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MEASURES WITH UNIQUE TANGENT
MEASURES IN METRIC GROUPS

PERTTI MATTILA

Abstract

We show that a Radon measure on a locally compact metric group with natural dilations has almost
everywhere a unique tangent measure if and only if it has almost everywhere a Haar measure of
a closed dilation invariant subgroup as its unique tangent measure.

1. Introduction

If a measure in Rn around almost every point looks essentially the same at all
small scales, how does it look like? The answer, which is not so suprising, is
that it looks like the m-dimensional Lebesgue measure on an m-plane, where
m can vary from point to point. We observed with David Preiss about ten years
ago that this can be deduced from some results in [7]. Here I address the same
question in a general setting. A particular motivation comes from a mysterious
question: what should rectifiability mean in Heisenberg groups and in more
general Carnot-Carathéodory groups? We shall comment on this later a little
more but here let us just look at it from the point of view of rectifiability in Rn.

For subsets of Rn with finite m-dimensional Hausdorff measure there are
many different characterizations of rectifiability, see [4] and [6], but one way
of thinking about it is that rectifiability should be opposite to any kind of
fractality. Fractality could mean that landscapes keep changing when you go
deeper and deeper into the set (or measure) while for rectifiable objects they
approach a single view.

Taking the last point of view as a starting point we shall study rectifiability
in a general setting of a locally compact group with natural dilations and we use
the notion of tangent measure in the sense of Preiss [7] to define the limiting
views. The main result roughly says that in such a setting if a Radon measure
has at almost every point a unique tangent measure, then at almost every point
it has a Haar measure of a closed dilation invariant subgroup as its unique
tangent measure.
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2. Groups, dilations, and tangent measures

Throughout the rest of this paper we assume that G is a locally compact metric
group with the following properties:

(2.1) The left translations

τa : x → a−1x, x ∈ G,

are isometries for all a ∈ G.

(2.2) There are dilations
δr : G → G, r > 0,

which are continuous group homomorphisms and which satisfy

(i) δ1 = identity,
(ii) d(δr(x), δr(y)) = rd(x, y) for x, y ∈ G, r > 0,

(iii) δrs = δr ◦ δs for r, s > 0.

Then δr is an isomorphism with

δ−1
r = δ1/r .

The map
Ta,r = δ1/r ◦ τa, a ∈ G, r > 0,

maps the closed ball B(a, r) with centre a and radius r onto the closed unit
ball B(0, 1). (0 is the identity element of G.)

The image f#µ of a measure µ on G under a map f : G → G is defined
by

f#µ(A) = µ(f −1(A)) for A ⊂ G.

A measure always means an outer measure. A Radon measure on G means
a locally finite Borel regular outer measure on G. This is in accordance with
other usual definitions.

Definition 2.3. Letµ be a Radon measure onG. We say that ν is a tangent
measure of µ at a ∈ G if ν is a Radon measure on G with ν(G) > 0 and there
are positive numbers ci and ri , i = 1, 2, . . ., such that ri → 0 and

ciTa,ri#µ → ν weakly as i → ∞.

We denote by Tan(µ, a) the set of all tangent measures of µ at a.

The numbers ci are normalization constants which are needed to keep ν

non-trivial and locally finite. Often, as below, one can use ci = µ(B(a, ri))
−1.
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Definition 2.4. Let µ be a Radon measure on G. We say that µ has a
unique tangent measure ν at a if ν is a Radon measure on G such that

Tan(µ, a) = {cν : 0 < c < ∞}.
Of course, such a ν is unique only up to multiplication by positive constants.

Lemma 2.5. Let µ be a Radon measure on G. If µ has a unique tangent
measure ν at a, then there are α ≥ 0 and c > 0 such that

(1) ν(B(0, �)) = ν(B(0, 1))�α for � > 0,

(2) µ(B(a, r))−1Ta,r#µ → cν weakly as r → 0, and

(3) lim
r→0

µ(B(a, �r))

µ(B(a, r))
= �α for � > 0.

Proof. Obviously δ�#ν ∈ Tan(µ, a) for all � > 0, whence, by the unique-
ness of ν, there is c(�) > 0 such that

(2.6) δ�#ν = c(�)ν.

Then we also have for �, σ > 0,

c(�σ)ν = δ�σ#ν = δ�#δσ#ν = c(�)c(σ )ν,

consequently,

(2.7) c(�σ) = c(�) c(σ ).

From (2.6) and (2.2) we see that

(2.8) c(�) = ν(B(0, 1))

ν(B(0, �))

for all � > 0. Clearly, c is a decreasing function which together with (2.7)
implies that there is α ≥ 0 such that

c(�) = �−α for � > 0.

This gives (1) by (2.8).
From (1) we conclude that ν(∂B(0, �)) = 0 for all � > 0 and therefore,

when ν = limi→∞ ciTa,ri#µ,

�α = ν(B(0, �))

ν(B(0, 1))
= limi→∞ ciδ1/ri#τa#µ(B(0, �))

limi→∞ ciδ1/ri#τa#µ(B(0, 1))
= lim

i→∞
µ(B(a, �ri))

µ(B(a, ri))
.
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Since this holds for all � > 0, we get for all p ∈ Z that

(2.9) lim
i→∞

µ(B(a, 2p+1ri))

µ(B(a, 2p−1ri))
= 4α.

Next we check that

(2.10) lim sup
r→0

µ(B(a, 2r))

µ(B(a, r))
< ∞.

From (2.9) we see that for all j = 1, . . . there is ij such that

µ(B(a, 21−prij )) < 4α+1µ(B(a, 2−1−prij )) for p = 0, 1, . . . , j,

whence

µ(B(a, 2r)) < 4α+1µ(B(a, r)) for 2−j rij < r < rij .

By approximation this holds also for open balls U(a, r):

(2.11) µ(U(a, 2r)) < 4α+1µ(U(a, r)) for 2−j rij < r < rij .

Let

sj = inf
{
s : 0 < s < rij , µ(U(a, 2r)) < 4α+1µ(U(a, r)) for s < r < rij

}
.

If sj = 0 for some j we get (2.10). Otherwise sj > 0 for all j ,

(2.12) µ(U(a, 2r)) < 4α+1µ(U(a, r)) for sj < r < rij ,

and

(2.13) µ(a,U(2sj )) � 4α+1µ(U(a, sj )).

By (2.11) and (2.13), sj /rij → 0 as j → ∞. Thus by (2.12) and the weak
compactness of measures the sequence (sj ) has a subsequence (sjk ) such that

1

µ(U(a, 2sjk ))
Ta,sjk #µ → λ

where λ is a tangent measure of µ at a. Then

λ(B(0, 2)) � lim sup
k→∞

µ(B(a, 2sjk ))

µ(U(a, 2sjk ))
� 1,
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and by (2.13)

λ(U(0, 1)) � lim inf
k→∞

µ(U(a, sjk ))

µ(U(a, 2sjk ))
� 4−α−1.

This shows by (1) thatλ cannot be a constant multiple of ν, gives a contradiction
and proves (2.10).

From (2.10) we get by the weak compactness of measures that every se-
quence (µ(B(a, ri))

−1Ta,ri#µ) with ri → 0 has a converging subsequence. By
the uniqueness of the tangent measure at a, this gives (2), and consequently
also (3) by the above argument.

Let λ be a left Haar measure of G. Then λ is uniformly distributed in the
sense that the measures of the balls only depend on the radius:

λ(B(x, r)) = λ(B(0, r)) for x ∈ G, r > 0.

This follows immediately from (2.1) since B(a, r) = τa−1(B(0, r)).

Proposition 2.14. Let λ be a left Haar measure of G. Then there is α � 0
such that for all a ∈ G and r > 0,

(1) λ(B(a, r)) = λ(B(0, 1))rα .

Proof. Since the dilations δr and translations τa are homeomorphisms we
get from the local compactness that all closed balls of G are compact. Hence
there is an integer N such that B(0, 2) can be covered with N balls of radius
1. Using the dilations and translations we obtain that any ball B(a, 2r) can be
covered with N balls B(a1, r), . . . , B(aN, r). Since λ(B(ai, r)) = λ(B(a, r)),
we get

λ(B(a, 2r)) �
N∑
i=1

λ(B(ai, r)) = Nλ(B(a, r)).

This implies that Tan(λ, a) �= ∅ for all a ∈ G. Since τb#λ = λ for all b ∈ G,
we see easily that all tangent measures of λ are left invariant, whence constant
multiples of λ. Then (1) follows from Lemma 2.5(1).

Next we present Preiss’s principle “tangent measures to tangent measures
are tangent measures” in our setting. We denote by spt ν the support of a
measure ν.

Proposition 2.15. Let µ be a Radon measure on G such that

(1) lim sup
r→0

µ(B(a, 2r))

µ(B(a, r))
< ∞ for µ almost all a ∈ G.

Then for µ almost all a ∈ G, for all ν ∈ Tan(µ, a),
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(2) Tx,�#ν ∈ Tan(µ, a) for x ∈ spt ν, � > 0,

(3) Tan(ν, x) ⊂ Tan(µ, a) for x ∈ spt ν.

The proof in Rn is given in [7] and also (essentially the same) in [6]. Since
only small changes are required in the present setting, we explain them fol-
lowing the presentation of [6] without giving all the details.

We need two things about weak convergence. The first is that it is given
by the metrics Fr , r > 0, as in [6, Lemma 14.13]. The proof is the same. It
uses that continuous functions can be uniformly approximated by Lipschitz
functions on compact sets which is, for example, a consequence of the Stone-
Weierstrass approximation theorem. Recall that all closed balls are compact.
Secondly, we need that the space of Radon measures on G is weakly separable,
which is an easy exercise.

Then we check the proof of [6, Theorem 14.16]. We need to check more
carefully some parts due to the fact that τa and δr need not commute in the
same way as in Rn. So as in [6] we have A ⊂ G with µ(A) > 0 and for a ∈ A

we have

(2.16) νa = lim
i→∞ ciTa,ri#µ ∈ Tan(µ, a)

and
xa ∈ spt νa

such that (3), (4) and (5) on page 197 of [6] hold. (5) follows from the density
theorem for µ which is a consequence of our assumption (1). Hence, as in [6],
we find ai ∈ A such that, using also (2.1) and (2.2),

d(xa, δ1/ri (a
−1ai)) = d(δri (xa), a

−1ai)/ri = d(aδri (xa), ai)/ri → 0.

Using (2.16) we compute (the change from a double limit to a single limit is
an easy exercise)

τxa#νa = lim
i→∞ τδ1/ri (a

−1ai )# (ciTa,ri#µ) = lim
i→∞ ci(τδ1/ri (a

−1ai ) ◦ δ1/ri ◦ τa)#µ

= lim
i→∞ ciTai ,ri#µ,

because

τδ1/ri (a
−1ai ) ◦ δ1/ri ◦ τa(x) = (δ1/ri (a

−1ai))
−1δ1/ri (a

−1x)

= δ1/ri (a
−1
i a)δ1/ri (a

−1x)

= δ1/ri (a
−1
i x) = Tai ,ri (x),

since δ1/ri is a homomorphism. After this the proof goes exactly as in [6].
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3. Measures with unique tangent measures

First we give a characterization of left Haar measures on G.

Proposition 3.1. Let λ be a Radon measure on G. Then λ is a left Haar
measure on G if and only if for all a ∈ G and all r > 0 there are positive
numbers c(a) and d(r) such that

(1) τa#λ = c(a)λ and

(2) δr#λ = d(r)λ.

Remark. Measures satisfying (1) have been studied in [4] in a more general
setting. Federer called them covariant and gave a characterization which we
could also use. But since this would save only a few lines, we give the full
proof below in our metric setting.

Proof of Proposition 3.1. First, if λ is a left Haar measure it satisfies (1)
with c(a) = 1. Since δ1/r = δ−1

r we have for all a ∈ G, r > 0 and σ > 0,

δr#λ(B(a, σ )) = λ(B(δ1/r (a), σ/r)) = λ(B(0, σ/r)) = δr#λ(B(0, σ )).

Hence δr#λ is uniformly distributed. Since also λ is uniformly distributed and
such measures are uniquely determined up to multiplication by constants, see
[6, Theorem 3.4], we get (2).

Next we prove the converse. Set

χ(a) = c(a−1) for a ∈ G.

As in the proof of Lemma 2.5, χ is a homomorphism. It is also easy to check
that it is continuous. Define a Radon measure ν on G by

ν(A) =
∫
A

χ dλ

for Borel sets A ⊂ G. Hence

λ(A) =
∫
A

χ−1 dν.

Then for any continuous function ϕ on G with compact support and for any
a ∈ G,∫

ϕ ◦ τa dν =
∫

χ(ϕ ◦ τa) dλ = 1

χ(a−1)

∫
χ(a−1x)ϕ(a−1x) dλx

= 1

c(a)

∫
(χϕ) ◦ τa dλ = 1

c(a)

∫
χϕ dτa#λ

=
∫

χϕ dλ =
∫

ϕ dν.
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So ν is a left Haar measure on G. By Proposition 2.14 we know that there
is α ≥ 0 such that, with c = λ(B(0, 1)),

ν(B(x, r)) = crα for x ∈ G, r > 0.

By (2) for � > 0, r > 0, y ∈ G,

d(1/�)

ν(B(0, r))

∫
B(y,r)

χ−1 dν = d(1/�)λ(B(y, r))

ν(B(0, r))

= δ1/�#λ(B(y, r))

ν(B(0, r))

= λ
(
B(δ�(y), �r)

)
ν(B(0, r))

= �α 1

ν(B(0, �r))

∫
B(δ�(y),�r)

χ−1 dν.

Letting r → 0 we get

d(1/�)χ(y)−1 = �αχ(δ�(y))
−1,

Taking y = 0 we have d(1/�) = �α so that

χ(y) = χ(δ�(y)) for y ∈ G,� > 0.

Letting � → 0 we obtain

χ(y) = χ(0) for y ∈ G,

from which the proposition follows.

Now we can prove the main result of the paper.

Theorem 3.2. Let µ be a Radon measure on G. Then the following two
conditions are equivalent:

(1) µ has a unique tangent measure νa at µ almost all points a ∈ G.

(2) For µ almost all a ∈ G there exists a closed subgroup Ha of G which is
invariant under the dilations δr , r > 0, and for which

Tan(µ, a) = {cλa : 0 < c < ∞}
where λa is a left Haar measure of Ha .
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Proof. Of course, (2) implies (1). Suppose (1) holds. By Lemma 2.5(3)
and Proposition 2.15 for µ almost all a ∈ G there are for all x ∈ spt νa and
for all r > 0 positive numbers c(x) and d(r) such that

τx#νa = c(x)νa

and
δr#νa = d(r)νa.

This yields easily thatHa := spt νa is a closed subgroup ofGwhich is invariant
under the dilations δr . Hence we can apply Proposition 3.1 to conclude that νa
is a left Haar measure on Ha . This proves the theorem.

4. Heisenberg group

As an example we first look at the lowest dimensional Heisenberg group

H1 = C × R

with the group law

(w, s) · (z, t) = (w + z, s + t + 2 Im wz̄).

The dilations δr are given by

δr(z, t) = (rz, r2t).

A natural metric d on H1 is defined by

d(P,Q) = ‖P−1 · Q‖,
where ‖P ‖ = max{|z|, |t | 1

2 } for P = (z, t) ∈ H1.

Then (2.1) and (2.2) hold for G = H1.
The Hausdorff dimension of H1 is 4. The lower dimensional (in the sense

of Hausdorff dimension) closed subgroups, which are invariant under the dila-
tions, are rather easily found. The 1-dimensional ones are the horizontal lines,
that is, the lines in C×{0} through the origin. There is only one 2-dimensional,
the vertical line

LV = {(0, t) : t ∈ R}.
The 3-dimensional ones are the vertical planes, that is, the cartesian products
L × LV where L is a horizontal line.

So Theorem 3.2 tells us that if we have a Radon measure in H1 with the
unique tangent measure property as in Theorem 3.2 it has to look locally around
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almost every point like one of the above alternatives, or like the Lesbegue
measure of R3 (which is the same as the 4-dimensional Hausdorff measure and
also a Haar measure of the group), or like the Dirac delta at 0. Of course, its
appearance can change from point to point.

How is this related to rectifiability? Not much if we take the usual definition
of rectifiability as in [4]: a set E ⊂ H1 is k-rectifiable if there are Lipschitz
maps fi : Rk → H1 such that

H k

(
E \

∞⋃
i=1

fi(Rk)

)
= 0

where H k is the k-dimensional Hausdorff measure (of course, defined with
the metric d). Ambrosio and Kirchheim showed in [1] that there are no k-
rectifiable sets in H1 with positive H k measure for k = 2 and 3. For more
general results of this type, see Magnani’s thesis [5].

However, it is not clear that this is a proper definition to use in H1. Franchi,
Serapioni and Serra Cassano in [2] defined a set E ⊂ Hn = Cn × R to
be rectifiable if there are intrinsic C1 (in a natural intrinsic sense) functions
ui : Hn → R such that

H 2n+1

(
E \

∞⋃
i=1

{x : ui(x) = 0}
)

= 0.

The Hausdorff dimension of Hn is 2n+ 2 so this is a codimension 1 theory. In
fact, they developed this theory in more general spaces, see [3], and they used
it to establish de Giorgi’s theory of sets of finite perimeter in these spaces.

Suppose E ⊂ Hn is rectifiable in this sense with H 2n+1(E) < ∞. Serra
Cassano has shown that then E is rectifiable in the sense of [2] if and only if the
restriction measure H 2n+1|E has a unique tangent measure at H 2n+1 almost
all points a ∈ E. So this definition seems like a natural one from the point of
view we have discussed in this paper.
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