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STABILITY FOR THE PERIODIC
CAMASSA-HOLM EQUATION

JONATAN LENELLS

Abstract

We use integrability to prove the stability of smooth periodic solutions of the Camassa-Holm
equation. In particular, the smooth periodic traveling wave solutions are shown to be orbitally
stable.

1. Introduction

The Camassa-Holm equation

(1.1) ut − utxx + 3uux = 2uxuxx + uuxxx, x ∈ R, t > 0,

is a model for the propagation of shallow water waves over a flat bottom, u(x, t)
representing the water’s free surface in non-dimensional variables [2]. Equa-
tion (1.1) was first obtained [19] as an abstract bi-Hamiltonian equation with
infinitely many conservation laws. Equation (1.1) arises also as a model for
nonlinear waves in cylindrical axially symmetric hyperelastic rods, withu(x, t)
representing the radial stretch relative to a prestressed state [17]. Moreover,
(1.1) is a re-expression of the geodesic flow in the group of compressible
diffeomorphisms of the circle [32]. This geometric interpretation leads to a
proof that equation (1.1) satisfies the Least Action Principle [10]: a state of the
system is transformed to another nearby state through a uniquely determined
flow that minimizes the energy (see also [11]). Let us also point out that for a
large class of initial data, equation (1.1) is an infinite-dimensional completely
integrable Hamiltonian system: by means of an isospectral problem one can
convert the equation into a finite or infinite sequence of linear ordinary differ-
ential equations which can be trivially integrated (see [6], [12]). Equation (1.1)
admits, in addition to smooth waves, a multitude of traveling wave solutions
with singularities – peakons, cuspons, stumpons, and composite waves [2],
[24]. The Camassa-Holm equation models wave breaking [2], [5], [7], [8], [9],
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[18], [27], [30] and admits wave solutions that exist indefinitely in time [5],
[8]. Let us also point out that associated to (1.1) there is a whole hierarchy of
integrable equations [20].

We will consider stability of smooth periodic solutions of the Camassa-
Holm equation. In [16] it was shown that the smooth solitary waves of (1.1)
are orbitally stable. Moreover, the peaked solutions, whether solitary waves
or periodic waves, are also orbitally stable [14], [15], [21], [22]. The stability
result presented in this paper applies to all (traveling waves or not) smooth
periodic solutions with positive momentum m = u− uxx > 0.

In Sections 2 and 3 we review notation and some aspects of the isospec-
tral problem associated to (1.1). Using the recently established link between
Camassa-Holm and KdV [26], we derive in Section 4 a useful expression for
the eigenvalue asymptotics of the isospectral problem. Section 5 shows that
for a large class of initial data equation (1.1) can be viewed as a motion on
infinite-dimensional tori. Since a solution of (1.1) remains on the same torus
for all times, stability can geometrically be expressed by saying: If two differ-
ent initial data are close, then so are the tori on which they lie. Our main result
is stated in Section 6: the Camassa-Holm equation is stable in this sense. As
a direct consequence it follows that the periodic smooth traveling wave solu-
tions of (1.1) are orbitally stable. The proof, based on inverse spectral theory,
is presented in Section 7.

Our approach is inspired by [29], where a similar proof of stability was
outlined for the KdV equation.

2. Preliminaries

We let S be the circle of length 1. The space Ck(S), k ≥ 0, consists of all k
times continuously differentiable functions f with

‖f ‖Ck(S) =
k∑

j=0

max
x∈S

|f (j)(x)| < ∞.

C∞(S) denotes the set of smooth functions on S. Let D ′(S) be the space of
distributions on S, i.e. continuous linear functionals on C∞(S). We denote, for
s ∈ R, by Hs(S) the space of f ∈ D ′(S) such that

‖f ‖2
Hs =

∞∑
k=−∞

(1 + (2πk)2)s |f̂ (k)|2 < ∞,

where the Fourier coefficients are defined by

f̂ (k) = 〈f, exp(−2πik·)〉L2(S), k ∈ Z.
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3. Isospectral Problem

In terms of the momentum m = u − uxx , equation (1.1) can be expressed
(cf. [3]) as the condition of compatibility between

(3.1) ψxx = 1

4
ψ + λmψ

and

(3.2) ψt =
(

1

2λ
− u

)
ψx + 1

2
uxψ.

More precisely, if ψ(x, t) solves (3.1) and (3.2), then (ψxx)t = (ψt )xx if and
only if u is a solution to the Camassa-Holm equation.

The isospectral problem (3.1) has two normalized solutions ψ1(x, λ) and
ψ2(x, λ) determined by the conditions ψ1(0, λ) = 1, ψ1x(0, λ) = 0;
ψ2(0, λ) = 0, ψ2x(0, λ) = 1. The periodic spectrum consists of periodic
eigenvalues (numbers λ for which there is a periodic eigenfunction: ψ(0) =
ψ(1) and ψx(0) = ψx(1)) and antiperiodic eigenvalues (numbers λ for which
there is an antiperiodic eigenfunction: ψ(0) = −ψ(1) and ψx(0) = −ψx(1)).
The Dirichlet spectrum is determined by solving (3.1) with the boundary con-
ditions ψ(0) = ψ(1) = 0; it comprises the roots of ψ2(1, λ) = 0. The
discriminant of (3.1) is

�(λ) = 1

2
[ψ1(1, λ)+ ψ2x(1, λ)], λ ∈ C.

Floquet’s theorem implies that the periodic (antiperiodic) eigenvalues of (3.1)
are exactly the zeros of �(λ) = 1 (�(λ) = −1) [28].

The qualitative structure of the spectrum of (3.1) was described in [4]: If
m ≥ 0 there is a simple periodic ground state λ0 followed by alternately
anti-periodic and periodic pairs

· · · < λ4 ≤ λ3 < λ2 ≤ λ1 < λ0 < 0,

of simple or double eigenvalues accumulating at −∞. There is precisely one
simple eigenvalue µn of the Dirichlet spectrum in each interval [λ2n, λ2n−1],
n = 1, 2, . . ., and no others. If m ≤ 0 the pattern is simply reflected in λ = 0.

Remark 1. In the sequel we study only the case of smooth positive mo-
mentum 0 < m = u − uxx ∈ C∞(S). If the smooth initial data for equation
(1.1) satisfiesm0 = u0−u0xx > 0, thenm remains strictly positive and smooth
for all times [9].
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The functions �(λ), ψ2(1, λ), and ψ1x(1, λ) are entire analytic function of
order 1

2 of the complex variable λ [4]. Therefore, since the roots of�2(λ)−1 =
0 are the λ’s, the Weierstrass factorization theorem yields

(3.3) �2(λ)− 1 = sinh2(1/2)

(
1 − λ

λ0

) ∏
n≥1

(
1 − λ

λ2n−1

)(
1 − λ

λ2n

)
.

Similarly, since ψ2(1, 0) = 2 sinh(1/2) and the roots of ψ2(1, λ) = 0 are the
eigenvalues {µn}∞n=1 of the Dirichlet spectrum, we get

(3.4) ψ2(1, λ) = 2 sinh(1/2)
∏
n≥1

(
1 − λ

µn

)
.

4. Eigenvalue Asymptotics

The bi-Hamiltonian structure of (1.1) gives rise to an infinite sequence of
quantities

. . . , H−2[m], H−1[m], H0[m], H1[m], H2[m], H3[m], . . . ,

conserved under the flow of (1.1) (see [2], [25]). The first few conservation
laws in this sequence are

H−2[m] = − 1

16

∫
S

(
4√
m

+ m2
x

16m5/2

)
dx, H−1[m] =

∫
S

√
mdx,

H0[m] =
∫

S
mdx, H1[m] = 1

2

∫
S
mudx, H2[m] = 1

2

∫
S
(u3 + uu2

x) dx.

The Liouville transformation

(4.1) y =
∫ x

0

√
m(ξ) dξ, φ(y) = m(x)1/4ψ(x),

converts the isospectral problem (3.1) for the Camassa-Holm equation into the
isospectral problem for the KdV equation

(4.2) −φyy +Q(y)φ = νφ,

where ν = −λ and

(4.3) Q(y) = 1

m(x)

(
1

4
− (m(x)−1/4)xx

m(x)−1/4

)
.
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Equation (4.2) is a Hill’s equation on an interval of length L = H−1[m] =∫
S

√
m(ξ) dξ . Hence the periodic and antiperiodic eigenvalues of (4.2) have

the common expansion (see [31])

(4.4) ν2n, ν2n−1 = n2π2

L2
+ H̄0

L
+

(
LH̄1 − 1

2
H̄ 2

0

)
(nπ)−2

+ P(H̄2, H̄1, H̄0)(nπ)
−4 + · · · ,

with coefficients expressed in terms of the conservation laws for the KdV
equation

H̄0[Q] =
∫ L

0
Qdy, H̄1[Q] = 1

2

∫ L

0
Q2 dy,

H̄2[Q] = 1

2

∫ L

0

(
Q3 + 1

2
Q2
y

)
dy, . . . ,

and the coefficient of (nπ)−2j being a polynomial in H̄0, . . . , H̄j .
Since it was proved in [26] that

H̄0[Q] = −H−2[m], H̄1[Q] = −H−3[m], H̄2[Q] = −H−4[m], . . . ,

we obtain the asymptotic formula

(4.5) λ2n, λ2n−1 = −n2π2

H 2−1

+ H−2

H−1
+

(
H−1H−3 + 1

2
H 2

−2

)
(nπ)−2

+ P(H−1, H−2, H−3, H−4)(nπ)
−4 + · · · ,

for the eigenvalues of (3.1). Notice that the coefficient of (nπ)−2j depends
only on H−1, . . . , H−j−2.

5. Tori

The integrability of the Camassa-Holm equation provides a way to view its
flow geometrically as a motion on infinite-dimensional tori. Indeed, for a mo-
mentarily fixed m let

. . . < λ4 ≤ λ3 < λ2 ≤ λ1 < λ0 < 0,

be the periodic spectrum of the isospectral problem (3.1). Then the manifoldM
of all potentials giving rise to the same sequence of λ’s is a torus M ⊂ C∞(S)
of dimension d ≤ ∞; 2d+1 being the number of simple periodic eigenvalues.
Since the periodic spectrum of (3.1) is preserved under the Camassa-Holm flow
a solution of (1.1) remains on the same torus for all times.
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The demonstration that M is a torus proceeds as follows. We introduce the
norming constants

(5.1) cn = 1∫
S m(x)ψ

2
2 (x, µn) dx

, n ≥ 1.

If the periodic spectrum and the Dirichlet eigenvalues are known, then �(λ)
and ψ2(1, λ) can be recovered from (3.3) respectively (3.4). But then, as (see
[12])

cn = 1

ψ2x(1, µn)ψ̇2(1, µn)
= 1(

�(µn)± √
�2(µn)− 1

)
ψ̇2(1, µn)

,

also the norming constants are determined up to the sign of
√
�2(µn)− 1. The

signature of the radical is ambiguous only if �2(µn) �= 1, i.e. only if λ2n <

µn < λ2n−1. This suggests that we open up the closed interval [λ2n, λ2n−1]
into a circle, and place µn on the upper or lower semicircle according to the
positive or negative determination of the radical (cf. [29]). If λ2n = λ2n−1 the
circle collapses to a point and may then be ignored.

To show that the map

(5.2) m �→
{
µn,

√
�2(µn)− 1

}∞
n=1

,

from M into the product of the d ≤ ∞ nontrivial circles is one-to-one we use
the following crucial result.

Lemma 1 ([6]). There is a unique periodic solution µn(t), n ≥ 1, of the
system

(5.3)
dµn

dt
(t) = µn(t)

sinh(1/2)

√
�2(µn(t))− 1∏

1≤m�=n
(

1 − µn(t)

µm(t)

) .
which does not pause at simple periodic eigenvalues (i.e. dµn

dt
has a discrete

set of simple roots unless λ2n = λ2n−1), whose initial values are µn(0) and
for which the initial velocities are prescribed by choosing the signature of the
radical

√
�2(µn)− 1 such that√

�2(µn)− 1 = 1

cnψ̇2(1, µn)
−�(µn).

Moreover,

(5.4) m(x) = 1

2

∑
n≥1

[
1

µn(x)
−

(
1

µn(x)

)
xx

]
− 1

4

∑
n≥0

1

λn
.



194 jonatan lenells

The point here is that m can be recovered from the norming constants
and the periodic and Dirichlet spectra, because µn(t) is constructed from just
this information: Any point

{
µn,

√
�2(µn)− 1

}∞
n=1 can be used as initial

condition, and once µn(t) is obtained from the differential equations (5.3),
then m is found by means of the trace formula (5.4). This shows that the map
(5.2) is bijective. Hence M can be identified with a torus.

The differential equations (5.3) describe the motion of the Dirichlet eigen-
values under the translation flowm(x) �→ m(x+ t). Moreover, the eigenvalue
µn(t) hits both endpoints of the interval [λ2n, λ2n−1] exactly n times in unit
time.

Since the Hn’s are constant on each torus, we henceforth write Hn[M] for
their values on M .

6. Stability Result

The Camassa-Holm flow preserves the torus M ⊂ C∞(S). Moreover, due
to the integrability of (1.1), M can be viewed as a Jacobi variety on which
the flow is just straight line motion. Since the lines of motion in general are
irrationally inclined to the directions represented by the primitive periods of
the variety, the typical trajectory of (1.1) is dense in M . Therefore, the best
kind of stability we can hope for in general is the following: If two functions
m and m̄ are close, then so are the tori on which they lie. The next theorem
states that the Camassa-Holm equation is stable in this sense.

Theorem 1. Let 0 < m0 ∈ M , ε > 0, and k ≥ 1. There is a δ > 0 such
that if m̄0 ∈ M̄ satisfies

‖m0 − m̄0‖Hk(S) < δ,

then M and M̄ are ε-close in the Hk−2-norm, i.e. for any m̄ ∈ M̄ , there is an
m ∈ M such that ‖m− m̄‖Hk−2(S) < ε.

In the case of a traveling wave solution our definition of stability implies
the usual notion of orbital stability: Any solution starting close to a traveling
wave remains close to a translate of it for all times. To see this observe that
the spectrum associated to a traveling wave ϕ(x − ct) ∈ M has only the
first gap open, λ2 < λ1, whereas all other eigenvalues except λ0 are double
(cf. [12]). Thus the torus M can be identified with the circle of translates of ϕ.
If m̄ ∈ M̄ starts close to m, then the stability ensures that M and M̄ are close.
Consequently, the trajectory of m̄ always stays close to a translate of m.

For each speed c > 0 equation (1.1) admits a two-parameter family of
smooth periodic traveling wave solutions [24]. Since they all have positive
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momentum m = u − uxx > 0 (see [23]), their orbital stability follows from
Theorem 1.

Theorem 2. The smooth periodic traveling wave solutions of the Camassa-
Holm equation are orbitally stable.

7. Proof of Stability

In this section we prove Theorem 1. The proof employs the trace formula (see
[6])

(7.1) u(x) = cosh(1/2)

2 sinh(1/2)
H0[M] +

∑
n≥1

1

µn(x)
,

where the µn’s are as in Lemma 1: µn(x) is the nth Dirichlet eigenvalue
associated to the potential m(· + x). First we need a lemma that deals with the
tail of the sum in (7.1).

Lemma 2. We have

(7.2) u(x) = cosh(1/2)

2 sinh(1/2)
H0[M] +

N∑
n=1

1

µn(x)
+ o(1),

(7.3)

ux(x) = −
N∑
n=1

µ′
n(x)

µ2
n(x)

+ o(1), . . . , u(k)(x) =
N∑
n=1

(
1

µn(x)

)(k)

+ o(1),

with o(1) approaching 0 uniformly in an Hk-neighborhood of M as N ↑ ∞.

Proof. The continuity of H−1 in the Hk-norm and the asymptotic formula
(4.5) immediately give (7.2).

To show the differentiated formulas (7.3) we need to study theµn’s in more
detail. In view of (3.3) the differential equations (5.3) can be spelled out as

µ′
n = ±µn

√
µn

λ0
− 1

√(
1 − µn

λ2n−1

)(
µn

λ2n
− 1

) ∏
1≤m�=n

√(
1 − µn

λ2m−1

)(
1 − µn

λ2m

)
1 − µn

µm

.

We rewrite this as

(7.4) µ′
n = ± 1√−λ0

∏
m≥1

−µm√
λ2m−1λ2m

× √
λ0 − µn

√
(λ2n−1 − µn) (µn − λ2n)

∏
1≤m�=n

√
(λ2m−1 − µn) (λ2m − µn)

µn − µm
.
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Using the trace formula [12]

√
m(x) = 1

2
√−λ0

∏
m≥1

−µm√
λ2m−1λ2m

,

we obtain

(7.5) µ′
n = ±2

√
m(x)

√
λ0 − µn

× √
(λ2n−1 − µn) (µn − λ2n)

∏
1≤m�=n

√
(λ2m−1 − µn) (λ2m − µn)

µn − µm
.

Note that, in view of the continuity ofH−1[m] andH−2[m] in theHk-norm,
(4.5) yields√

λ0 − µn = O(n),
√
(λ2n−1 − µn) (µn − λ2n) = O(1),

∏
1≤m�=n

√
(λ2m−1 − µn) (λ2m − µn)

µn − µm
= O(1),

as n ↑ ∞ uniformly for m in the vicinity of M . Hence µ′
n = O(n) as n ↑ ∞,

so that the formula for ux follows by differentiation of (7.1).
Since all the functionals H−1[m], H−2[m], . . . , H−k−1[m] are continuous

in the Hk-norm (cf. [25]), we obtain the uniform estimates√
λ2n−1 − µn = O(n−k+1),

√
µn − λ2n = O(n−k+1).

Differentiating (7.5) and employing these estimates, we arrive at the formulas
for the higher derivatives of u.

Now supposem0 ∈ M and m̄0 ∈ M̄ are two functions close in theHk-norm.
Let m̄ = ū − ūxx be a fixed but arbitrary point on M̄ . We want to construct
m = u− uxx ∈ M close to m̄.

Let the periodic spectrum associated to m respectively m̄ be · · · < λ2 ≤
λ1 < λ0 < 0 respectively · · · < λ̄2 ≤ λ̄1 < λ̄0 < 0. A point on M is given by
a sequence {µn,

√
�2(µn)− 1} of numbers µn ∈ [λ2n, λ2n−1] and signatures

of the radicals
√
�2(µn)− 1. By Lemma 2 we have

(7.6) u(x)− ū(x) = cosh(1/2)

2 sinh(1/2)

(
H0[M] −H0[M̄]

)
+

N∑
n=1

(
1

µn(x)
− 1

µ̄n(x)

)
+ o(1),
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where the µ̄n’s are the Dirichlet eigenvalues associated to m̄. First observe that
|H0[M]−H0[M̄]| can be made arbitrarily small by choice of m̄0. To show that
the sum in (7.6) is small, we estimate the disturbance in the motion of µn due
to a small change in the potential m.

Viewing (3.1) as an eigenvalue problem with periodic or antiperiodic bound-
ary conditions, we infer from the Minimax principle that each λn can be ex-
pressed as a quotient

− min

{
max
ψ∈S

∫
S

(
ψ2
x + 1

4ψ
2
)
dx∫

S mψ
2dx

}
,

where the minimum is taken over all subspaces S of a certain dimension
(cf. [1]). This representation shows that the periodic spectrum depends con-
tinuously on m. Hence λn is close to λ̄n for all n, so that we may choose the
initial conditions µn(0) close to µ̄n(0).

As in the proof of Lemma 1 presented in [6] we let X be the Banach space
of points x = (x1, x2, . . .) ∈ R∞ endowed with the norm

‖x‖ =
∞∑
n=1

|xn|
n3

< ∞.

Introducing new variables xn(t) by

µn(t) = λ2n−1 + (λ2n − λ2n−1) sin2(xn(t)),

the equations (7.4) can be written as

dxn

dt
= Fn(x1, x2, . . .), n ≥ 1,

where

(7.7) Fn(x1, x2, . . .) = ± 1√−λ0

∏
m≥1

−µm√
λ2m−1λ2m

× √
λ0 − µn

∏
1≤m�=n

√
(λ2m−1 − µn) (λ2m − µn)

µn − µm
.

Similarly, the motion of µ̄n(x) = λ̄2n−1+(λ̄2n−λ̄2n−1) sin2(x̄n(t)) is described
by

dx̄n

dt
= F̄n(x̄1, x̄2, . . .), n ≥ 1,
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where F̄n is given by the same formula as Fn except that the λ’s are replaced
by λ̄’s.

In [6] it was proved that F = (F1, F2, . . .) satisfies the Lipschitz condition

‖F(x)− F(y)‖ ≤ K‖x − y‖, x, y ∈ X,

for some constantK > 0. Furthermore, from (7.7) we see that there is a ρ > 0
such that

‖F(x)− F̄(x)‖ ≤ ρ, x ∈ X.

Hence standard ODE estimates show that

(7.8) ‖x(t)− x̄(t)‖ ≤ ‖x(0)− x̄(0)‖eKt + ρ

K

(
eKt − 1

)
, t ≥ 0.

As the λ̄’s approach the λ’s, ρ can be taken smaller and smaller. In particular,
choosing ‖m0 − m̄0‖Hk(S) small, µn(x) can be arranged to be arbitrarily close
to µ̄n(x) for 0 ≤ x < 1. Thus (7.6) shows that maxx∈S |u(x)− ū(x)| is small.

A similar argument can now be carried out for the derivatives ofµn, showing
that maxx∈S |µ(j)n (x)− µ̄

(j)
n (x)| is small for j ≤ k. The differentiated versions

of (7.6) obtained from Lemma 2 therefore show that ‖u− ū‖Ck(S) is small. But
Ck(S) ⊂ Hk(S) so we deduce that

‖m− m̄‖Hk−2(S) = ‖u− ū‖Hk(S)

is small. This finishes the proof.
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