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THE MONGE SHUFFLE FOR TWO-POWER DECKS

ARNE LEDET

Abstract
We consider the so-called Monge shuffle for a deck with 2k cards, and describe the permutation
group generated by the two different Monge shuffles.

Introduction

The Monge shuffle – named after Gaspard Monge (1746–1818), who wrote
about it in 1773 – is a method for shuffling a deck of cards, in which the cards
are taken off the top of the deck (held in one hand) and placed in the other
hand alternately on the top and bottom of the packet held there. Thus, if we
imagine that the deck has been sorted (from top to bottom) as

♠A, ♠2, ♠3, ♠4, ♠5, ♠6, ♠7, ♠8, ♠9, ♠10, ♠J, ♠Q, ♠K,

♦A, ♦2, ♦3, ♦4, ♦5, ♦6, ♦7, ♦8, ♦9, ♦10, ♦J, ♦Q, ♦K,

♣A, ♣2, ♣3, ♣4, ♣5, ♣6, ♣7, ♣8, ♣9, ♣10, ♣J, ♣Q, ♣K,

♥A, ♥2, ♥3, ♥4, ♥5, ♥6, ♥7, ♥8, ♥9, ♥10, ♥J, ♥Q, ♥K,

a Monge shuffle will put the cards in the following order:

♥K, ♥J, ♥9, ♥7, ♥5, ♥3, ♥A, ♣Q, ♣10, ♣8, ♣6, ♣4, ♣2,

♦K, ♦J, ♦9, ♦7, ♦5, ♦3, ♦A, ♠Q, ♠10, ♠8, ♠6, ♠4, ♠2,

♠A, ♠3, ♠5, ♠7, ♠9, ♠J, ♠K, ♦2, ♦4, ♦6, ♦8, ♦10, ♦Q,

♣A, ♣3, ♣5, ♣7, ♣9, ♣J, ♣K, ♥2, ♥4, ♥6, ♥8, ♥10, ♥Q,

If we simply number the cards 1, . . . , 52, this permutation can be written in
cycle notation as

(1, 27, 40, 7, 30, 12, 21, 37, 45, 49, 51, 52) ×
(2, 26, 14, 20, 17, 35, 44, 5, 29, 41, 47, 50)(3, 28, 13, 33, 43, 48) ×

(4, 25, 39, 46)(6, 24, 15, 34, 10, 22, 16, 19, 36, 9, 31, 42) ×
(8, 23, 38)(11, 32).
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Hence, twelve successive Monge shuffles will return the deck to its original
order. (This is at best of theoretical interest, though, since actually performing
a Monge shuffle on an ordinary deck of cards is rather slow and tedious.) Also,
18 is a fixed point.

Remark. The Monge shuffle is considered for an even-numbered deck in
[6, pp. 245–247], as well as in [1, Ch. XI]. Both accounts include proofs
of Proposition 1 below, and in addition Ball gives many references to earlier
(mostly nineteenth-century) papers. A brief description can also be found in [3,
pp. 321–323]. An alternative way to approach the Monge shuffle, again with
a proof of Proposition 1, is given in [5, §4], which also provides a way of
determining the cycle structure of the shuffle.

Basic results

A Monge shuffle of an odd-numbered deck leaves the bottom card in place,
whereas a Monge shuffle of an even-numbered deck moves the bottom card to
the top. In the case of an odd-numbered deck, we can therefore simply ignore
the bottom card.

Now, let n be even, and number the n-card deck as 1, 2, . . . , n − 1, n, with
1 being the bottom card. The Monge shuffle is then the permutation

1 �→ n,

3 �→ n − 1,

5 �→ n − 2,

...

n − 1 �→ 1
2n + 1,

2 �→ 1,

4 �→ 2,

6 �→ 3,

...

n �→ 1
2n.

The trick to dealing with the Monge shuffle (see [2, §5]) is to look at the inverse
instead: This is the permutation

1 �→ 2,

2 �→ 4,

3 �→ 6,

...

1
2n �→ n,

1
2n + 1 �→ n − 1,

1
2n + 2 �→ n − 3,

1
2n + 3 �→ n − 5,

...

n �→ 1.

The first column here is just multiplication by 2, whereas the second column
is multiplication by −2 modulo 2n + 1.
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Consequently, if we identify a and −a in Z/(2n + 1), the inverse Monge
shuffle is just multiplication by 2, and we have

Proposition 1. For an even number n, the order of the n-card Monge
shuffle equals the order of 2 in (Z/(2n + 1))∗/ ± 1, i.e., it is the smallest
positive k for which 2k ≡ ±1 (mod 2n + 1).

The sign of the n-card Monge shuffle (n even) is (−1)n/2.
The following table lists the order of the Monge shuffle for even-numbered

decks of up to 104 cards:

n |m|
2 2
4 3
6 6
8 4

10 6
12 10
14 14
16 5
18 18
20 10
22 12
24 21
26 26

n |m|
28 9
30 30
32 6
34 22
36 9
38 30
40 27
42 8
44 11
46 10
48 24
50 50
52 12

n |m|
54 18
56 14
58 12
60 55
62 50
64 7
66 18
68 34
70 46
72 14
74 74
76 24
78 26

n |m|
80 33
82 20
84 78
86 86
88 29
90 90
92 18
94 18
96 48
98 98

100 33
102 10
104 45

The Monge shuffle group

For a given n, there are two (equivalent) n-card Monge shuffles, depending
on how the deck is held in the hand – face up or face down. Or, purely as
permutations, whether the cards are numbered from top to bottom or from
bottom to top.

For an even-numbered deck, one of these is

1 �→ n,

3 �→ n − 1,

5 �→ n − 2,

...

n − 1 �→ 1
2n + 1,

2 �→ 1,

4 �→ 2,

6 �→ 3,

...

n �→ 1
2n,
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as before, whereas the other is

n �→ 1,

n − 2 �→ 2,

n − 4 �→ 3,

...

2 �→ 1
2n,

n − 1 �→ n,

n − 3 �→ n − 1,

n − 5 �→ n − 2,

...

1 �→ 1
2n + 1.

Let us denote these by m1 and m2, respectively. They generate a subgroup Mn

of Sn.

Example. Consider this ‘Monge shuffle group’ for a six-card deck. Here,

m1 = (1, 6, 3, 5, 4, 2), m2 = (1, 4, 2, 3, 5, 6).

It follows immediately that M6 is transitive. Also,

m1 ◦ m2 = (1, 2, 5, 3, 4) and m2
1 ◦ m2 = (2, 4, 6, 3),

from which we conclude that [S6 : M6] | 6. Since there are no subgroups of
S6 of index 3, and since M6 is not an even subgroup, we must therefore have
M6 = S6 or M6 � S5.

Checking the conjugates of m1 ◦m2 under powers of m1 and m2 shows that
the 5-Sylow subgroup generated by m1 ◦m2 has only six conjugates in M6. As
S6 has more than six 5-Sylow subgroups, we conclude that M6 � S5.

Remark. In [2], another group of Monge shuffles is briefly considered:
There, the second Monge shuffle differs from the first by depositing the second
card underneath the first, rather than on top of it.

If we let r denote the permutation of the deck that reverses the order of
the cards, it is clear that m2 = r ◦ m1 ◦ r . Also, the two Monge shuffles
considered by Diaconis & al. are then m1 and r ◦ m1. Thus, the two ‘Monge
shuffle groups’ coincide if and only if r ∈ Mn. This appears to be the case
for ‘most’ n, although not for all: We prove in the next section that r /∈ Mn

when n = 2k for k odd and > 1. Computational evidence (i.e., a half-hundred
cases checked by brute force with Maple 7) suggests that these may be the
only exceptions.

Powers of two

We will consider the case n = 2k , where the group Mn turns out to be fairly
small.
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First a trivial observation, also made in [1]:

Lemma. A Monge shuffle on a 2k-card deck has order k + 1.

This is clear, since of course 2k+1 is the smallest power of 2 that is ≡ ±1
(mod 2k+1 + 1).

We can also note that if N > 2k , then the N -card Monge shuffle has order
> k + 1.

Proposition 2. Let n = 2k be a power of 2. Then

Mn � F2�k/2�
2 � Ck+1.

(Here, �x� denotes the largest integer ≤ x, and Cd is the cyclic group of order
d.)

Proof. Inspired by the case of the Faro shuffle (see [2, Lemma 4]), we
number the cards from 0 through 2k − 1 and represent them in binary. We then
interpret the binary expansion as a vector in Fk

2, i.e., if

b =
k−1∑
i=0

bi2
i

with bi ∈ {0, 1}, we associate to it the vector

b = (b̄k−1, . . . , b̄0) ∈ Fk
2.

The actions of m1 and m2 are now given by

m1: (bk−1, . . . , b1, b0) �→
{

(1, 1 + bk−1, . . . , 1 + b1), b0 = 0

(0, bk−1, . . . , b1), b0 = 1

and

m2: (bk−1, . . . , b1, b0) �→
{

(1, bk−1, . . . , b1), b0 = 0

(0, 1 + bk−1, . . . , 1 + b1), b0 = 1

It follows that m−1
2 ◦ m1 acts as addition by (1, 1, . . . , 1, 0) (on Fk

2).
We note: If f is the function on Fk

2 given by addition by (ck−1, . . . , c0), then
m1 ◦ f ◦ m−1

1 is given by addition by (c0, c0 + ck−1, . . . , c0 + c1).
Consequently, Mn is the semi-direct product of a subspace of Fk

2 and Ck+1 =
〈m1〉, with the subspace being generated by m−1

2 ◦ m1 and its conjugates.
For k = 1, this means that M2 = C2.
For k = 2, there are three conjugates, and we get M4 = V4 � C3 = A4.
For k = 3, there are two conjugates, and we get M8 = V4 � C4.
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For k > 3, the conjugates of (1, 1, . . . , 1, 0) are

(1, 1, . . . , 1, 0), (0, 1, 1, . . . , 1),

(1, 1, 0, . . . , 0), (0, 1, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1, 1),

and these generate a (k−1)-dimensional subspace if k is odd (since the first two
are obviously in the span of the remaining k −1), and the entire k-dimensional
space if k is even (since the first two are not in the span of the remaining k −1,
by a parity argument).

Corollary. (a) A sequence of k + 1 Monge shuffles (in any combination)
on a 2k-card deck is an involution.

(b) If k is even, the group M2k contains all involutions of the form

x �→ x + a,

where a ∈ Fk
2. In particular, it contains the permutation that reverses the order

of the 2k cards. This permutation is

m1 ◦ (m2 ◦ m1)
k/2.

(c) If k > 1 is odd, the group M2k contains only those involutions of the
form

x �→ x + a

for which the entries in a add up to 0. In particular, it does not contain the
permutation that reverses the order of the 2k cards.

(d) M2k is transitive.

Proof. (b) The first part is clear. The second follows by writing m2 =
m1 ◦ (m−1

1 ◦ m2) = m1 ◦ (m−1
2 ◦ m1).

(c) The only thing that needs proving is that m(k+1)/2
1 is not given by addition

with some (ak−1, . . . , a0) ∈ Fk
2. This, however, is clear, since the image of

(0, 0, . . . , 0) is (0, . . . , 0, 1, . . . , 1) with (k + 1)/2 1’s, whereas the image of
(1, 1, . . . , 1) is (0, . . . , 0, 1, . . . , 1) with (k − 1)/2 1’s.

Remarks. (1)The most obvious way of ‘switching’from one Monge shuffle
to the other is to turn the deck over. Thus, if we have 2k cards, with k even,
performing k + 1 Monge shuffles, flipping the deck over between any two,
will reverse the order of the cards. This is easily confirmed by hand with four
or sixteen cards.

(2) It should be clear from the proof of Proposition 2 that all the involutions
in M2k given by addition in Fk

2 are products of k + 1 Monge shuffles.
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(3) If k is even, the 2k−1-card ‘cut’, i.e., the permutation that interchanges
the top and bottom halves of a 2k-card deck, is in M2k , and can in fact be
obtained as

m2 ◦ (m2 ◦ m1)
k/2.

If k > 1 is odd, this cut is not in M2k .
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