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ENDOMORPHISMS AND AUTOMORPHISMS
FROM SUBFACTORS ILLUSTRATING

NON-COMMUTATIVE ENTROPY

ANNE LOUISE SVENDSEN

Abstract

We present a series of examples of endomorphisms and automorphisms arising from subfactors,
which illustrate some of the recent theorems in non-commutative entropy theory. Moreover it is
shown that for these examples the Connes-Størmer entropy of the automorphism is maximal and
coincides with the topological entropy. This follows from the theorems our examples illustrate,
and is also showed directly.

1. Introduction

In the papers [15] and [16] Wenzl constructed new examples of subfactors
by using representations of Hecke algebras and representations of Birman-
Wenzl-Murakami algebras, which in particular are representations of the Braid
group. This construction was generalized by Erlijman [5] who considers gen-
eral representations of the Braid group subject to a certain set of conditions.
Erlijman then constructs the subfactor generated by the representation of a
two-sided sequence of Braid group generators. We consider these subfactors
along with the subfactors generated by a one-sided sequence of Braid group
generators according to Wenzl’s construction. These examples have a natural
homomorphism, which shifts the Braid group generators. When we consider
the one-sided sequence we get an endomorphism, and when we consider the
two-sided sequence we get an automorphism. The main part of this paper is
devoted to showing how the above mentioned examples illustrate some of the
recent theorems in the theory of non-commutative entropy, namely the Vari-
ational principle; see [9], the McMillan theorem; see [10], and the theorem
relating the entropy to the index, see [12]. Thus we will work in the inter-
play between subfactors and entropy. Both the index of subfactors; see [8],
the Connes-Størmer entropy; see [4], the entropy in C∗-algebras; see [3], and
Voiculescu’s approximation entropy; see [14], come into play. For a survey
of the results on the different entropies; see [13]. In addition to the results by
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Wenzl and Erlijman, we will also be using other known results, in particular
by Choda. Some of these results are only refered to, but others are included in
order to make the exposition more coherent.

The paper is organized as follows. In section 2 we present the above men-
tioned theorems and show how these results can be used to prove that the
entropy coincide with the topological entropy under certain special condi-
tions. In section 3 we state the conditions Erlijman requires the representa-
tions of the Braid group to satisfy, and show how properties of the endomorph-
ism/automorphism follow from these. We show that the endomorphisms illus-
trate the theorem relating the entropy to the index, whereas the automorphisms
illustrate the Variational principle and the McMillan theorem. Moreover it fol-
lows that the automorphisms in the examples have maximal entropy, which
equals the topological entropy. In section 4 we show for completeness that this
result can also be showed directly for both the automorphism and the endo-
morphism using only that we have periodic inclusions and a mean generator.

2. Theorems about entropy

We consider C∗-dynamical systems (A, τ, α), where A is a unital C∗-algebra,
τ is a trace on A, and α is a τ -preserving automorphism of A. Throughout
the paper we will implicitly use the fact that when computing the entropy
we can move back and forth between a C∗-algebra A with a trace τ and an
automorphism α, and the von Neumann algebra M = πτ (A)′′ (the GNS-
representation) with α̃ the extension of α; see [13]. In order to formulate the
Variational principle we recall the following definition.

Definition 2.1. AC∗-dynamical system (A, τ, α) is called asymptotically
abelian with locality, if there exists a dense α-invariant subalgebra B of A such
that for all pairs a, b ∈ B the algebra C∗(a, b) is finite dimensional, and there
is a p = p(a, b) ∈ N such that [αj (a), b] = 0 whenever |j | ≥ p.

Theorem 2.2 (Variational principle [9]). Let (A, τ, α) be a unital separable
C∗-dynamical system which is asymptotically abelian with locality. Let H ∈
Asa , where Asa denotes the self-adjoint elements of A. Then the pressure Pα

satisfies
Pα(H) = sup

φ

(hφ(α) − φ(H)),

where the sup is taken over all α-invariant states. In particular the topological
entropy satisfies

ht(α) = sup
φ

hφ(α).

For asymptotically abelian algebras with locality, the size of the minimal
projections can be estimated by the McMillan theorem.
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Theorem 2.3 (McMillan [10]). Let (A, τ, α) be a unital separable C∗-
dynamical system which is asymptotically abelian with locality. Suppose the
trace τ is an extremal α-invariant state, and that the entropy H(α) is finite.
Moreover suppose that N is a finite dimensional subalgebra of A, which is a
mean generator, i.e.

H(α) = lim
n→∞

1

n
H(Nn) < ∞,

where Nn = ∨n−1
i=0 αi(N). Then given ε > 0 there exists an N ∈ N such that

for all n ≥ N there exists a central projection zn ∈ Nn such that τ(zn) < ε

and
exp(−n(H(α) + ε)) < τ(p) < exp(−n(H(α) − ε))

for all minimal projections p in the algebra Nn(1 − zn).

A general definition of a mean generator, which we will use from now on, is
the following. If (An) is an increasing sequence of finite dimensional algebras
which generate A, and α is an automorphism or an endomorphism of A, then
(An) is called a mean generator for the entropy of α if H(α) = limn

1
n
H(An).

The definition of a mean generator in the theorem above is a special case
of this when the algebra has locality. Namely let An = ∨n−1

i=0 α
i(N) = Nn,

then (An) is an increasing sequence of finite dimensional subalgebras of A,
since N is finite dimensional and we have locality. Moreover limn

1
n
H(An) =

limn
1
n
H(Nn) = H(α). On the other hand if α(An) ⊂ An+1, we can fix k

and let N = Ak . It then follows that Nn = ∨n−1
i=0 α

i(N) ⊂ Ak+n−1, hence
limn

1
n
H(Nn) ≤ limn

1
n
H(Ak+n−1) = H(α).

By using the McMillan theorem in conjunction with theVariational principle
we get sufficient conditions for the Connes-Størmer entropy to be maximal and
coincide with the topological entropy.

Corollary 2.4. Let (A, τ, α) be a unital separable C∗-dynamical sys-
tem which is asymptotically abelian with locality, and where τ is extremal
among the α-invariant states. Suppose that A is an AF-algebra with a gen-
erating sequence (An), which is a mean generator for the entropy, and such
that α(An) ⊂ An+1. Let tn, dn denote the trace vector and the dimension
vector, respectively, of the state τ restricted to the algebra An. Suppose that
limn→∞ tn(i)dn(i) ≥ δ > 0 for all i. Then

H(α) = sup
φ

hφ(α) = ht(α),

where the sup is taken over all α-invariant states.
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Proof. Fix an α-invariant state φ. In particular this could be τ . By the
Kolmogorov-Sinai theorem for the entropy of C∗-algebras; see [13], we have
hφ(α) = limn→∞ hφ,α(An). But since α(An) ⊂ An+1 this implies that

hφ(α) = lim
n

hφ,α(An) = lim
n

lim
k

1

k
Hφ(An, α(An), . . . , α

k−1(An))

≤ lim
n

lim sup
k

1

k
Hφ(An+k−1) ≤ lim sup

k

1

k
Hφ(Ak).

(The argument above is for instance used in [1] for the Connes-Størmer en-
tropy.) So it is enough to show that H(α) ≥ lim supk

1
k
Hφ(Ak). Let ε < δ be

given. By the McMillan theorem (theorem 2.3) there is an N ∈ N such that for
all n ≥ N there exists a central projection zn ∈ An such that τ(zn) < ε and

(∗) exp(−n(H(α) + ε)) < τ(p) < exp(−n(H(α) − ε))

for all minimal projections p in the algebra An(1−zn). But since we chose ε <

δ we must have zn = 0 by the assumption, since both the trace vector and the
dimension vector have strictly positive entries, and τ(zn) = ∑

i∈I tn(i)dn(i)

for some subset I of N. Thus we have (∗) for all minimal projections pn ∈ An

for all n ≥ N , hence limn→∞ −1
n

log τ(pn) = H(α). By concavity of the
function η(t) = −t log t , it therefore follows that the entropy from the trace is
the maximal entropy. Finally we get

H(α) = sup
φ

hφ(α) = ht(α)

by the Variational principle (theorem 2.2).

We recall the following definition of periodicity; see [15].

Definition 2.5. Let A1 ⊂ A2 ⊂ · · · be an increasing sequence of finite
dimensional C∗-algebras. Such a sequence is called periodic (of period k)
if there is an N ∈ N and a k ∈ N, such that for all n ≥ N the inclusion
An+ik ⊂ An+(i+1)k is given by a primitive matrix Gn for all i ∈ N, (recall that
a matrix G is primitive if G is a square matrix and there exists an l ∈ N such
that Gl has positive entries), and k is the smallest value such that this holds.

Remark 2.6. Let G be a primitive r×r matrix. Then the largest eigenvalue
(the Perron-Frobenius value) β is strictly positive. Let ξ be the normalized
eigenvector to β. We will use the following facts from Perron-Frobenius theory
[6].
• Up to multiplication by a positive scalar the eigenvector ξ is unique and has

strictly positive entries.
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• ⋂
l∈N Gl(Rr+) = R+ξ .

• liml→∞ β−lGlw = (w, ξ)ξ for any r-dimensional vector w, where (·,·)
denotes the inner product of the two vectors.

The requirement in the above corollary about the size of the central projec-
tions is satisfied when the generating sequence is periodic.

Corollary 2.7. Let A be an AF-algebra generated by the increasing
sequence (An), which is periodic. Let tn, dn denote the trace vector and the
dimension vector of the state τ restricted to the algebra An, respectively. Then
there is a δ such that

lim
n→∞ tn(i)dn(i) ≥ δ > 0 for all i.

Proof. Suppose the period of the sequence (An) is k. Fix m ∈ N such that
the inclusion Am+ik ⊂ Am+(i+1)k is given by the matrix G for all i ∈ N ∪ {0},
which we from now on will write as Am+ik ⊂

G
Am+(i+1)k . Then dm+ik =

Gidm. Denote the Perron-Frobenius value by β, the unique normalized Perron-
Frobenius eigenvector to β by ξ , and suppose the primitive inclusion matrix
G is an r × r matrix. For all i we have tm+ik = Gltm+(i+l)k for all l ∈ N. Thus
for each i we have tm+ik ∈ ∩l∈NG

l(Rr+), hence in particular tm+ik = λiξ for
some λi > 0, i.e.

tm = Gltm+lk = Glλlξ = βlλlξ = βltm+lk.

Moreover by Perron-Frobenius theory β−lGldm → (dm, ξ)ξ for l → ∞. Thus
we get for each j ∈ N

lim
n

dn(j)tn(j) = lim
l

dm+lk(j)tm+lk(j) = lim
l

Gldm(j)β−l tm(j)

= lim
l
(β−lGldm(j))tm(j) = (dm, ξ)ξ(j)λ0ξ(j)

= (dm, tm)(ξ(j))2λ0 = (ξ(j))2λ0 > 0,

where we used that (dm, tm) = ∑r
i=1 dm(j)tm(j) = τ(1) = 1, and noted the

independence of the fixed m ∈ N. Since ξ is a finite dimensional vector we
can choose 0 < δ < minj (ξ(j)

2)λ0.

In the cases where the trace is extremal the two corollaries above prove the
following.

Corollary 2.8. Let (A, τ, α) be a unital separable C∗-dynamical system
which is asymptotically abelian with locality, and where τ is extremal among
the α-invariant states. Suppose that A is an AF-algebra with a generating
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sequence (An), which is both periodic and a mean generator for the entropy.
Then

H(α) = sup
φ

hφ(α) = ht(α),

where the sup is taken over all α-invariant states.

3. The examples from subfactors

Recall that the Braid group Bn on n strands is the free group in the generators
σ1, . . . , σn−1 subject to the relations

• σi+1σiσi+1 = σiσi+1σi for 1 ≤ i ≤ n − 2.

• σiσj = σjσi whenever |i − j | ≥ 2.

In the paper [5] Erlijman works with representations ρ of the algebra CB∞
satisfying the following properties with Cn = ρ(CBn):

(1) For each n ∈ N : ρ(CBn) ∼= ⊕
λ∈,n

Maλ
for some finite index set ,n.

(2) gi := ρ(σi) is unitary for all i.

(3) The sequence of finite dimensional C∗-algebras (Cn) is periodic.

(4) Any x ∈ Cn+1 is of the form x = ag±1
n b + c, where a, b, c ∈ Cn.

(5) The unique trace τ on C = ⋃
n Cn is a Markov trace, i.e. τ(g±1

n x) =
ητ(x) for all n ∈ N and all x ∈ Cn. In particular this implies that
τ(xy) = τ(x)τ (y) when x and y are in subalgebras generated by disjoint
subsets of the generators g±1

i .

(6) For all k ∈ N there exists a projection p ∈ Ck such that for all n ∈ N we
have

pCn+kp ∼= pCk+1,n+k
∼= Ck+1,n+k

∼= Cn,

where Cs,t is the subalgebra generated by gs, . . . , gt−1.

Examples of representations with the above properties arise from representa-
tions of Hecke algebras and Birman-Murakami-Wenzl algebras as mentioned
previously.

In the rest of this paper ρ will be a representation satisfying the above
properties, and α will be the shift of the generators gi , i.e. α(gi) = gi+1 for all
i.

Remark 3.1. It can be shown from property (5) (also denoted the strongly
clustering property) that the unique trace is extremal among the set of α-
invariant states on C. For a proof of this see [11].

Remark 3.2. In the rest of this paper we will several times use the Kolomo-
gorov-Sinai theorem for endomorphisms instead of for automorphisms. For
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the Connes-Størmer entropy the proof of this is a straightforward adaption
of the proof of the Kolomogorov-Sinai theorem for automorphisms by using
that H(α(A)|α(B)) ≤ H(A|B) when α is an endomorphism; see [1]. For the
entropy of C∗-algebras it follows directly from the usual theorem. This is also
the case for the topological entropy, but with the following minor change in the
assumptions. We consider finite subsets (ωj ) of the nuclear C∗-algebra A with
ω1 ⊂ ω2 ⊂ · · ·. For automorphisms the requirement is that the linear span
of ∪j∈N,k∈Zα

k(ωj ) is dense in A. For endomorphisms we make the obvious
adjustment and require that the linear span of ∪j∈N,k∈Nα

k(ωj ) is dense in A,
then the same proof works.

The examples of endomorphisms and automorphisms that we will consider
are of the “shift”-type. The next well-known lemma shows that they have a
mean generator.

Lemma 3.3. Let A be an AF-algebra generated by the increasing sequence
(An). Let τ be a trace on A and let α be a trace-preserving endomorphism or
automorphism of A. Suppose that

(1) An∨α(An)∨α2(An)∨· · ·∨αj (An) ∼= Bn+j , whereBn+j is a subalgebra
of An+j for all n, j ∈ N.

(2) [An, α
in(An)] = 0 for all i ≥ 1.

(3) τ(αin(x)y) = τ(x)τ (y) for all x, y ∈ An for any n ∈ N, for all i ≥ 1.

Then the sequence (An) is a mean generator for the entropy, i.e. H(α) =
limn

1
n
H(An).

Proof. Since (An) is an increasing sequence and A = ∪n∈NAn, we have
H(α) = limn→∞ H(An, α) by the Kolomogorov-Sinai theorem for endo-
morphisms or automorphisms; see [13]. Now on the one hand we have

H(α) = lim
n

H(An, α) = lim
n

lim
k

1

k
H(An, α(An), . . . , α

k−1(An))

≤ lim sup
k

1

k
H(Ak)

by using (1) as in corollary 2.4. On the other hand we have

nH(α) = H(αn) ≥ lim
k

1

k
H(An, α

n(An), α
2n(An), . . . , α

(k−1)n(An)).

By (2) the algebras An and αin(An) commute for all i ≥ 1, hence it follows
that

H(An, α
n(An), . . . , α

(k−1)n(An)) = H
(k−1∨

i=0

αin(An)
)
.
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Moreover by (3) we have τ(xy) = τ(x)τ (y) for x ∈ αin(An) and y ∈ αjn(An)

with i �= j , hence

H
(k−1∨

i=0

αin(An)
)

=
k−1∑
i=0

H(αin(An)) =
k−1∑
i=0

H(An) = kH(An),

by [13]. Therefore

nH(α) ≥ lim
k

H(An) = H(An),

i.e. H(α) ≥ limn
1
n
H(An), thus all in all we have H(α) = limn

1
n
H(An).

3.1. The endomorphism from the one-sided sequence

Consider the sequence of algebras (Cn) defined above, i.e.Cn = 〈g1, . . . gn−1〉.
Define the endomorphism α on the generators by α(gi) = gi+1 for i ≥ 1. Then
α is trace-invariant hence extends by continuity to the von Neumann algebra
C = ∪n∈NCn

w
, which is the hyperfinite II1 factor due to the uniqueness of

the trace. This sequence is periodic (property 3)). Let Dn = 〈g2, . . . gn−1〉 for
n ∈ N and let D = ∪n∈NDn

w
. Then D is a subfactor of C. It is shown in [15]

by use of Wenzl’s dimension estimate that the subfactor is irreducible.
For the relation between the entropy of an endomorphism and the index of

the subfactor generated by the endomorphism, we have the following theorem.

Theorem 3.4 ([12]). Let R be the hyperfinite II1 factor with trace τ and
a τ -preserving endomorphism α. Let (An) be an increasing sequence of finite
dimensional algebras generating R, An = ⊕l∈Kn

Mn
l , where Mn

l is a factor of
type mn

l . Let an
kl denote the multiplicity of α(Mn−1

k ) in Mn
l . Suppose there is a

q ∈ R such that for all k, l, n we have an
kl ≤ qmn−1

k . Moreover suppose that
α(An) ⊂ An+1 for all n ∈ N,

lim
n→∞

1

n
H(An) = H(α) < ∞,

and that
An+1 ⊂ An+2, τ

∪ ∪
α(An) ⊂ α(An+1)

is a commuting square for all n ∈ N. Let Z(An) denote the center of the
algebra An. Then

(1) limn→∞ 1
n
H(Z(An)) exists.

(2) R ∩ α(R)′ is atomic with minimal projections fk ,
∑

k fk = 1.
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(3) H(α) = H(R∩α(R)′)+ 1
2τ(fk) log[Rfk

: α(R)fk
]+ 1

2 lim
n→∞

1
n
H(Z(An)).

The theorem above differs from the one in [12] by the extra condition of the
limited growth of the multiplicities (an

kl ≤ qmn−1
k ), since we can not make the

proof of the theorem work without this. On the other hand we have not been
able to show that this extra condition is necessary.

Let us show that the above theorem is illustrated by the series of examples
coming from shifts on the one-sided sequence. We start with a straightforward
lemma; see [5], [15], and [16].

Lemma 3.5. Let C1 ⊂ C2 ⊂ · · · ⊂ C be given as above. Then the following
properties hold:

(1) Cn ∨ α(Cn) ∨ α2(Cn) ∨ · · · ∨ αj (Cn) = Cn+j for all n, j ∈ N.

(2) [Cn, α
in(Cn)] = 0 for all i ≥ 1.

(3) τ(αin(x)y) = τ(x)τ (y) for all x, y ∈ Cn for any n ∈ N, for all i ≥ 1.

Lemma 3.6. The increasing sequence of finite dimensional algebras (Cn)

defined at the beginning of this section satisfies the hypotheses of theorem 3.4.

Proof. Let n ∈ N. Since Cn = 〈g1, . . . gn−1), we have α(Cn) =
〈g2, . . . , gn〉 ⊂ Cn+1. By lemmas 3.3 and 3.5 the sequence (Cn) is a mean
generator. We need to see that

Cn+1 ⊂ Cn+2, τ

∪ ∪
α(Cn) ⊂ α(Cn+1)

=
〈g1, . . . , gn〉 ⊂ 〈g1, . . . , gn+1〉, τ

∪ ∪
〈g2, . . . , gn〉 ⊂ 〈g2, . . . , gn+1〉

is a commuting square. This is proved in [15], but we include the argument here
for the sake of completeness. Let y ∈ Cn+1, x ∈ α(Cn+1). Then by property 4)
we can assume without loss of generality that x has the form x = α(ag±1

n b),
where a, b ∈ Cn. So we get that

τ(Eα(Cn+1)(y)x) = τ(Eα(Cn+1)(yx)) = τ(yx) = τ(yα(ag±1
n b))

= τ(yα(a)g±1
n+1α(b)) = ητ(yα(a)α(b))

= ητ(Eα(Cn)(y)α(ab)) = τ(Eα(Cn)(y)x).

Thus Eα(Cn+1)(y) = Eα(Cn)(y) ∈ α(Cn), hence we have a commuting square.
Finally, with the notation of theorem 3.4, we see that there exists a q such that
an
kl ≤ qmn−1

k for all k, l, n, since the sequence (Cn) is periodic and α(Cn) ⊂
Cn+1.
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From the lemma above and theorem 3.4, we get the following conclusion,
which is also proved in [1] and [2] by different methods without appealing to
theorem 3.4.

Corollary 3.7. For the sequence (Cn) we get that

H(α) = 1

2
log[C : D].

Proof. By the above lemma the hypotheses of theorem 3.4 are satisfied.
Thus we get that

H(α) = H(C ∩ α(C)′) + 1

2
τ(fk) log[Cfk

: α(C)fk
] + 1

2
lim
n→∞

1

n
H(Z(Cn)),

where fk are minimal projections in C ∩ α(C)′ with
∑

k fk = 1. But C ∩
α(C)′ = C∩D′ = C, since the subfactor is irreducible, hence H(C∩α(C)′) =
H(C) = 0. Since the sequence (dim(Z(Cn))) is bounded because the inclusion
(Cn) is periodic, this implies that limn→∞ 1

n
H(Z(Cn)) = 0, thus the result

follows.

Note that by theorem 3.4 (and the above corollary) we have two different
ways of computing the entropy or the index. This is also described in section 6.2
of [12], where theorem 3.4 is applied to similar examples where the algebra is
generated by a series of Jones projections.

3.2. The automorphism from the two-sided sequence

The representation ρ is extended to the two-sided infinite Braid group. In order
to get a mean generator for the entropy we define the increasing sequence of
C∗-algebras (An) as follows.

Definition 3.8. Let

A2n = 〈g−(n−1), . . . , g−1, g0, g1, . . . gn−1〉,
A2n+1 = 〈g−(n−1), . . . g−1, g0, g1, . . . , gn〉

for n ∈ N.

Let A = ⋃
n∈N An and let τ be the unique trace on A, a property which A

inherits from
⋃

n Cn. The sequence (An) is periodic, since the sequence (Cn)

is periodic and (A2n ⊂ A2n+1) ∼= (C2n ⊂ C2n+1) by the automorphism which
shifts the generators up by n. Let α be the automorphism of A, which shifts
the generators, i.e. α(gi) = gi+1 for all i ∈ Z extended to the full algebra A.
Since τ satisfies property 5), α is trace-preserving.
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The following lemma follows from lemma 3.5 using that An+j
∼=

〈g1, . . . , gn+j 〉.
Lemma 3.9. Let A1 ⊂ A2 ⊂ · · · ⊂ A be given as above. Then the following

properties hold:

(1) An∨α(An)∨α2(An)∨· · ·∨αj (An) ∼= Bn+j , whereBn+j is a subalgebra
of An+j for all n, j ∈ N.

(2) [An, α
in(An)] = 0 for all i ∈ Z \ {0}.

(3) τ(αin(x)y) = τ(x)τ (y) for all x, y ∈ An for any n ∈ N, for all i ∈
Z \ {0}.

Corollary 3.10. For the C∗-dynamical system (A, τ, α) defined above we
have

H(α) = sup
φ

hφ(α) = ht(α).

Proof. The trace τ is unique and the sequence (An) is periodic, so by
lemma 3.9 the requirements for lemma 3.3 are satisfied, hence the sequence
(An) is a mean generator for the entropy. Moreover (A, τ, α) is a unital, sep-
arable, C∗-dynamic system, which is asymptotically abelian with locality.
Indeed in definition 2.1 we can use B = ⋃

n∈N An. Let a, b ∈ A, i.e. there are
n,m ∈ N such that a ∈ An and b ∈ Bm. Let l = max{n,m}. Then we have
C∗(a, b) ⊂ Al , which is finite dimensional. Moreover let p = p(a, b) = nm,
then [αj (a), b)] = 0 whenever |j | ≥ p by lemma 3.9. Hence the system is
asymptotically abelian with locality. By remark 3.1 the trace is extremal among
the α-invariant states, so since (An) is a mean generator for the entropy with
respect to τ , it follows from corollary 2.8 that H(α) = supφ hφ(α) = ht(α).

4. Algebras generated by periodic inclusions

For algebras generated by a periodic sequence of finite dimensional algebras,
the entropy of an endomorphism can be computed using the following theorem
due to Choda; see [1]. We repeat here the proof for the sake of completeness,
since we will use an argument of the same type in the next theorem. Also a
similar argument is already used in corollary 2.7.

Theorem 4.1 ([1]). Let A be an AF-algebra generated by the increas-
ing sequence of finite dimensional C∗-algebras (An), i.e. A1 ⊂ A2 ⊂ · · · ⊂⋃

n∈N An = A. Let τ be a trace on A and let α be a trace-preserving endo-
morphism or automorphism of A. Suppose that the sequence (An) is periodic
and a mean generator for the entropy, i.e.

H(α) = lim
n

1

n
H(An).
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Then

H(α) = 1

k
log β,

where k is the period and β is the Perron-Frobenius value of the primitive
inclusion matrix G.

Proof. Fixm ∈ N such thatAm+ik ⊂
G

Am+(i+1)k for all i ∈ N∪{0}. Suppose

the primitive inclusion matrixG is an r×r matrix. Denote the Perron-Frobenius
value by β, and denote the unique normalized Perron-Frobenius eigenvector
to β by ξ . Finally denote the trace vector and dimension vector of the trace
τ restricted to the algebra An by tn and dn, respectively. As in the proof of
corollary 2.7 we have tm = Gltm+lk = βltm+lk . Thus

H(Am+lk) = −
r∑

i=1

dm+lk(i)tm+lk(i) log(tm+lk(i))

= −
r∑

i=1

dm+lk(i)tm+lk(i) log(β−l tm(i))

=
r∑

i=1

dm+lk(i)tm+lk(i)(l log β) −
r∑

i=1

dm+lk(i)tm+lk(i)(log tm(i))

≤ l log β −
r∑

i=1

(log tm(i)),

since
∑r

i=1 dm+lk(i)tm+lk(i) = 1 is a sum of positive terms. Since the last term
does not depend on l we get that

lim
n

1

n
H(An) = lim

l

H (Am+lk)

m + lk
= lim

l

l

m + lk
log β = 1

k
log β,

thus all in all H(α) = 1
k

log β, which does not depend on m.

By using Choda’s theorem we get the following result.

Theorem 4.2. Let A be an AF-algebra generated by the increasing se-
quence (An). Let τ be a trace on A and let α be a trace-preserving endo-
morphism or automorphism of A. Suppose that the sequence (An) is periodic
and a mean generator for the entropy, i.e.

H(α) = lim
n

1

n
H(An),
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and suppose that α(An) ⊂ An+1. Then

H(α) = sup
φ

hφ(α) = ht(α),

where the sup is taken over all α-invariant states.

Proof. We use the same notation as in the proof of theorem 4.1 and go
through the case where α is an endomorphism. When α is an automorph-
ism the proof is adjusted in the obvious way. By using the Kolmogorov-
Sinai theorem for endomorphisms of C∗-algebras, it is enough to show that
lim supn

1
n
Hφ(An) ≤ H(α) for any α-invariant state φ according to the proof

of corollary 2.4. Let us show that we get a similar result for the topological
entropy. Let CPA (A) denote the triples (φ, ψ,B), where B is a finite dimen-
sional C∗-algebra and φ : A → B, ψ : B → A are unital completely positive
maps. Then the completely positive δ-rank is defined by

rcp(ω; δ)
= inf{rank B | (φ, ψ,B) ∈ CPA (A), ‖(ψ ◦ φ)(a) − a‖ < δ for all a ∈ ω},

for ω any finite subset of A.
We define the sequence of elements (ωn) recursively. Let ω1 be an orthonor-

mal basis for the algebra A1. Then ω1 is a finite subset of A, since A1 is finite
dimensional. Extend ω1 to an orthonormal basis ω2 of A2, extend this to an
orthonormal basis ω3 of A3 etc. This way we get an increasing sequence (ωn)

of finite elements of A. Moreover for each i we have ωi ⊂ Ai . Since ∪nAn

is dense in A we also have that the linear span of ∪j∈N,k∈Nα
k(ωj ) is dense in

A, since already the linear span of ∪j∈Nωj is dense. Hence we can use the
Kolmogorov-Sinai theorem for the topological entropy of the endomorphism
to get that

ht(α) = sup
j

sup
δ>0

lim sup
n

1

n
log rcp(∪n−1

i=0 α
i(ωj ); δ).

But ωi ⊂ Ai , thus ∪n−1
i=0 α

i(ωj ) ⊂ ∪n−1
i=0 α

i(Aj ) ⊂ Aj+n−1. This implies that

ht(α) ≤ sup
j

sup
δ>0

lim sup
n

1

n
log rank(Aj+n−1) ≤ lim sup

n

1

n
log rank(An).

So it is enough to show that lim supn
1
n

log rank(An) ≤ H(α). Let δn be
the rank of the algebra An, i.e. δn = ∑r

i=1 dn(i). By concavity of the func-
tion η(t) = −t log t we have hφ(An) ≤ log δn. But since dm+lk = Gldm =
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βl(β−lGldm) we have

log(δm+lk) = log
( r∑

i=1

dm+lk(i)
)

= log
( r∑

i=1

βl(β−lGldm(i))
)

= l log β + log
( r∑

i=1

β−lGldm(i)
)
.

By Perron-Frobenius theory β−lGldm → (dm, ξ)ξ for l → ∞, so

log(δm+lk) → l log β + log
( r∑

i=1

(dm, ξ)ξ(i)
)

for l → ∞. Hence it follows that

lim
n

1

n
log(δn) = lim

l

1

m + lk
log(δm+lk) = lim

l

1

m + lk
(l log β)

= 1

k
log β = H(α)

by theorem 4.1. Thus the entropy from the trace is maximal and equals the
topological entropy, since we always have the inequality H(α) ≤ ht(α) [13].

By using the above theorem and the previous results it follows directly that
the entropy for our series of examples (for both the automorphisms and the
endomorphisms) is maximal and coincides with the topological entropy, since
we have periodic inclusions and a mean generator.
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