
MATH. SCAND. 97 (2005), 309–318

ASYMPTOTICALLY SHARP DIMENSION
ESTIMATES FOR k-POROUS SETS

E. JÄRVENPÄÄ, M. JÄRVENPÄÄ, A. KÄENMÄKI
and V. SUOMALA∗

Abstract

In Rn, we establish an asymptotically sharp upper bound for the upper Minkowski dimension of
k-porous sets having holes of certain size near every point in k orthogonal directions at all small
scales. This bound tends to n− k as k-porosity tends to its maximum value.

1. Introduction and notation

The well-known results on dimensional properties of porous setsA ⊂ Rn hav-
ing holes of certain size at all small scales deal with the Hausdorff dimension,
dimH, and the following definition of porosity:

(1.1) por(A) = inf
x∈A por(A, x),

where

(1.2) por(A, x) = lim inf
r↓0

por(A, x, r)

and
(1.3)

por(A, x, r) = sup{ρ : there is z ∈ Rn such that B(z, ρr) ⊂ B(x, r) \ A}.
Here B(x, r) is a closed ball with centre at x and radius r > 0. Mattila [8]
proved that if por(A) is close to the maximum value 1

2 , then dimH(A) cannot
be much bigger than n − 1. Salli [12], in turn, verified the corresponding
fact for both the upper Minkowski dimension of uniformly porous sets and
the packing dimension of porous sets, and in addition to this, confirmed the
correct asymptotic behaviour for the dimension estimates when porosity tends
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to 1
2 . For other related results on porous sets and measures, see [1], [2], [4],

[5], [7], [10], and [11].
Clearly, n − 1 is the best possible upper bound for the dimension of a set

having maximum porosity; any hyperplane serves as an example. Whilst a
hyperplane has holes of maximum size in one direction which is perpendicu-
lar to the plane, a k-dimensional plane has n − k orthogonal directions with
maximum holes. Intuitively, it seems natural to expect that the more such dir-
ections the set has, the smaller its dimension should be. For examples of Cantor
sets, see [12] and [6]. This leads to the following generalisations of (1.1)–(1.3)
introduced in [6]:

Definition 1.1. Let k and n be integers with 1 ≤ k ≤ n. For all A ⊂ Rn,
x ∈ Rn, and r > 0, we set

pork(A, x, r) = sup{� : there are z1, . . . , zk ∈ Rn such that for every i

B(zi, �r) ⊂ B(x, r) \ A and (zi − x) · (zj − x) = 0 if j �= i}.
Here · is the inner product. The k-porosity of A at a point x is defined to be

pork(A, x) = lim inf
r↓0

pork(A, x, r),

and the k-porosity of A is given by

pork(A) = inf
x∈A pork(A, x).

Note that por1(A) = por(A) for all A ⊂ Rn. As verified by Käenmäki and
Suomala in [6] as a consequence of a conical density theorem, Definition 1.1
gives necessary tools for extending Mattila’s result to the setting described
heuristically above. Indeed, it turns out that the Hausdorff dimension of any
set having k-porosity close to 1

2 cannot be much bigger than n − k, see [6,
Theorem 3.2]. In this paper we generalise this result for the upper Minkowski
and packing dimensions using completely different methods. Our main res-
ults, Theorem 2.5 and Corollary 2.6, may be viewed as extensions of Salli’s
results to k-porosity as well. However, in the case k = 1 the proof we give is
somewhat simpler than that of Salli’s. The dimension estimates we establish
are asymptotically sharp, see Remark 2.7.

We complete this section by introducing the notation we use. For integers
0 ≤ m ≤ n, let G(n,m) be the Grassmann manifold of all m-dimensional
linear subspaces of Rn. When V ∈ G(n,m), the orthogonal projection onto V
is denoted by projV . If 0 < α < 1, V ∈ G(n,m), and x ∈ Rn, we define

X(x, V, α) = {y ∈ Rn : | projV ⊥(y − x)| ≤ α|y − x|},
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where V ⊥ ∈ G(n, n − m) is the orthogonal complement of V . Furthermore,
given V ∈ G(n,m) and 0 < α < 1, we say that a setA ⊂ Rn is (V , α)-planar
if

A ⊂ X(x, V, α)
for all x ∈ A. The set A is called (m, α)-planar if it is (V , α)-planar for some
V ∈ G(n,m).

Let Sn−1 be the unit sphere in Rn. For the half-spaces we use the notation

H(x, θ) = {y ∈ Rn : (y − x) · θ > 0},
where θ ∈ Sn−1 and x ∈ Rn. Moreover, ∂A is the boundary of a set A ⊂ Rn

and A(r) = {x ∈ Rn : dist(x,A) ≤ r} for all r > 0.
There are many equivalent ways to define the Minkowski dimension of

a given bounded set A ⊂ Rn, see [9, §5.3]. For us it is convenient to use
the following: Letting 0 < δ < 1 and i ∈ N, we denote by N(A, δ, i) the
minimum number of balls of radius δi that are needed to cover A. The upper
Minkowski dimension of A is defined by setting

dimM(A) = lim sup
i→∞

logN(A, δ, i)

log(δ−i )
.

It is easy to see that this definition does not depend on the choice of δ. The
Hausdorff and packing dimensions, see [9, §4.8 and §5.9], are denoted by
dimH and dimp, respectively.

2. Dimension estimates for k-porous sets

For the purpose of verifying our main results, Theorem 2.5 and Corollary 2.6,
we need three technical lemmas. The first one, Lemma 2.1, dealing with k-
porous sets, follows easily from the definitions. The remaining ones, Lem-
mas 2.2 and 2.3, are related to (m, α)-planar sets.

For
√

2 − 1 < � < 1
2 , we define

(2.1) t (�) = 1√
1 − 2�

and

(2.2) δ(�) = 1 − � − √
�2 + 2� − 1√

1 − 2�
.

Notice that

(2.3) 0 < δ(�) < 4
√

1 − 2�
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and, in particular, δ(�)→ 0 as �→ 1
2 .

The first lemma is a quantitative version of the following simple fact: As-
suming that pork(A, x, R) > �, there exists z such that B(z, �R) ⊂ B(x,R)\
A. If R is much larger than r , then ∂B(z, �R) ∩ B(x, r) is nearly like a piece
of a hyperplane. Therefore one will not lose much ifA∩B(x, r) \B(z, �R) is
replaced by A∩B(x, r) \H , whereH is a suitable half-space. The advantage
of this replacement is that B(x, r) \H is convex, whilst B(x, r) \B(z, �R) is
not.

Lemma 2.1. Given
√

2 − 1 < � < 1
2 and r0 > 0, assume that A ⊂ Rn

is such that pork(A, x, r) > � for all x ∈ A and 0 < r < r0. Then, taking
t = t (�) as in (2.1), for any 0 < r < r0

2t , x ∈ A, and y ∈ A ∩ B(x, r), there
are orthogonal vectors θ1, . . . , θk ∈ Sn−1 such that for all i ∈ {1, . . . , k}

(2.4) A ∩ B(x, r) ∩H(y + 2δrθi, θi) = ∅,

where δ = δ(�) is as in (2.2).

Proof. The claim follows directly from Definition 1.1 and [6, Lemma 3.1].

Lemma 2.2. For all 0 < α < 1 there is a positive integer M = M(n, α)
such that if C ⊂ Rn is convex, then ∂C can be decomposed intoM parts all of
which are (n− 1, α)-planar.

Proof. Let C ⊂ Rn be convex. For any x ∈ ∂C, we may choose θ(x) ∈
Sn−1 such thatH(x, θ(x))∩C = ∅. This defines a mapping θ : ∂C → Sn−1. Let
θ̃ ∈ Sn−1 andB = B(θ̃, α3 )∩Sn−1. Now, ifx, y ∈ θ−1(B), then |θ(y)−θ(x)| ≤
2
3α. Since x /∈ H(y, θ(y)) and y /∈ H(x, θ(x)), this yields to

dist(y − x, θ(x)⊥) = |(y − x) · θ(x)| ≤ 2
3α|y − x|,

see Figure 1, and so y ∈ X(
x, θ(x)⊥, 2

3α
)
. (Here we use the notation θ(x)⊥

for the orthogonal complement of the line spanned by θ(x).) Combining this
with the fact that θ(x)⊥ ⊂ X

(
0, θ̃⊥, α3

)
implies that y ∈ X(x, θ̃⊥, α), and

hence θ−1(B) is (n− 1, α)-planar. Covering Sn−1 withM = M(n, α) balls of
radius α3 and taking their preimages under θ gives the claim.

The next lemma is used to give a quantitative estimate of how much one
needs to translate a tilted half-space such that it will not intersect a given
neighbourhood of a planar set provided that the untilted half-space does not
meet the neighbourhood.
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Figure 1. Illustration for the proof of Lemma 2.2: The
extreme positions of x and y

Lemma 2.3. Letting 0 < c < 1, 0 < α < sin
(
π
2 − arccos c

)
, and V ∈

G(n,m), suppose that P ⊂ Rn is (V , α)-planar. If 0 < δ ≤ β, x ∈ P(β),
θ ∈ Sn−1 with | projV (θ)| ≥ c, and θ ′ = projV (θ)/| projV (θ)|, then

H(x + c′βθ ′, θ ′) ∩ P(β) ⊂ H(x + δθ, θ),

where c′ = c′(α, c) = 2(sin(arccos c + arcsin α))−1 + 1

sin
(
π
2 − arccos c − arcsin α

) .

Proof. We assume that | projV (θ)| = c. In the case | projV (θ)| > c one
may use a similar argument and show that the number c′ can be replaced by a
smaller one. First observe that P(β) ⊂ X(x, V, α)(2β). Let

A = X(x, V, α)(2β) \H(x + δθ, θ),
w = x + δθ,

and
z = x − 2βθ

sin(arccos c + arcsin α)
,

and take y ∈ A which maximises (y − x) · θ ′, see Figure 2. Now the angle
�wyz is π2 − arccos c − arcsin α and since

|z− w| ≤
(

2

sin(arccos c + arcsin α)
+ 1

)
β,

we may estimate

|(y − x) · θ ′| ≤ |y − z| = |z− w|
sin

(
π
2 − arccos c − arcsin α

) ≤ c′β.
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Figure 2. Illustration for the proof of Lemma 2.3.

The following remark will be useful when proving Theorem 2.5.

Remark2.4. LetA ⊂ Rn, 0 < α < 1, andV ∈ G(n,m). ThenA is (V , α)-
planar if and only if there is a Lipschitz mapping f : projV (A) → V ⊥ (we
identify Rn with the direct sum V + V ⊥) with Lipschitz constant α/

√
1 − α2

such that A is the graph of f . It follows now from the Kirszbraun’s theorem,
see [3, §2.10.43], that A can be extended, that is, there is a (V , α)-planar set
A′ ⊂ Rn such that A ⊂ A′ and projV (A

′) = V .

Now we are ready to verify our main result concerning the upper Minkowski
dimension of sets which are uniformly k-porous with respect to the scale r .

Theorem 2.5. Let 0 < � < 1
2 and r0 > 0. Assuming that A ⊂ Rn is a

bounded set with pork(A, x, r) > � for every x ∈ A and 0 < r < r0, we have

dimM(A) ≤ n− k + c

log 1
1−2�

,

where c = c(n, k) is a constant depending only on n and k.

Proof. The idea of the proof is as follows: Assuming that all the points
in A ∩ B(x, r) are porous and using Lemma 2.1, one finds half-spaces which
do not meet A ∩ B(x, r). After removing these, one is left with a convex set
C ⊂ B(x, r) such that all the points in A ∩ B(x, r) are close to the boundary

ofC and the distance is proportional to r
√

1
2 − �. This implies the claim in the

case k = 1. For k ≥ 2, we divide the boundary ∂C into planar subsets Pi and
repeat the above process for the projections of each of the sets Pi into Rn−1.
As the result we see that A ∩ B(x, r) is close to a (n − 2)-dimensional set.
This procedure may be repeated k times since there are k orthogonal directions
with holes.

Since it is enough to prove the claim for sufficiently large �, we may assume
that

(2.5) log
1

4
√

1 − 2�
>

1

3
log

1

1 − 2�
.
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Let 0 < α < sin
(
π
2 − arccos 1√

k

)
, and let t = t (�) and δ = δ(�) be as in (2.2)

and (2.2), respectively. For any positive integer m with n − k ≤ m ≤ n − 1,
define αm = 2

1
2 (n−k−m+1)α. Moreover, letting c1 = c′(α, 1√

k

)
be the constant

of Lemma 2.3, set c2 = 1 + (c1 + 1)/
√

1 − α2.
Fix x ∈ A and 0 < r < r0

2t . Taking any y ∈ A ∩ B(x, r), let θ(y) ∈ Sn−1

be one of the vectors θ1, . . . , θk ∈ Sn−1 given by Lemma 2.1. Define

C =
⋂

y∈A∩B(x,r)
Rn \H (

y + 2δrθ(y), θ(y)
)
.

Here we could replace Rn withB(x, r). However, our choice makes the induct-
ive step somewhat simpler. Now C is non-empty and convex, and furthermore
by (2.4), A ∩ B(x, r) ⊂ (∂C)(2δr). Using Lemma 2.2, we obtain

∂C =
M(n,αn−1)⋃
i=1

Pn−1,i ,

where the constantM(n, αn−1) depends only on n and αn−1, and each Pn−1,i

is (n− 1, αn−1)-planar. This, in turn, gives that

A ∩ B(x, r) ⊂
M(n,αn−1)⋃
i=1

Pn−1,i (2δr).

If k ≥ 2, then we continue inductively: Let n−k < m ≤ n−1 and suppose
that we are given (m, αm)-planar sets Pm,1, . . . , Pm,lm , where

lm = M(n, αn−1)

n−1∏
j=m+1

M(j, αj ),

such that

A ∩ B(x, r) ⊂
lm⋃
i=1

Pm,i(c
n−m−1
2 2δr).

Consider a positive integer i with 1 ≤ i ≤ lm. Abbreviating P = Pm,i , let
V ∈ G(n,m) be such that P is (V , αm)-planar. For every y ∈ A ∩ B(x, r) ∩
P(cn−m−1

2 2δr), choose orthogonal vectors θ1, . . . , θk ∈ Sn−1 as in Lemma 2.1.
Sincem > n−k, there is θ ∈ {θ1, . . . , θk} for which | projV (θ)| ≥ 1√

k
. Setting

θ ′(y) = projV (θ)/| projV (θ)|, define

C ′ =
⋂

y∈A∩B(x,r)∩P(cn−m−1
2 2δr)

V \H (
projV (y)+ c1cn−m−1

2 2δrθ ′(y), θ ′(y)
)
.
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It follows from Lemmas 2.1 and 2.3 that

projV
(
A ∩ B(x, r) ∩ P(cn−m−1

2 2δr)
) ⊂ (∂C ′)(c1cn−m−1

2 2δr).

Moreover, C ′ ⊂ V is convex, and by Lemma 2.2, its boundary ∂C ′ can be
decomposed into M(m, αm) parts P ′

j all of which are (m − 1, αm)-planar.
Using Remark 2.4, we find a (V , αm)-planar set P̂ such that P ⊂ P̂ and
projV (P̂ ) = V . The rôle of P̂ is to guarantee that P̂ ∩proj−1

V (P
′
j ) �= ∅ for all j .

For all j ∈ {1, . . . ,M(m, αm)} the sets P̃j = P̂∩proj−1
V (P

′
j ) are (m−1, αm−1)-

planar, and moreover,

A ∩ B(x, r) ∩ P(cn−m−1
2 2δr) ⊂

M(m,αm)⋃
j=1

P̃j (c
n−m
2 2δr),

see Figure 3.

z

P̂

P

z�projV (z)

Vd1

d2

d4

d3

Figure 3. A 2-dimensional illustration for the proof of Theorem 2.5:
How much one needs to enlarge the neighbourhood in the induction step?
Here z ∈ P(cn−m−1

2 2δr), z′ ∈ P ′
j (c1c

n−m−1
2 2δr), and β = cn−m−1

2 2δr .

Further, d1 ≤ c1β, d2 ≤ c1β/
√

1 − α2, d3 ≤ β/√1 − α2, and d4 ≤ β.

As the result of this inductive process we may find (n − k, αn−k)-planar sets
Pn−k,1, . . . , Pn−k,ln−k , where ln−k = M(n, αn−1)

∏n−1
j=n−k+1M(j, αj ), such that

(2.6) A ∩ B(x, r) ⊂
ln−k⋃
i=1

Pn−k,i(ck−1
2 2δr).

It is not hard to verify that there is a constant C(α, n, k) depending only
on α, n, and k such that each of the sets Pn−k,i(ck−1

2 2δr) ∩ B(x, r) can
be covered with C(α, n, k)δk−n balls of radius δr , and therefore by (2.6),
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C(α, n, k)ln−kδk−n such balls will cover the set A∩B(x, r). Iterating this and
defining c0 = C(α, n, k)ln−k gives for all positive integers i that N(A, δ, i) ≤
N0(c0δ

k−n)i−i0 , where i0 is the smallest integer with δi0 < r0
2t and N0 is a

positive integer such that A ⊂ ⋃N0
j=1A ∩ B(xj , δi0) for some xj ∈ A. Taking

logarithms and using (2.3) and (2.5) gives

dimM(A) ≤ lim sup
i→∞

log
(
N0(c0δ

k−n)i−i0
)

i log 1
δ

= n− k + log c0
log 1

δ

≤ n− k + c

log 1
1−2�

where c = 3 log c0 is a constant depending only on n and k.

For the Hausdorff and packing dimensions we have the following immediate
consequence:

Corollary 2.6. Let 0 < � < 1
2 and suppose that A ⊂ Rn with pork(A) >

�. Then
dimH(A) ≤ dimp(A) ≤ n− k + c

log 1
1−2�

,

where c is the constant of Theorem 2.5.

Proof. RepresentingA as a countable union of sets satisfying the assump-
tions of Theorem 2.5 gives the claim.

Remark 2.7. The estimates of Theorem 2.5 and Corollary 2.6 are asymp-
totically sharp. In fact, for any 1 ≤ k ≤ n− 1 there is a constant c′ = c′(n, k)
with the following property: for all 0 < � < 1

2 there exists A� ⊂ Rn with

dimH (A�) > n− k + c′

log 1
1−2�

and pork(A�, x, r) > � for all x ∈ Rn and r > 0. The sets Ckλ × [0, 1]n−k
serve as natural examples. HereCλ ⊂ [0, 1] is the λ-Cantor set, see [9, §4.10].
When k = 1, the straightforward calculation can be found from Salli [12,
Remark 3.8.2(1)].
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