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SHORT MODULES AND ALMOST
NOETHERIAN MODULES
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Abstract

It is proved that, for any ring R, a right R-module M has the property that, for every submodule
N , either N or M/N is Noetherian if and only if M contains submodules K ⊇ L such that M/K

and L are Noetherian and K/L is almost Noetherian.

1. Short modules and almost Noetherian modules

All rings are associative with identity and all modules are unital right modules.
Let R be any ring. In [11], Sarath defines an R-module M to be tall if M

contains a submodule N such that N and M/N are both non-Noetherian. We
shall call an R-module short if it is not tall. Thus a module M is short if and
only if, for each submodule N of M , either N or M/N is Noetherian. Clearly
every Noetherian module is short. As we shall see below, it is easy to produce
examples of short modules which are not Noetherian.

Following [2], we call an R-module M almost Noetherian if every proper
submodule ofM is finitely generated. Clearly a moduleM is almost Noetherian
if every proper submodule ofM is Noetherian. Clearly also, almost Noetherian
modules are short. It is proved in [6, Theorem 2.2] that if Z is the ring of
rational integers then a Z-module M is almost Noetherian if and only if M is
Noetherian or is isomorphic to the Prüfer p-group Z(p∞) for some prime p.
In [2, Theorem 2.1], Armenderiz characterized all commutative rings R such
that the ring of fractions of R is an almost Noetherian R-module. In particular,
if R is a discrete valuation ring then the field of fractions K of R is an almost
Noetherian R-module, so that K is a short R-module which is not Noetherian.

In [13], an R-module M is called almost finitely generated (a.f.g.) if M is
not finitely generated as an R-module but every proper R-submodule of M

is finitely generated. (Note that in [5], a.f.g. modules are called “Jónsson w0-
generated modules”.) Weakley [13] proved that if R is a commutative ring and
M is an a.f.g. R-module then P = {r ∈ R : rM = 0} is a prime ideal of R.
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Moreover, the (R/P )-module M is divisible and is either torsion or torsion-
free. If M is a torsion-free (R/P )-module then M is isomorphic to the field of
fractions of the domain R/P . Otherwise, M is an Artinian module such that
M ∼= M/N for every proper submodule N of M . For more information on
a.f.g. modules see [5], [8] and [13].

Note the following elementary result.

Proposition 1.1. Let R be any ring and let M be an Artinian R-module.
Then M contains an almost Noetherian submodule.

Proof. Suppose that M is not Noetherian. Then the non-empty collection
of submodules L of M such that L is not Noetherian has a minimal member
N . Clearly N is almost Noetherian.

We mention next two related results. The first is simply a restatement of
[11, Theorem 2.7]. For the definition and properties of Krull dimension see [9,
Chapter 6].

Proposition 1.2. The following statements are equivalent for a ring R.

(i) Every right R-module with Krull dimension is Noetherian.

(ii) Every short right R-module is Noetherian.

(iii) Every almost Noetherian right R-module is Noetherian.

A ring R is called a right V -ring if every simple right R-module is injective.
Kaplansky proved that a commutative ring is a (right) V -ring if and only if R is
von Neumann regular (see [10, Theorem 6]). Yousef [14, Theorem 1] proved
that if R is a right V -ring then every right R-module with Krull dimension
is Noetherian. By Proposition 1.2 it follows that if R is a right V -ring then
every short right R-module is Noetherian. Bass [3, Theorem P] proved that
if R is a right perfect ring then every non-zero right R-module contains a
maximal submodule and hence every almost Noetherian module is Noetherian.
By Proposition 1.2 it follows that if R is a right perfect ring then every short
right R-module is Noetherian.

For commutative rings we have the following result characterising when
every short module is Noetherian.

Proposition 1.3. The following statements are equivalent for a commut-
ative ring R.

(i) Every short R-module is Noetherian.

(ii) Every Artinian module is Noetherian.

(iii) No homomorphic image of R is isomorphic to a dense subring of a
complete local Noetherian domain of dimension 1.
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Proof. By Proposition 1.2, [1, Theorem 3.10(ii)] and [4, Proposition 4.4].

Let R be any commutative Noetherian domain which is not a field. Let P
be maximal in the collection of non-maximal prime ideals of R. Then R/P

is a one-dimensional Noetherian domain. The ring R/P is isomorphic to a
dense subring of a complete local Noetherian domain of dimension 1. By
Proposition 1.3, there exist short R-modules which are not Noetherian.

In general, not every short module is almost Noetherian. This is a con-
sequence of the following result.

Lemma 1.4. Let R be any ring. Then any extension of a Noetherian R-
module by a short R-module is short.

Proof. Let K be a Noetherian submodule of an R-module M such that
M/K is short. Let N be any submodule of M . Then N ∩ K is Noetherian.
If N/(N ∩ K) is Noetherian then so too is N . Suppose that N/(N ∩ K) is
not Noetherian. Then (N +K)/K is a non-Noetherian submodule of the short
module M/K . It follows that M/(N + K) is Noetherian. But (N + K)/N ∼=
K/(N ∩ K) which is Noetherian. Thus M/N is Noetherian.

Corollary 1.5. Let R be any ring and let an R-module M = M1 ⊕M2 be
a direct sum of a short submodule M1 and a Noetherian submodule M2. Then
M is short.

Proof. By Lemma 1.4.

We have already noted that a Z-module M is almost Noetherian if and
only if M is Noetherian or M is isomorphic to the Prüfer p-group Z(p∞),
for some prime p. By Lemma 1.4, for each prime p, the Z-module Mp =
{m/pn : m, n ∈ Z, n ≥ 0} is a short Z-module which is not almost Noetherian.
Alternatively by Corollary 1.5, the Z-module Z⊕Z(p∞) is short but not almost
Noetherian, for every prime p.

Lemma 1.6. Let R be any ring. Then any extension of a short R-module by
a Noetherian R-module is short.

Proof. Let K be a submodule of an R-module M such that K is short
and M/K is Noetherian. Let N be any submodule of M . Then (N +K)/K is
Noetherian and hence so too is N/(N ∩ K). If N ∩ K is Noetherian then so
too is N . Suppose that N ∩ K is not Noetherian. By hypothesis, K/(N ∩ K)

is Noetherian and hence M/(N ∩K) is Noetherian. This implies that M/N is
Noetherian.

Corollary 1.7. Let R be any ring and let M be an R-module such that M
contains submodulesN ⊇ LwithN/L short and bothM/N andLNoetherian.
Then M is short.
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Proof. By Lemmas 1.4 and 1.6.

It is clear that non-Noetherian almost Noetherian modules do not contain
maximal submodules. We show next that all other non-zero short modules do
contain maximal submodules.

Proposition 1.8. Let R be any ring and let M be a non-zero short R-
module. Then M is almost Noetherian or M contains a maximal submodule.

Proof. Suppose thatM is not almost Noetherian. Then there exists a proper
submodule L of M such that L is not Noetherian. Because M is short, the
module M/L is Noetherian and hence M/L (and also M) contains a maximal
submodule.

Recall that a module M has finite uniform dimension if M does not contain
a direct sum of an infinite number of non-zero submodules.

Lemma 1.9. Let R be any ring. Then any short R-module has finite uniform
dimension.

Proof. Suppose that a module M contains an infinite direct sum N1 ⊕N2 ⊕
N3 ⊕ . . . of non-zero submodules Ni(i ≥ 1). Let N = N1 ⊕ N3 ⊕ N5 ⊕ . . ..
Clearly the submodule N is not Noetherian Moreover, N2 ⊕ N4 ⊕ N6 ⊕ . . .

embeds in M/N so that the module M/N is not Noetherian. Thus M is not
short.

Lemma 1.10. Let R be any ring and let M be a short R-module. Then every
submodule and every homomorphic image of M is short.

Proof. Clear.

It is not the case, in general, that the direct sum of two short modules is
short. We observed above that, for any prime p, the Z-module Z(p∞) is almost
Noetherian and hence short but the Z-module Z(p∞) ⊕ Z(p∞) is clearly not
short. We complete this section by characterising short modules in terms of
almost Noetherian modules.

Theorem 1.11. Let R be any ring. An R-module M is short if and only
if M contains submodules N ⊇ L such that N/L is almost Noetherian and
M/N and L are both Noetherian.

Proof. The sufficiency follows by Corollary 1.7. Conversely, suppose that
M is a non-Noetherian short module. There exists a submodule H of M such
that H is not finitely generated. By Lemmas 1.9 and 1.10 every factor module
of H has finite uniform dimension. Shock [12, Theorem 3.7] proved that a
non-finitely generated module X, such that Y/Z has a maximal submodule for
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all submodules Y � Z of X, contains a submodule U such that the module
X/U has non-finitely generated socle. Hence there exist submodules N �L of
H such that the non-zero module N/L does not contain a maximal submodule.
But Lemma 1.10 gives that N/L is short. By Proposition 1.8 N/L is almost
Noetherian. Because N/L is not Noetherian we have N is not Noetherian and
hence M/N is Noetherian. Finally, because N/L is not Noetherian we have
M/L is not Noetherian and hence L is Noetherian. This completes the proof.

2. Properties of short modules

In this section we shall obtain some properties of short modules over an arbit-
rary ring R. The next result improves Lemma 1.9.

Proposition 2.1. Short modules have Krull dimension.

Proof. By the proof of [11, Theorem 2.7(i) ⇒ (ii)].

For any ring R,Soc(RR) will denote the right socle of R. Proposition 2.1
has the following consequence for rings.

Corollary 2.2. Let S be a semiprime ring. Then the right S-module S is
short if and only if S is right Noetherian.

Proof. The sufficiency is clear. Conversely, suppose that S is a short S-
module. If S/E is a Noetherian module for every essential right ideal E of S,
Goodearl [7, Proposition 3.6] proved that the ring S/Soc(Ss) is right Noeth-
erian. But Soc(Ss) is Noetherian by Lemma 1.9. Thus S is right Noetherian.
Now suppose that there exists an essential right ideal E′ of S such that S/E′ is
not Noetherian. This implies that E′ is a Noetherian S-module. By [9, Propos-
ition 6.3.5] S is a right Goldie ring and by [9, Proposition 2.3.5] there exists an
element c of E′ such that S ∼= cS. It follows that S is a right Noetherian ring.

It is easy to give an example of a non-semiprime ring S such that the right
S-module S is short but S is not right Noetherian.

Example 2.3. Let p be any prime and let S be the trivial extension of the
Z-module Z(p∞) by Z. Then S is a commutative ring such that the S-module
S is short but not Noetherian.

Proof. Note that S consists of all ordered pairs (a,m), where a ∈ Z,m ∈
Z(p∞), and addition and multiplication are defined by

(a,m)+(a′,m′) = (a+a′,m+m′), and (a,m)(a′,m′) = (aa′, am′ +a′m)

for all a, a′ ∈ Z,m,m′ ∈ Z(p∞). It is easy to check that S is a commutative
ring and that I = {(0,m) : m ∈ Z(p∞)} is an ideal of S such that S/I ∼= Z. Let
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J be an ideal of S. Because Z(p∞) is a divisible Abelian group, one can easily
check that J ⊆ I or I ⊆ J . If J � I then J is finite and hence Noetherian.
If I ⊆ J then S/J is Noetherian. Thus S is a short S-module. That S is not
Noetherian is clear because I is not a finitely generated ideal.

Proposition 2.4. Short modules are countably generated.

Proof. Let M be a short module over a ring R. Suppose that M is not
finitely generated. Let 0 �= m1 ∈ M . Because M �= m1R, there exists m2 ∈
M\m1R. Also becauseM �= m1R+m2R, there existsm3 ∈ M\(m1R+m2R).
This process produces a proper ascending chain m1R � m1R + m2R � · · · of
submodules of M . Let N = ∑∞

n=1 mnR. Clearly the submodule N is not
Noetherian. Thus M/N is Noetherian and in particular M/N = (x1 +N)R +
. . .+ (xk +N)R for some positive integer k and elements xi ∈ M(1 ≤ i ≤ k).
Finally M = ∑∞

n=1 mnR + ∑k
i=1 xiR.

Proposition 2.5. Let K,L be submodules of a short module M such that
M = K + L. Then there exists a finitely generated submodule K1 of K such
that M = K1 + L or there exists a finitely generated submodule L1 of L such
that M = K + L1.

Proof. If K is finitely generated then set K1 = K . Suppose that K is not
finitely generated. Because M is short, the module M/K is finitely generated.
But M/K ∼= L/(L∩K), so that L/(L∩K) is finitely generated. It follows that
there exists a finitely generated submoduleL1 ofL such thatL = L1+(L∩K).
In this case, M = L + K = L1 + (L ∩ K) + K = L1 + K .

A module M is called locally Noetherian provided every finitely generated
submodule of M is Noetherian. For example, every right module over a right
Noetherian ring is locally Noetherian and so too is any semisimple module
over an arbitrary ring.

Proposition 2.6. A short module is finitely generated or locally Noetherian.

Proof. Suppose that M is not finitely generated. Let N be any finitely
generated submodule of M . Clearly M/N is not finitely generated so that, by
hypothesis, N is Noetherian.

Corollary 2.7. Let M be a short module which is not finitely generated
and let K,L be submodules of M . Then K +L is finitely generated if and only
if both K and L are finitely generated.

Proof. The sufficiency is clear and the necessity follows by Proposition 2.6.

Proposition 2.8. Let M be a short module and let K,L be submodules
of M such that K ∩ L is finitely generated. Then either K or L is finitely
generated.
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Proof. Suppose that K and L are not finitely generated. It follows that
L is not Noetherian and hence M/L is Noetherian. Because K/(K ∩ L) ∼=
(K+L)/L, the module K/(K∩L) is finitely generated. Finally K not finitely
generated implies that K ∩ L is not finitely generated. The result follows.

Note that if M is a short module which is not finitely generated and K is a
finitely generated submodule of M then Proposition 2.6 gives that K ∩L is fi-
nitely generated for any submoduleL ofM , i.e. the converse of Proposition 2.8
holds.
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