple
rings, which is related to results in [34], [27], [2]. Recall that R is said to be
right pure-semisimple if every right R-module is pure-injective.

COROLLARY 4.8. Let R be any ring, {M; | i € I} be a family of represent-
atives, up to isomorphism, of the finitely presented right R-modules and put
M = @1 M;. The following assertions are equivalent:

(1) R is a right pure-semisimple ring.
(2) Endg(M®) is von Neumann regular modulo its Jacobson radical.

PrOOF. (1)=>(2): Since M ™0 is a pure-injective module, the implication
follows from the well-known fact that pure-injective modules have semiregular
endomorphism ring.
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(2)= (1): In this case, every finite matrix subgroup is clearly a finitely
generated endosubmodule of M, for details see [2, Section 3]. Since, by The-
orem 4.7, s M is coperfect, we conclude that My is X-pure-injective. But then
every pure-projective right R-module, as an object of Add M, is pure-injective.
Therefore R is right pure-semisimple (cf. [26, Theorem 2.1])

5. Endocoperfect CS-modules

This last section is devoted to another case where endocoperfectness already
entails a perfect decomposition, namely the case in which M is a CS-module.
Recall that a module My, is said to be a CS-module (or an extending module) if
every submodule U of M is an essential submodule of some direct summand
N of M. We further say that a submodule N of M is an essentially closed
submodule if it has no proper essential extensions in M. We can then rephrase
the above definition by saying that M is a CS-module if and only if every
essentially closed submodule is a direct summand.

The investigations in Section 3 will be very useful in this context. In fact,
the following is a straightforward observation.

REMARK 5.1. Let M be amodule and N a submodule of M. If the inclusion
N < N + X is a split monomorphism for every cyclic submodule X € M,
then N is essentially closed in M.

So, as a first consequence of Corollary 3.5, we rediscover the following
result.

COROLLARY 5.2 (Okado). If M is a CS-module over a ring R satisfying the
ascending chain condition on ideals of the form anng (x) withx € M, then M
is a direct sum of uniform modules.

ProoF. The CS-condition and Corollary 3.5 imply that the union of every
chain of direct summands of M is a direct summand. Then [28, Lemma 2.16
and Theorem 2.17] yield that M is a direct sum of indecomposables, which
are necessarily uniform.

Similarly, the following is an immediate consequence of Proposition 3.6.

COROLLARY 5.3. If My is an endocoperfect CS-module, then M is a direct
sum of uniform modules.

We now want to show that endocoperfect CS-modules even have a perfect
decomposition.
LEMMA 5.4. Let M be a module which is coperfect over S = End M.
(1) Foreach f € S and each x € M there aren € N and g € S such that

(I—=gfHf"(x) =0.
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(2) Let M be uniform and f € S. Then f is not a monomorphism if and
only if M = |, \ Ker 7.

Proor. (1) follows immediately from Proposition 2.2.

(2) The if-part s clear. For the only-if-part, we assume that thereisanx € M
such that f"(x) # O for all n € N. Then by statement (1) there is g € S such
that 1 — gf is not a monomorphism. Since Ker(1 — gf) NKer gf = 0and M
is uniform, we infer that gf and f are monomorphisms.

THEOREM 5.5. A CS-module has a perfect decomposition if and only if it is
coperfect over its endomorphism ring.

Proor. By Theorem 1.1 we have to show that every endocoperfect CS-
module has a decomposition in modules with local endomorphism ring. In
view of Corollary 5.3 and Lemma 4.1, it only remains to prove that the endo-
morphism ring § of any endocoperfect uniform module M is local.

We first show that J(S) = {f € S | f is not a monomorphism}. The
inclusion C follows immediately from statement (1) in Lemma 5.4. For the
other inclusion, we consider f € S which is not a monomorphism and take an
arbitrary g € S. Then g f is not amonomorphism, so Lemma 5.4 tells that M =
U,en Ker(gf)". But then b = ), \(gf)" is a well-defined endomorphism
which is inverse to 1 — gf. This shows that f € J(S).

Now we have only to verify that non-isomorphisms f € S cannot be mono-
morphisms. Indeed, if f is a monomorphism, then so is f” forany n € N. So,
if we choose x € M together with an integer n € N and an endomorphism
g € Ssuchthat (1 —gf)(f"(x)) = 0, we see that 1 — gf is not a monomorph-
ism and therefore belongs to J(S). Hence gf = 1 — (1 — gf) is invertible and
f is a split monomorphism. Thus f is an isomorphism.

The above results, combined with the work of Gomez Pardo and Guil
Asensio [19], [18], imply that every £-CS-module is endocoperfect. But they
also yield a new class of CS-modules with perfect decomposition. In fact,
endocoperfect CS-modules need not be X-CS, as shown by the following ex-
ample.

ExaMPLE 5.6. Thering R = ( g E) is two-sided artinian and right CS, but

(R ® R)g isnot CS, see [23]. So R is an endocoperfect CS-module which is
not X-CS.

N. V. Dung has shown in [15, 4.3] that if a CS-module has an indecompos-
able decomposition M = P, _x X that complements maximal direct sum-
mands, then the family (X )xex is locally semi-T-nilpotent. However, in gen-
eral, (Xp)rex will not be locally T-nilpotent. In fact, there are CS-modules



42 LIDIA ANGELERI HUGEL AND MANUEL SAORIN

with a decomposition in modules with local endomorphism ring (hence satis-
fying the above assumption) that are not endocoperfect and thus do not have a
perfect decomposition.

ExAMPLE 5.7. The power series ring R = K[[x]] over a field K is a local
non-artinian PID, and therefore a CS-ring by [14, 12.10]. So Ry is a non-
endocoperfect CS-module with local endomorphism ring. This also proves
that, in Okado’s result (cf. Corollary 5.2), the decomposition is not perfect in
general.
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