DEGENERATIONS OF (1,7)-POLARIZED ABELIAN SURFACES

F. MELLIEZ and K. RANESTAD*

Abstract

The moduli space of $(1,7)$-polarized abelian surfaces with a level structure was shown by Manolache and Schreyer to be rational with compactification the variety of powersum presentations of the Klein quartic curve. In this paper the possible degenerations of the abelian surfaces corresponding to degenerations of powersum presentations are classified.

1. Introduction

The moduli space $A(1,7)$ of $(1,7)$-polarized abelian surfaces with a level structure was shown by Manolache and Schreyer to be rational with compactification $V\left(\mathscr{K}_{4}\right)$ a Fano 3-fold V_{22} [13]. Gross and Popescu obtain the same compactification of $A(1,7)$ with a different approach [10], but in neither case is the boundary $V\left(\mathscr{K}_{4}\right) \backslash A(1,7)$ discussed. The purpose of this paper is to describe this boundary. We show that every point on $V\left(\mathscr{K}_{4}\right)$ correspond to a surface in P^{6} invariant under the action of a group G_{7}, and we give a precise description of these surfaces.

More precisely, the (1, 7)-polarized abelian surface A with its level structure is embedded in $\mathrm{P}^{6}=\mathrm{P} V_{0}$, where V_{0} is the Schrödinger representation of the Heisenberg group H_{7} of level 7. The embedding is invariant under the action of G_{7}, an extension of H_{7} by an involution. The fixed points of this involution and its conjugates in G_{7} form an H_{7}-orbit of planes P_{2}^{+}and 3spaces P_{3}^{-}. The 3-fold $V\left(\mathscr{K}_{4}\right)$ parameterizes, what we denote by generalized G_{7}-embedded abelian surfaces (cf. 2.9). Every such surface intersects P_{2}^{+}in a finite subscheme of length six, which we may classify by its type, namely the length of its components.

In this paper we prove the
Theorem 1.1. Let A be a generalized G_{7}-embedded abelian surface in $\mathrm{P} V_{0}$, then according to the type of $\zeta_{A}=A \cap \mathrm{P}_{2}^{+}$the surface A is

[^0]| type of ζ_{A} | description |
| :--- | :--- |
| $(1,1,1,1,1,1)$ | smooth and abelian |
| $(2,1,1,1,1)$ | translation scroll $(E, \pm \sigma)$ with $2 \cdot \sigma \neq 0$ |
| $(3,1,1,1)$ | tangent scroll $(E, 0)$ |
| $(2,2,2)$ | double translation scroll $(E, \pm \sigma)$ with $2 \cdot \sigma=0$ and $\sigma \neq 0$ |
| $(2,2,1,1)$ | union of seven quadrics |
| $(4,2)$ | union of seven double projective planes |
| $(2,2,2)_{c}$ | union of fourteen projective planes |

For the translation and tangent scrolls, E is a septimic (this is the term used by Sylvester), i.e. of degree seven, elliptic curve with an origin and the translation defined by the specified point σ.

The two distinct $(2,2,2)$ cases (abusively denoted by $(2,2,2)$ and $\left.(2,2,2)_{c}\right)$ are described in Figure 1 of the appendix.

In the first section we recall some basic facts on $(1,7)$-polarized abelian surfaces with level structure, and construct a compactification of their moduli space. In fact, we consider a rational map $\kappa: \mathrm{P} V_{0} \rightarrow \mathrm{P}^{6}$ defined by $G_{7^{-}}$ invariant hypersurfaces of degree 7 , which maps any general surface $A \in$ $A(1,7)$ to a six-secant plane to a certain Veronese surface $S \subset \mathrm{P}^{6}$ of degree 9 . The surface S is the image by κ of P_{2}^{+}, so the six points of intersection $S \cap \kappa(A)$ is the image of $A \cap \mathrm{P}_{2}^{+}$. It turns out that distinct surfaces A are mapped to distinct planes $\kappa(A)$, so the variety of six-secant planes to S form a natural compactification of $A(1,7)$. The variety of planes in P^{6} that intersects S in a subscheme of length six is the Fano 3-fold $V\left(\mathscr{K}_{4}\right)$. Its name originates from the fact that the finite subschemes $A \cap \mathrm{P}_{2}^{+}$form polar hexagons to a certain Klein quartic curve $\mathscr{K}_{4} \subset \mathrm{P}_{2}^{+*}$, while $V\left(\mathscr{K}_{4}\right)$ form the compact variety of apolar subschemes of length six to \mathscr{K}_{4}, cf. [17]. It is in this interpretation that Gross and Popescu identifies $V\left(\mathscr{K}_{4}\right)$ as a compactification of $A(1,7)$, cf. [10]. The variety $V\left(\mathscr{K}_{4}\right)$ may also be identified with the variety of twisted cubic curves apolar to a certain "Kleinian" net of quadric surfaces. This interpretation is the key to the original approach of Manolache and Schreyer. Although our approach is slightly different from these approaches in the interpretation of $V\left(\mathscr{K}_{4}\right)$, the main technical argument appears in their papers.

The variety $V\left(\mathscr{K}_{4}\right)$ is a prime Fano threefold of genus 12. Mukai discovered different interpretations of these threefolds that are carefully explained in [17].

In the second section we present some useful aspects in our situation of these interpretations. In particular, we describe carefully the subvariety $\Delta_{\mathscr{K}_{4}}$ of $V\left(\mathscr{K}_{4}\right)$ parameterizing apolar subschemes of length six to \mathscr{K}_{4} which are singular, i.e. do not consist of six distinct points, or equivalently planes in P^{6} that intersect S in a singular subscheme of length six.

In the last section we prove Theorem 1.1 by considering the inverse images by κ of planes that belong to $\Delta_{\mathscr{K}_{4}} \subset V\left(\mathscr{K}_{4}\right)$ as surfaces in $\mathrm{P} V_{0}$. The final argument consists in verifying that only the planes that belong to $\Delta_{\mathscr{K}_{4}}$ pull back to singular surfaces.

Note that A. Marini also investigates such degenerations in [14]. His approach uses the interpretation of $V\left(\mathscr{K}_{4}\right)$ as the set of twisted cubic curves apolar to the "Kleinian" net of quadrics.

Notations

The base field is the one of complex numbers C. If R is a vector space, the Veronese map from R to $S^{n} R$ (as well as its projectivisation) will be denoted by v_{n} :

$$
R \xrightarrow{\nu_{n}} S^{n} R
$$

If $s \in \operatorname{Hilb}(n, \mathrm{P} R)$ the type of s (i.e. the associated length partition of n) will be labeled λ_{s} :

$$
s \xrightarrow{\lambda} \lambda_{s} .
$$

If H is a hypersurface of $\mathrm{P} R$ then $e_{H}=0$ is an equation of H.
The irreducible representations of $\operatorname{SL}\left(2, \mathrm{~F}_{7}\right)$ will be denoted by $\mathrm{C}, W_{3}, W_{3}^{\vee}$, $U_{4}, U_{4}^{\vee}, W_{6}, U_{6}, U_{6}^{\vee}, W_{7}, W_{8}$ and U_{8}. The algebra of representations of the group $\operatorname{SL}\left(2, \mathrm{~F}_{7}\right)$ is a quotient of

$$
\mathrm{Z}\left[\mathrm{C}, W_{3}, W_{3}^{\vee}, U_{4}, U_{4}^{\vee}, W_{6}, U_{6}, U_{6}^{\vee}, W_{7}, W_{8}, U_{8}\right]
$$

where C denotes the trivial representation, W_{n} denotes an irreducible $\operatorname{PSL}\left(2, \mathrm{~F}_{7}\right)$-module of dimension n and U_{n} denotes an irreducible $\operatorname{SL}\left(2, \mathrm{~F}_{7}\right)$ module of dimension n on which $\operatorname{SL}\left(2, \mathbf{F}_{7}\right)$ acts faithfully.

The corresponding table of multiplication can be found in [13] and [5] with the following possible identifications

$[5]$	V_{1}	$V_{3}=V_{-}$	V_{3}^{*}	$V_{4}=V_{+}$	V_{4}^{*}	V_{6}	V_{6}^{\prime}	$V_{6}^{\prime *}$	V_{7}	V_{8}^{\prime}	V_{8}
$[13]$	I	W	W^{\prime}	U	U^{\prime}	T	T_{1}	T_{2}	L	M_{1}	M_{2}
\times	C	W_{3}	W_{3}^{\vee}	U_{4}	U_{4}^{\vee}	W_{6}	U_{6}	U_{6}^{\vee}	W_{7}	U_{8}	W_{8}
	\cdot	P_{2}^{+}	$\check{\mathrm{P}}_{2}^{+}$	P_{3}^{-}	$\check{\mathrm{P}}_{3}^{-}$	P_{5}^{+}	P_{5}^{-}	$\check{\mathrm{P}}_{5}^{-}$	P_{6}^{+}	P_{7}^{-}	P_{7}^{+}

Note that what are denoted by P_{2}^{+}and P_{3}^{-}are respectively denoted by P_{-}^{2} and P_{+}^{3} in [10].

2. Moduli space: a compactification

In this section we describe our main object, the abelian surfaces with a (1, 7)polarization and a level structure, and their moduli space $A(1,7)$. The general member of $A(1,7)$ is embedded in P^{6} invariant under a group G_{7}. The hypersurfaces of degree 7 invariant under this group define a rational map on P^{6} which is the key to our approach to a compactification of $A(1,7)$. The first analysis of this map is the main aim of this section.

Let A be an abelian surface, i.e. a projective complex torus C^{2} / Λ where Λ is a (maximal) lattice of $\mathrm{C}^{2} \simeq \mathrm{R}^{4}$. Then the variety $\operatorname{Pic}^{0}(A)$ is an abelian surface as well (isomorphic to $\left.\left(\mathrm{C}^{2}\right)^{\vee} / \Lambda^{\vee}\right)$; this latter one is called the dual abelian surface of A and will be denoted by A^{\vee}. As additive group, the surface A acts on itself by translation, if $x \in A$ we will denote by τ_{x} the corresponding translation.

A line bundle of type $(1,7)$ on A is the data of an ample line bundle \mathscr{L} such that the kernel of the isogeny

$$
\varphi_{\mathscr{L}}: A \longrightarrow A^{\vee}, \quad x \longrightarrow \tau_{x}^{*} \mathscr{L} \otimes \mathscr{L}^{-1}
$$

is isomorphic to $Z_{7} \times Z_{7}$.
A $(1,7)$-polarization on A is an element of

$$
\left\{\left(A, \varphi_{\mathscr{L}}\right) \mid \mathscr{L} \text { is of type }(1,7)\right\} .
$$

Thanks to Mumford, a coarse moduli space of $(1,7)$-polarized abelian surfaces exists, we will denote it by $M(1,7)$.

Now choose a generic (1,7)-polarized abelian surface, say A, then $V_{0}=$ $\mathrm{H}^{0}(A, \mathscr{L})$ is of dimension 7. The group $\operatorname{ker}\left(\varphi_{\mathscr{L}}\right) \simeq \mathrm{Z}_{7} \times \mathrm{Z}_{7}$ becomes a subgroup of $\mathrm{P} \mathrm{SL}\left(V_{0}\right)$. It is certainly safer to work with linear representations rather than projective ones so we need to lift the action of $\mathbf{Z}_{7} \times \mathbf{Z}_{7}$ on $\mathbf{P} V_{0}$ to an action of one of its central extensions on V_{0}. The Schur multiplier of $\mathbf{Z}_{7} \times \mathbf{Z}_{7}$ is known to be μ_{7} so any projective representation of $Z_{7} \times Z_{7}$ is induced by a linear representation of what is called the "Heisenberg group of level 7 " and denoted by H_{7} : that is to say for all $n \in \mathbf{N}^{*}$ and all projective representations ρ we get a Cartesian diagram:

In this way V_{0} becomes a H_{7}-module (of rank 7), this representation is called the "Schrödinger" representation of H_{7}. We now have a way to identify
all the vector spaces $\mathrm{H}^{0}\left(A^{\prime}, \mathscr{L}\right)$ for any abelian surface $A^{\prime} \in M(1,7)$ as they are all isomorphic to V_{0} as H_{7}-modules. This looks too good to be true. So what is wrong? We implicitly made an identification between $\operatorname{ker}\left(\varphi_{\mathscr{L}}\right)$ and $\mathbf{Z}_{7} \times \mathbf{Z}_{7}$ and this is certainly defined up to $\operatorname{SL}\left(2, F_{7}\right)$ only! So the construction is only invariant under $N_{7}=H_{7} \rtimes \operatorname{SL}\left(2, \mathrm{~F}_{7}\right)$ which turns out to be the normalizer of H_{7} in $\operatorname{SL}(7, \mathrm{C}) \simeq \operatorname{SL}\left(V_{0}\right)$.

So to any basis s of $\operatorname{ker}\left(\varphi_{\mathscr{L}}\right)$ corresponds an embedding

$$
\Phi_{s}: A \longrightarrow \mathrm{P} V_{0}
$$

The group $\operatorname{SL}\left(2, \mathrm{~F}_{7}\right)$ acts on the set of bases of $\operatorname{ker}\left(\varphi_{\mathscr{L}}\right)$ and we immediately get another complication (which will turn out to be quite nice after all):

$$
\Phi_{s}(A)=\Phi_{-s}(A)
$$

Let us denote by $G_{7}=H_{7} \rtimes\{-1,1\} \subset N_{7}$. This group (after killing μ_{7}) is in general the full group of automorphisms of the surface $\Phi_{s}(A)$: if b is any element of $\mathbf{Z}_{7} \times \mathrm{Z}_{7}$ and $\tau_{b}: \mathrm{P} V_{0} \longrightarrow \mathrm{P} V_{0}$ is the involution induced by the corresponding " -1 " of G_{7}, then τ_{b} leaves $\Phi_{s}(A)$ (globally) invariant and is induced by the "opposite" map $x \mapsto-x$ on A for a good choice of the image of the origin on $\Phi_{s}(A)$. In other words, $\tau_{b} \cdot \Phi_{s}=\Phi_{-s}$.

As the cardinality of $\operatorname{SL}\left(2, \mathrm{~F}_{7}\right) /\{-1,1\}=\operatorname{PSL}\left(2, \mathrm{~F}_{7}\right)$ is 168 , each element of $M(1,7)$ will be mapped into $\mathrm{P} V_{0}$ in 168 ways (distinct in general). We get a brand new moduli space by considering a $(1,7)$-polarized abelian surface together with one of its embeddings, this moduli space will be denoted by $A(1,7)$:

$$
A(1,7)=\left\{\left(\left(A, \varphi_{\mathscr{L}}\right), s\right) \mid\left(A, \varphi_{\mathscr{L}}\right) \in M(1,7), s \text { is a basis of } \operatorname{ker}\left(\varphi_{\mathscr{L}}\right)\right\} / \square
$$

in which the equivalence relation \square is the expected one, $\left(X_{1}, s_{1}\right) \square\left(X_{2}, s_{2}\right)$ if $\Phi_{s_{1}}\left(X_{1}\right)=\Phi_{s_{2}}\left(X_{2}\right)$ (fortunately, this implies $X_{1}=X_{2}$). The choice of basis (or embedding) is the level structure referred to in the introduction.

Here are some useful remarks:
(1) The surface $\Phi_{s}(A)$ is of degree 14 ;
(2) by construction if $x \in A$, then the set of 49 points $\Phi_{s}\left(\varphi_{\mathscr{L}}^{-1}\left(\varphi_{\mathscr{L}}(x)\right)\right)$ is an orbit under the action of H_{7} ((H_{7} / μ_{7} if we want to be precise);
(3) the above construction works as well for elliptic curves, so in particular $\mathrm{P} V_{0}$ contains naturally G_{7}-invariant embedded elliptic curves (of degree 7);
(4) if $b \in \mathbf{Z}_{7} \times \mathbf{Z}_{7}$ the involution τ_{b} induces a $\operatorname{SL}\left(2, \mathbf{F}_{7}\right)$-module structure on V_{0}, as such a module V_{0} splits in $V_{0}=W_{3} \oplus U_{4}$ where both W_{3} and
U_{4} are irreducible $\operatorname{SL}\left(2, \mathrm{~F}_{7}\right)$-modules of dimension 3 and 4 respectively (such that $S^{3} W_{3}^{\vee} \simeq S^{2} U_{4}$). The projective plane $\mathrm{P} W_{3}$ and the projective space $\mathrm{P} U_{4}$ in $\mathrm{P} V_{0}$ are point wise invariant by the involution τ_{b}. For a given $b \in \mathbf{Z}_{7} \times \mathbf{Z}_{7}$ these two spaces will often be denoted by \mathbf{P}_{2}^{+}and \mathbf{P}_{3}^{-} (the signs come from the following: W_{3} is also a $\operatorname{PSL}\left(2, \mathrm{~F}_{7}\right)$-module, i.e. $-1 \in \operatorname{SL}\left(2, \mathrm{~F}_{7}\right)$ acts trivially on it, but $\operatorname{SL}\left(2, \mathrm{~F}_{7}\right)$ acts faithfully on U_{4});
(5) if E is a G_{7}-invariant elliptic curve in $\mathrm{P} V_{0}$ then the curve E intersects any P_{2}^{+}in one point (corresponding to the image of 0) and any P_{3}^{-}in three points (corresponding to its non trivial 2-torsion points);
(6) the latter holds also for abelian surfaces, with decomposition $6+10$ corresponding to the odd and even 2-torsion points ([12]);
(7) by adding a finite set of G_{7}-invariant heptagons to the union of the G_{7} invariant embedded elliptic curves of degree 7, one gets a birational model of the Shioda modular surface of level 7. It intersects each P_{2}^{+}in a plane quartic curve \mathscr{K}_{4}^{\prime}, the so called Klein quartic curve ([15] or [8] which contains original references to Klein).

Following what happens in the $(1,5)$ case we consider the rational map

$$
\kappa: \mathrm{P} V_{0} \rightarrow \mathrm{P}\left(\mathrm{H}^{0}\left(\mathcal{O}_{\mathrm{P} V_{0}}(7)\right)^{G_{7}}\right)^{\vee}
$$

i.e. the rational transformation of $\mathrm{P} V_{0}$ by the linear system of G_{7}-invariant septimics. In what follows, by a ' G_{7}-invariant septimic' we always mean a septimic in this linear system. Obviously the vector space $\mathrm{H}^{0}\left(\mathcal{O}_{\mathrm{P} V_{0}}(7)\right)^{G_{7}}$ is a $\operatorname{PSL}\left(2, \mathrm{~F}_{7}\right)$-module. On the other hand $\mathrm{h}^{0}\left(\mathcal{O}_{\mathrm{PV}_{0}}(7)\right)^{G_{7}}=8$ (cf. [13]), so κ takes, a priori, its values in a P^{7}. There is a unique N_{7}-invariant septimic hypersurface [15], so the decomposition of the $\operatorname{PSL}\left(2, \mathrm{~F}_{7}\right)$-module $\mathrm{H}^{0}\left(\mathcal{O}_{\mathrm{P} V_{0}}(7)\right)^{G_{7}}$ must have a 7 -dimensional summand. But the only dimensions of non-trivial irreducible $\operatorname{PSL}\left(2, \mathrm{~F}_{7}\right)$-modules are $3,6,7$ and 8 , and W_{7} is the only one of dimension 7 , so this must be the other summand. Therefore $\mathrm{H}^{0}\left(\mathcal{O}_{\mathrm{P}_{0}}(7)\right)^{G_{7}} \simeq$ $W_{7} \oplus \mathrm{C}$ as a $\operatorname{PL} \operatorname{SL}\left(2, \mathrm{~F}_{7}\right)$-module.

We will show show that the image of κ is in fact contained in $\mathrm{P} W_{7}$. First we analyze the base locus of these septimic hypersurfaces.

Lemma 2.1. A G_{7}-invariant septimic hypersurface of $\mathrm{P} V_{0}$ contains any of the fortynine projective spaces P_{3}^{-}.

Proof. Consider the restriction to any projective space $\mathrm{P}_{3}^{-}=\mathrm{P} U_{4}$ of G_{7-} invariant septimic hypersurfaces. Then we get a map

$$
\mathrm{H}^{0}\left(\mathcal{O}_{\mathrm{P}_{0}}(7)\right)^{G_{7}} \longrightarrow \mathrm{H}^{0}\left(\mathcal{O}_{\mathrm{P}_{4}}(7)\right)=S^{7} U_{4}^{\vee}
$$

which needs to be $\operatorname{SL}\left(2, \mathrm{~F}_{7}\right)$-equivariant (the entire collection of P_{3}^{-}'s being invariant under the action of $\left.G_{7}\right)$. But U_{4} is a faithful module for $\operatorname{SL}\left(2, \mathrm{~F}_{7}\right)$ and 7 is odd, so the map is the zero map.

Using Bezout's theorem we get
Corollary 2.2.A G_{7}-invariant septimic hypersurface of $\mathrm{P} V_{0}$ contains any G_{7}-invariant elliptic curve of $\mathrm{P} V_{0}$ as well as its translation scroll by a non trivial 2-torsion point.

Notice that our forty nine P_{2}^{+}constitute an orbit under G_{7}, so it makes sense to consider the surface $\kappa\left(\mathrm{P}_{2}^{+}\right)$.

Corollary 2.3. 'The'plane P_{2}^{+}is mapped by κ to a Veronese surface S of degree nine in PW_{7}.

Proof. The restriction of $\mathrm{n} G_{7}$-invariant septimic hypersurface to P_{2}^{+}contains, by the previous corollary and the last item (7) above, the Klein quartic curve \mathscr{K}_{4}^{\prime}. The residual factor is a cubic, so the image of the restriction map $\mathrm{H}^{0}\left(\mathcal{O}_{\mathrm{P} V_{0}}(7)\right)^{G_{7}} \longrightarrow \mathrm{H}^{0}\left(\mathcal{O}_{\mathrm{P} W_{3}^{\vee}}(7)\right)=S^{7} W_{3}^{\vee}$ factors through $W_{7} \subset S^{3} W_{3}^{\vee}=$ $W_{7} \oplus W_{3}$. Therefore the restriction of κ to P_{2}^{+}is defined by $W_{7} \subset S^{3} W_{3}^{\vee}$ which forms a basepoint free linear system of cubics, and the corollary follows.

Remark 2.4. This phenomenon holds also in the $(1,5)$ case where P_{2}^{+} is mapped by the linear system of G_{5}-invariant quintic hypersurfaces to a (projected) Veronese surface of degree 25 in a Grassmannian $\operatorname{Gr}\left(1, P_{3}\right) \subset P_{5}$ known as the bisecants variety of a certain rational sextic curve in P_{3}. The image of the blow-up of 'the' line P_{1}^{-}is the sextic complex in $\operatorname{Gr}\left(1, P_{3}\right)$ of lines contained in a dual sextic of planes in P_{3}. In this case, any G_{5}-embedded $(1,5)$-polarized abelian surface is mapped to a ten-secant plane to the image of P_{2}^{+}(which intersects the sextic complex along six lines).

Although the same kind of results are expected in our situation, here is a difference between the two cases. In the $(1,5)$ case the vector space of $G_{5^{-}}$ invariant quintics is spanned by determinants of socalled Moore matrices.

Remark 2.5. The vector space $\mathrm{H}^{0}\left(\mathcal{O}_{\mathrm{PV}_{0}}(7)\right)^{G_{7}}$ is not spanned by determinants of (symmetric) Moore matrices ([10]). For this, let us recall first what a Moore matrix is; there is a nice isomorphism of irreducible N_{7}-modules (defined up to homothety) $S^{2} V_{4}=U_{4} \otimes V_{0}$ which induces a map $U_{4} \longrightarrow$ $S^{2} V_{4} \otimes V_{0}^{\vee}$. For a good choice of basis in V_{0}^{\vee} we get a 7×7 matrix with coefficients in V_{0}^{\vee} which is called a (symmetric) "Moore matrix". Now considering determinants, i.e. the map $S^{2} V_{4} \xrightarrow{" S^{2} \Lambda^{7 "}} \mathrm{C}$) we get a first map

$$
S^{7} U_{4} \longrightarrow S^{7} V_{0}^{\vee}=\mathrm{H}^{0}\left(\mathcal{O}_{\mathrm{P} V_{0}}(7)\right),
$$

which composed with the projection to the invariant part yields a map

$$
S^{7} U_{4} \longrightarrow \mathrm{H}^{0}\left(\mathcal{O}_{\mathrm{P} V_{0}}(7)\right)^{G_{7}}
$$

This latter one is certainly zero: the action of $-1 \in \operatorname{SL}\left(2, \mathrm{~F}_{7}\right)$ cannot be trivial on any $\operatorname{SL}\left(2, \mathrm{~F}_{7}\right)$-invariant subspace of the vector space $S^{7} U_{4}$.

Nevertheless anti-symmetric Moore matrices play a fundamental role in the $(1,7)$ case. They are defined by the isomorphism of irreducible N_{7}-modules $\Lambda^{2} V_{4}=W_{3}^{\vee} \otimes V_{0}$. The locus (in $\mathrm{P} V_{0}$) where such a matrix drops its rank is a Calabi Yau threefold (see [10]) and will appear in subsection 4.3.

Proposition 2.6. The image by the map κ of a G_{7}-embedded (1,7)polarized abelian surface is (generically) a projective plane and we have a factorization

$$
A^{b} \xrightarrow{49: 1} A^{\vee b} \xrightarrow{2: 1} K_{A^{\vee}}^{b} \xrightarrow{2: 1} \kappa(A)
$$

where the surface A^{b} is the blowup of the surface A along its intersection with the base locus of the G_{7}-invariant septimics, and $K_{A^{\vee}}^{b}$ is the quotient of $A^{\vee b}$ by the involution, i.e. in general its Kummer surface.

Proof. Assume the $(1,7)$-polarization of $A \in M(1,7)$ is given by a very ample line bundle, then from the G_{7}-equivariant resolution of the surface A in $\mathrm{P} V_{0}$ which can be found in [13, appendix], one can check that $\operatorname{dim}\left(\mathrm{H}^{0}\left(\mathcal{O}_{A}(7)\right)^{G_{7}}\right)=3$.

If the map $\left.\kappa\right|_{A}$ is finite, then we have a factorization

$$
A^{b} \xrightarrow{49: 1} A^{\vee b} \xrightarrow{2: 1} K_{A^{\vee}}^{b} \xrightarrow{2: 1} \kappa(A) .
$$

The first two maps (as well as their degree) come from the construction itself, the degree of the last one follows by Bezout's theorem.

If $\left.\kappa\right|_{A}$ is not finite, then it is composed with a pencil. We may assume that $\operatorname{Pic}(A)$ has rank 1, i.e. all curves are hypersurface sections or translates thereof. But no such curve is G_{7}-invariant unless the curve is a possible translate of a septimic hypersurface section, so $\left.\kappa\right|_{A}$ has at most isolated base points. Therefore the linear system defining $\left.\kappa\right|_{A}$ is a subsystem of $|7 \cdot h|$. The linear system is a net, so if it is composed with a pencil each member is reducible. In fact the general member must be the reducible union of seven hyperplane sections through the base locus. The intersection of one of these hyperplane sections with the base locus is a finite set whose stabilizer in G_{7} has order at least 14. Therefore the hyperplane itself must have stabilizer of order at least 14. But there are only finitely many such hyperplanes, so this is impossible. Thus the map κ is finite on A and the proposition follows.

Let us denote by $A(1,7)^{v}$ the (open) subset of $A(1,7)$ corresponding to $(1,7)$-polarized abelian surfaces for which the polarization is given by a very ample line bundle and $\kappa(A)$ is a plane. The association

$$
A \mapsto \kappa(A)
$$

maps $A(1,7)^{v}$ into the variety of six-secant planes to $\kappa\left(\mathrm{P}_{2}^{+}\right)$. Notice that the six points $\kappa(A) \cap \kappa\left(\mathrm{P}_{2}^{+}\right)=\kappa\left(A \cap \mathrm{P}_{2}^{+}\right)$. Gross and Popescu in [10] prove that $A \cap \mathrm{P}_{2}^{+}$is a polar hexagon to the Klein quartic curve. On the other hand six points in P_{2}^{+}form a polar hexagon to the Klein curve precisely if all four cubics in their ideal is contained in $W_{7} \subset S^{3} W_{3}^{\vee}$ i.e. when their span on the Veronese surface $\kappa\left(\mathrm{P}_{2}^{+}\right)$is a plane. The variety of planes that intersect $\kappa\left(\mathrm{P}_{2}^{+}\right)$in a finite scheme of length six therefore define a natural compactification $\overline{A(1,7)^{v}}$. In this compactification, an abelian surface $A \in A(1,7)^{v}$ is the proper transform of a six-secant plane of the Veronese surface by κ^{-1}.

Moreover, any $(1,7)$-polarized abelian surface is mapped into the hyperplane $\mathrm{P} W_{7}$ of $\mathrm{PH}^{0}\left(\mathcal{O}_{\mathrm{PV}_{0}}(7)\right)^{G_{7}}$ so their union is contained in a septimic hypersurface of $\mathrm{P} V_{0}$. Therefore we have

Corollary 2.7. The compactification $\overline{A(1,7)^{v}}$ is isomorphic to the unique prime Fano threefold of genus 12 which admits $\mathrm{P} \mathrm{SL}\left(2, \mathrm{~F}_{7}\right)$ as its automorphisms group. The universal (1,7)-polarized abelian surface with level 7 structure is birational to the unique N_{7}-invariant septimic hypersurface of $\mathrm{P} V_{0}$.

Proof. Let us denote by X_{7} the unique N_{7}-invariant septimic hypersurface of $\mathrm{P} V_{0}$ and by B_{κ} the base locus of the G_{7}-invariant septimic hypersurfaces. Put $Y_{4}=\overline{\kappa\left(X_{7} \backslash B_{\kappa}\right)} \subset \mathrm{P} W_{7}$ and consider the diagram

where $I \subset \mathrm{P} W_{7} \times \mathrm{G}\left(3, W_{7}\right)$ denotes the graph of the incidence correspondence between $\mathrm{P} W_{7}$ and the (projective) fibers of the tautological sheaf over $\mathrm{G}\left(3, W_{7}\right)$ and where p_{1} and p_{2} are the natural projections. In order to prove birationality we just need to prove that a general point of X_{7} is contained in one (and only one) abelian surface. One first needs to remark, using representation theory for instance, that both the hypersurfaces X_{7} and Y_{4} are irreducible.

Let $A \in A(1,7)^{v}$ a G_{7}-embedded abelian surface. We have:

- the septimic hypersurface X_{7} contains the surface A;
- the surface A intersects P_{2}^{+}along a reduced scheme;
- the surface A is not contained in the base locus B_{κ}.

The only non obvious fact is the third item. But B_{κ} intersects P_{2}^{+}along a Klein quartic curve \mathscr{K}_{4}^{\prime} so if we had $A \subset B_{\kappa}$ this would imply the non emptiness of $A \cap \mathscr{K}_{4}^{\prime}$ and in such cases $A \cap \mathrm{P}_{2}^{+}$admits a double point (see e.g. section 3 below) contradicting the second item. Next the map $A \longmapsto A \cap \mathrm{P}_{2}^{+}$ is injective (see [10]) so the plane $\overline{\kappa\left(A \backslash B_{\kappa}\right)}$ entirely characterizes the surface A. Summing up we get that two distinct surfaces A and A^{\prime} intersect each other either on

- the threefold B_{κ} (which is of codimension 2 in X_{7}),
- or on the preimage by κ of the points in $Y_{4} \subset \mathrm{P} W_{7}$ which are contained in more than one six-secant plane to the Veronese surface $\overline{\kappa\left(\mathrm{P}_{2}^{+} \backslash \mathscr{K}_{4}^{\prime}\right)}$.
Since A is not contained in B_{κ}, it remains to show that A is not contained in the second locus. But one proves easily that the second locus is 2-dimensional, being the preimage of the union of the Veronese surface $\overline{\kappa\left(\mathrm{P}_{2}^{+} \backslash \mathscr{K}_{4}^{\prime}\right)}$ itself and its ruled surface of trisecant lines (for which the base is isomorphic to the Klein quartic curve \mathscr{K}_{4} of the dual plane $\check{\mathrm{P}}_{2}^{+}$).

Remark 2.8. Notice that one can also prove (using Schubert calculus) that the hypersurface Y_{4} has degree four in $\mathrm{P} W_{7}$ (this is true for any collection of six-secant planes to such a projected Veronese surface).

With this compactification of $A(1,7)^{v}$, we define
Definition 2.9. A generalized G_{7}-embedded abelian surface is the proper transform by κ^{-1} of a plane that intersects the Veronese surface $\kappa\left(\mathrm{P}_{2}^{+}\right)$in a finite scheme of length six.

Notice that to each generalized G_{7}-embedded abelian surface A one may associate a subscheme $\zeta_{A}=\kappa(A) \cap \kappa\left(\mathrm{P}_{2}^{+}\right)$of length six.

3. Fano threefolds $\boldsymbol{V}_{\mathbf{2 2}}$

The natural boundary of the compactification $\overline{A(1,7)^{v}}$ constructed above consists of planes that intersect $\kappa\left(\mathrm{P}_{2}^{+}\right)$in nonreduced subschemes of length six. The aim of this section is to describe this boundary in terms of the degrees of the components of these subschemes, but first we need some general facts on this compactification as a prime Fano threefold of genus 12 in its anticanonical embedding.

Recall Mukai's characterization of prime Fano threefolds of genus 12 (cf. [16]).

Definition-Proposition 3.1. Any Fano threefold of index 1 and genus 12 is isomorphic to the variety of sums of powers

$$
\operatorname{VSP}(F, 6)=\overline{\left\{\left(\ell_{1}, \ldots, \ell_{6}\right) \in \operatorname{Hilb}_{6} \mathrm{P} W^{\vee} \mid e_{F} \equiv \sum_{i=1}^{6} e_{\ell_{i}}^{4}\right\}}
$$

of a plane quartic curve F. Conversely, if F is not a Clebsch quartic (i.e. its catalecticant invariant vanishes), then $\operatorname{VSP}(F, 6)$ is a Fano threefold of index 1 and genus 12. Its anti-canonical model is denoted by V_{22}.

3.1. Construction

Let W be an irreducible $\operatorname{SL}(3, \mathrm{C})$-module of dimension 3, we have a decomposition of SL(3, C)-modules ([9])

$$
S^{2}\left(S^{2} W\right)^{\vee}=S^{4} W^{\vee} \oplus S^{2} W
$$

generating an exact sequence

$$
0 \longrightarrow S^{4} W^{\vee} \longrightarrow \operatorname{Hom}\left(S^{2} W, S^{2} W^{\vee}\right)
$$

So a plane quartic F in $\mathrm{P} W$ whose equation is given by 'an' element e_{F} of $S^{4} W^{\vee}$ gives rise to 'a' morphism $\alpha_{F}: S^{2} W \longrightarrow S^{2} W^{\vee}$ and a quadric Q_{F} in $\mathrm{P}\left(S^{2} W\right)$ of equation $\alpha_{F}(x) \cdot x=0$ or even $x \cdot \alpha_{F}(x)=0$ by the canonical identification $S^{2} W=\left(S^{2} W^{\vee}\right)^{\vee}$. From the equality $\mathrm{h}^{0}\left(\mathscr{I}_{v_{2}(F)}(2)\right)=7$, we get a characterization of this quadric by the two properties:
(i) the two forms on W defined by $\alpha_{F}\left(\nu_{2}(-)\right) \cdot v_{2}(-)$ and e_{F} are proportional i.e. the quadric \mathbf{Q}_{F} and the Veronese surface $\nu_{2}(\mathbf{P} W)$ intersect along the image of the plane quartic F under ν_{2};
(ii) the quadric Q_{F} is apolar to the Veronese surface $\nu_{2}\left(\mathrm{P} W^{\vee}\right)$ of $\mathrm{P} S^{2} W^{\vee}$ i.e. apolar to each element of the vector space $\mathrm{H}^{0}\left(\mathscr{I}_{v_{2}\left(\mathrm{P} W^{\vee}\right)}(2)\right) \simeq S^{2} W^{\vee} \subset$ $S^{2}\left(S^{2} W\right)$.

Lemma 3.2 (Sylvester). The minimal integer n for which $\operatorname{VSP}(F, n)$ is non empty is the rank of α_{F} (called the catalecticant invariant of the quartic curve).

Proof. This well known result of Sylvester (see e.g. Dolgachev and Kanev [6], Elliot [7, page 294]) can be deduced from the following observation: let $n \in \mathbf{N}^{*}$, then

$$
\nu_{2}(V S P(F, n))=\left\{\left(p_{1}, \ldots, p_{n}\right) \in \operatorname{VSP}\left(\mathrm{Q}_{F}, n\right) \mid p_{\times} \in \nu_{2}\left(\mathrm{P} W^{\vee}\right)\right\}
$$

Indeed if $s=\left(\ell_{1}, \ldots, \ell_{n}\right) \in \operatorname{VSP}(F, n)$ then $e_{F} \equiv \sum_{i=1}^{n} e_{\ell_{i}}^{4}$ for a good normalization of $e_{l_{x}}$ and the quadric $\mathrm{Q} \subset \mathrm{P} S^{2} W$ of equation

$$
e_{\mathrm{Q}} \equiv \sum_{i=1}^{n} e_{\nu_{2}\left(\ell_{i}\right)}^{2}
$$

is endowed with the two properties which characterize the quadric Q_{F} : the second one is a direct consequence of $\mathrm{H}^{0}\left(\mathscr{I}_{v_{2}\left(P W^{\vee}\right)}(2)\right) \subset \mathrm{H}^{0}\left(\mathscr{I}_{\nu_{2}(s)}(2)\right)$ and the first one arises by construction. Applying v_{2}^{-1} we get the required equality.

Define the vector space $Y_{\ell} \subset S^{2} W$ such that the line ℓ of the plane $\mathrm{P} W$ induces the exact sequence

$$
0 \longrightarrow \mathrm{C} \cdot e_{\ell}^{2} \longrightarrow S^{2} W^{\vee} \longrightarrow Y_{\ell}^{\vee} \longrightarrow 0
$$

that is to say Y_{ℓ} is the orthogonal space (in $S^{2} W$) of e_{ℓ}^{2}.
Definition 3.3. The subscheme \mathscr{C}_{ℓ} of the plane $\mathrm{P} W^{\vee}$ defined by $\mathscr{C}_{\ell}=$ $\left\{x \in \mathrm{P} W^{\vee} \mid e_{x}^{2} \in \alpha_{F}\left(Y_{\ell}\right)\right\}=v_{2}^{-1}\left(\alpha_{F}\left(Y_{\ell}\right)\right)$ is called the anti-polar conic of the line ℓ (with respect to the quartic F).

Alternatively, if α_{F} has maximal rank we have obviously

$$
\mathscr{C}_{\ell}=\left\{x \in \mathrm{P} W^{\vee} \mid e_{x}^{2} \cdot \alpha_{F}^{-1}\left(e_{\ell}^{2}\right)=0\right\}
$$

Set $n=\operatorname{rank}\left(\alpha_{F}\right)$; the construction of a point of $\operatorname{VSP}(F, n)$ is now very easy by the following corollary, which is a consequence of the classical construction of a point of $\operatorname{VSP}(\mathrm{Q}, n)$ when Q is a quadric of rank n.

Corollary 3.4. A point $\left(\ell_{1}, \ldots, \ell_{n}\right)$ lies in $\operatorname{VSP}(F, n)$ if and only if $\ell_{i} \in$ $\mathscr{C}_{\ell_{j}}$ when $i \neq j$,

We turn to the anti-canonical embedding of V_{22}, in particular to

3.2. Conics on the anti-canonical model

Let V be the seven dimensional vector space defined by the exact sequence

$$
0 \longrightarrow W \longrightarrow S^{3} W^{\vee} \xrightarrow{p_{F}} V \longrightarrow 0
$$

where the second map is induced by $F \in S^{4} W^{\vee} \subset \operatorname{Hom}\left(W, S^{3} W^{\vee}\right)$ and denote by $\mathcal{V}_{2,9}^{\prime}$ the image of $\mathrm{P} W^{\vee}$ in $\mathrm{P} V$ by the Veronese embedding ν_{3} composed with the third map p_{F}.

By definition $s=\left(\ell_{1}, \ldots, \ell_{6}\right) \in \operatorname{VSP}(F, 6)$ if and only if the image by p_{F} of the 6-dimensional vector space (in $S^{3} W^{\vee}$) spanned by $e_{\ell_{i}}^{3}$ is of rank 3 . Thus we get a map of $\operatorname{VSP}(F, 6)$ into the Grassmannian $G(3, V)$, by $\left(\ell_{1}, \ldots, \ell_{6}\right) \mapsto$ $p_{F}\left(\left\langle\ell_{1}, \ldots, \ell_{6}\right\rangle\right)$.

Remark 3.5. The image of $\operatorname{VSP}(F, 6)$ in the Plücker embedding of the Grassmannian is the anti-canonical model V_{22} of this Fano threefold, it is isomorphic to the variety of six-secant planes to the projected Veronese surface $\mathscr{V}_{2,9}^{\prime}$.

Now it is reasonable to talk about conics on V_{22}. Denote by F^{b} the dual quartic of $\mathrm{P} W$ of equation $\alpha_{F}^{-1}\left(e_{\ell}^{2}\right) \cdot e_{\ell}^{2}=0$, in other words we have

$$
F^{b}=\left\{\ell \in \mathrm{P} W^{\vee} \mid \ell \in \mathscr{C}_{\ell}\right\}
$$

(the quartic F^{b} reduces to a double conic when $n=5$), and denote by H_{F} the sextic of $\mathrm{P} W^{\vee}$ given by

$$
H_{F}=\left\{\ell \in \mathrm{P} W^{\vee} \mid \operatorname{rank}\left(\alpha_{F}^{-1}\left(e_{\ell}^{2}\right)\right) \leqslant 1\right\}
$$

Let $\ell \in \mathrm{P} W^{\vee} \backslash H_{F}$, then the anti-polar conic \mathscr{C}_{ℓ} is smooth and we can write the abstract rational curve $\overline{\mathscr{C}_{\ell}}$ as $\mathrm{P}^{1}=\mathrm{P} S_{1}$ with $\operatorname{dim} S_{1}=2$, i.e. we put $S_{1}=\mathrm{H}^{0}\left(\mathcal{O}_{\overline{\mathscr{C}_{e}}}(1)\right)$. Put $S_{n}:=S^{n} S_{1}$, then $\mathrm{P} S_{n}$ is identified with the divisors of degree n on $\mathrm{P} S_{1}$ and we have

Lemma 3.6. The set of divisors of degree 5 on the anti-polar conic \mathscr{C}_{ℓ} given by $\left\{\ell^{\prime}+\mathscr{C}_{\ell} \cap \mathscr{C}_{\ell^{\prime}}, \ell^{\prime} \in \mathscr{C}_{\ell}\right\}$ is a projective line in $\mathrm{P} S_{5}$. This g_{5}^{1} admits a base point if $\ell \in F^{b}$.

Proof. Let D be such a divisor. By Corollary 3.4 the divisor D is completely determined by any one of its (sub)-divisor of degree 1 , so the variety of such divisors is a curve of first degree in $\mathrm{P} S_{5}$.

Corollary 3.7. The points of $\operatorname{VSP}(F, 6)$ which contain a given line ℓ describe a conic \mathcal{C}_{ℓ} on the anti-canonical model V_{22}. The two conics \mathcal{C}_{ℓ} and \mathscr{C}_{ℓ} have the same rank.

Proof. Let ℓ be a point outside H_{F}. Then the image of \mathscr{C}_{ℓ} by ν_{3} is a rational normal sextic projected by the map p_{F} to a smooth sextic inside $\mathrm{P}_{\ell}^{4}:=$ $\mathrm{P}\left(p_{F}\left(\mathrm{H}^{0}\left(\mathcal{O}_{\mathscr{C}_{\ell}}(6)\right)\right)\right)$ - we have an injection $\mathrm{H}^{0}\left(\mathcal{O}_{\mathscr{C}_{\ell}}(6)\right) \subset S^{3} W^{\vee}$ and it is a simple matter to check $\mathrm{H}^{0}\left(\mathcal{O}_{\mathscr{C}_{\ell}}(6)\right) \cap \operatorname{ker}\left(p_{F}\right)$ is of dimension 2, moreover identifying $\operatorname{ker}\left(p_{F}\right)$ and W we have $\mathrm{P}\left(\mathrm{H}^{0}\left(\mathcal{O}_{\mathscr{C}_{\ell}}(6)\right) \cap W\right)=\ell \subset \mathrm{P} W$. Now P_{ℓ}^{4} also contains the image of $\nu_{3}(\ell)$ and projecting from this latter point the sextic becomes:
(i) a rational sextic on a quadric of a P^{3} generically;
(ii) a rational quintic on a quadric of a P^{3} if $\ell \in F^{b}$.

These curves are obviously on a quadric, since a six-secant plane to $\mathscr{V}_{2,9}^{\prime}$ passing through the point $p_{F}\left(v_{3}(\ell)\right)$ will be mapped to a five-secant (resp. four-secant) line to this rational curve.

Now if $\ell \in H_{F}, \mathscr{C}_{\ell}$ breaks in two lines, say ℓ_{1} and ℓ_{2}. We get two systems of six-secant planes to $\mathscr{V}_{2,9}^{\prime}$ containing $p_{F}\left(\nu_{3}(\ell)\right)$, one of these intersects $p_{F}\left(v_{3}\left(\ell_{1}\right)\right)$ in two fixed points and intersects the twisted cubic $p_{F}\left(\nu_{3}\left(\ell_{2}\right)\right)$
along a pencil of divisors of degree 3. In particular, such collection is mapped to a line by κ.

Corollary 3.8. If p is not on H_{F} the threefold $p_{1} p_{2}^{-1}\left(\mathcal{C}_{p}\right)$ is a quadric cone Γ_{p} of rank 4 in P_{p}^{4}. If $p \in H_{F}$ the cone Γ_{p} splits in two P_{3} 's.

Remark 3.9. We already get a first interpretation in terms of abelian surfaces. Putting $W=W_{3}^{\vee}$ and choosing the unique $\operatorname{P~SL}\left(2, \mathrm{~F}_{7}\right)$-invariant quartic \mathscr{K}_{4} of $\mathrm{P} W=\check{\mathrm{P}}_{2}^{+}$for F we get $V=W_{7}, \mathscr{\mathscr { V }}_{2,9}^{\prime}=\kappa\left(\mathrm{P}_{2}^{+}\right), F^{\mathrm{b}}=\mathscr{K}_{4}^{\prime \prime}$. Now if $p \in \mathrm{P}_{2}^{+}$, the proper transform of the quadric cone Γ_{p} by κ^{-1} is by [10] birational to a Calabi Yau threefold, and by the preceding corollary contains when \mathscr{C}_{p} is smooth - two distinct pencils of special surfaces: the one induced by the six-secant planes, parameterized by \mathcal{C}_{p} and corresponding generically to abelian surfaces, and another one induced by the second ruling (parameterized by \mathscr{C}_{p}) of planes of the cone. We think that these last ones are the same as the ones evoked in [10, remark 5.7].

3.3. Boundary for the Klein quartic

The boundary of $V_{22}=\operatorname{VSP}(F, 6)$, as the set of nonreduced length six schemes apolar to F, is easily deducible from what follows. But for the general plane quartic F one needs to introduce a covariant of F, and this would be beyond the subject of this paper. So in this section, we focus on the surface $\Delta_{F}=\{s \in$ $\left.\operatorname{VSP}(F, 6) \mid \lambda_{s} \neq\left(1^{6}\right)\right\}$ when the quartic F admits $\operatorname{PSL}\left(2, \mathrm{~F}_{7}\right)$ as its group of automorphisms.

We start by choosing a faithful embedding $1 \longrightarrow \mathrm{SL}\left(2, \mathrm{~F}_{7}\right) \longrightarrow \mathrm{SL}(3, \mathrm{C})$, so the vector space W of our preceding section becomes a $\operatorname{SL}\left(2, \mathrm{~F}_{7}\right)$-module (necessarily irreducible), say $W \simeq W_{3}^{\vee}$ and the decomposition $S^{4} W_{3}=\mathrm{C} \oplus$ $W_{6} \oplus W_{8}$ allows us to consider the unique $\operatorname{PSL}\left(2, \mathrm{~F}_{7}\right)$-invariant quartic \mathscr{K}_{4} of $\check{\mathrm{P}}_{2}^{+}=\mathrm{P} W_{3}$. Such a quartic is called a Klein quartic and becomes the quartic F of our preceding section. All the quartic covariants of F are equal to F (when non zero) and the Klein quartic $\mathscr{K}_{4}^{\prime} \subset \mathrm{P}_{2}^{+}$is (by unicity) the quartic $F^{\text {b }}$ of the last section.

We will need the classical
Lemma 3.10. There is a unique $\operatorname{SL}\left(2, \mathrm{~F}_{7}\right)$-invariant even theta characteristic ϑ on the genus 3 curve \mathscr{K}_{4} (resp. \mathscr{K}_{4}^{\prime}).

Proof. The existence follows directly by the existence of a $\operatorname{SL}\left(2, \mathrm{~F}_{7}\right)$ invariant injection $W_{3} \longrightarrow S^{2} U_{4}$ so that one can illustrate \mathscr{K}_{4} as the Jacobian of a net of quadrics (in $\mathrm{P} U_{4}^{\vee}$). It is well known that such Jacobian is endowed with an even theta characteristic (cf. [1]). Reciprocally, such a theta characteristic on a curve of genus 3 comes with a net of quadrics and $\operatorname{Hom}_{\mathrm{SL}\left(2, \mathrm{~F}_{7}\right)}\left(W_{3}, S^{2} U\right) \neq 0$
if and only if the four dimensional vector space U equals U_{4}^{\vee} as $\operatorname{SL}\left(2, \mathrm{~F}_{7}\right)$ module.

We have
Proposition 3.11. Let $p \in \mathscr{K}_{4}^{\prime}$ and $\left(x_{1}, x_{2}, x_{3}\right) \in \mathscr{K}_{4}^{\prime} \times \mathscr{K}_{4}^{\prime} \times \mathscr{K}_{4}^{\prime}$ such that $\mathrm{h}^{0}\left(\vartheta+p-x_{i}\right)=1$, then the anti-polar conic $\mathscr{C}_{x_{i}}$ of x_{i} with respect to \mathscr{K}_{4} contains x_{j}.

Proof. Let us leave the plane P_{2}^{+}and take a look at the configuration in $\mathrm{P}_{5}^{+}=\mathrm{P} S^{2} W_{3}=\mathrm{P} W_{6}=\check{\mathrm{P}}_{5}^{+}$. The image of x_{i} by the Veronese embedding ν_{2} lies on the quadric $Q_{\mathscr{K}_{4}^{\prime}}$. On the other hand, noticing that $\operatorname{Hom}_{\mathrm{SL}_{2} \mathrm{~F}_{7}}\left(\mathrm{C}, S^{2} S^{2} W_{3}\right)=$ C this quadric can be interpreted

- as the inverse of the quadric $Q_{\mathscr{K}_{4}}$;
- as the Plücker embedding of the Grassmannian of lines of P_{3}^{-}using the $\operatorname{SL}\left(2, \mathrm{~F}_{7}\right)$-invariant identification $S^{2} W_{3} \simeq \Lambda^{2} U_{4}$.
Let us denote by \mathscr{K}_{6}^{\prime} the Jacobian of the net of quadrics given by $W_{3} \longrightarrow S^{2} U_{4}$ and remember that this curve is (by unicity) canonically isomorphic to \mathscr{K}_{4}^{\prime} itself. So $\nu_{2}\left(x_{i}\right)$ is a line in P_{3}^{-}(still denoted by $\left.\nu_{2}\left(x_{i}\right)\right)$ and this one turns out to be a trisecant line to the sextic \mathscr{K}_{6} containing the image of p by the identification $\mathscr{K}_{4}^{\prime}=\mathscr{K}_{6}^{\prime}$. This interpretation of the $(3,3)$ correspondence on $\mathscr{K}_{4}^{\prime}=\mathscr{K}_{6}^{\prime}$ induced by the even theta characteristic as the incidence correspondence between \mathscr{K}_{6}^{\prime} and its trisecant lines is due to Clebsch. Now the three lines $v_{2}\left(x_{i}\right)$ are concurrent in p and then the three points $v_{2}\left(x_{i}\right)$ of P_{5}^{+}span a projective plane contained in the inverse of the quadric $Q_{\mathscr{K}_{4}}$. In particular, $\alpha_{\mathscr{K}_{4}}^{-1}\left(v_{2}\left(x_{i}\right)\right) \cdot v_{2}\left(x_{j}\right)=0$ which is precisely what we need to claim that $x_{j} \in \mathscr{C}_{x_{i}}$.

Notice that using the same geometric interpretation we get immediately
Corollary 3.12. If $p \in \mathscr{K}_{4}^{\prime}$ then the anti-polar conic \mathscr{C}_{a} intersects the hessian triangle T_{p} (i.e. the hessian of the polar cubic of p with respect to \mathscr{K}_{4}^{\prime}) in points of the quartic $\mathscr{K}_{4}^{\prime}\left(\right.$ and $\left.\mathscr{C}_{p} \cap \mathscr{K}_{4}^{\prime}-2 p=T_{p} \cap \mathscr{K}_{4}^{\prime}-2 x_{1}-2 x_{2}-2 x_{3}\right)$).

Proposition 3.13. Let $s \in \Delta:=\Delta_{\mathscr{K}_{4}}$, then there exists at least one point p in the support of ζ_{s} such that $p \in \mathscr{K}_{4}^{\prime}$ and the type of ζ_{s} is one of the following

	$p \notin \mathscr{H}_{6}$	$p \in \mathscr{H}_{6}$
	$2,1,1,1,1$	$2,2,1,1$
type of ζ_{s}	$3,1,1,1$	4,2
	$2,2,2$	$(2,2,2)_{c}$

where \mathscr{H}_{6} is the Hessian of $\mathscr{K}_{4}^{\prime \prime}$.

The types of ζ_{s} and the corresponding stratification of Δ is illustrated in Figure 1 and Figure 2 in the appendix.

Proof. From the preceding section, a point s of $\operatorname{VSP}\left(\mathscr{K}_{4}, 6\right)$ is in Δ if and only if the support of ζ_{s} intersects the quartic curve \mathscr{K}_{4}^{\prime}. So let $p \in \mathscr{K}_{4}^{\prime}$, by Corollary 3.4 the only thing to understand is the type of ζ_{s} when the point p moves along the conic \mathscr{C}_{p}. We have the alternative: the conic \mathscr{C}_{p} is smooth (case i) or $p \in \mathscr{H}_{6}:=H_{\mathscr{K}_{4}^{\prime}}$ (case ii).
(i) Denote (once again) by S_{n} the ($n+1$)-dimensional vector space $\mathrm{H}^{0}\left(\mathcal{O}_{\mathcal{C}_{a}}(n)\right)$, we have $S_{n}=S^{n} S_{1}$. As $p \in \mathscr{K}_{4}^{\prime}$, the $(1,5)$ correspondence between the two (isomorphic) rational curves \mathcal{C}_{p} and \mathscr{C}_{p} has a base point, namely the point p itself on \mathscr{C}_{p} and then reduces to a $(1,4)$ correspondence. The induced pencil of divisors of degree 4 in PS_{4} intersects the variety of non reduced divisors in six points (as any generic pencil in $\mathrm{P} S_{4}$) and the expected types of ζ_{s} are hence $(2,1,1,1,1)$ generically, $(3,1,1,1)$ once and $(2,2,1,1)$ six times (each corresponding to a point of $\mathscr{C}_{p} \cap \mathscr{K}_{4}^{\prime}-\{p\}$). But by the preceding proposition, if $p^{\prime} \in \mathscr{C}_{p} \cap \mathscr{K}_{4}^{\prime}$ and $p \neq p^{\prime}$, then the two conics \mathscr{C}_{p} and $\mathscr{C}_{p^{\prime}}$ intersect in $p+p^{\prime}+2 p^{\prime \prime}$ with $p^{\prime \prime} \in \mathscr{K}_{4}^{\prime}$ hence the six expected subschemes ζ_{s} of type $(2,2,1,1)$ on \mathcal{C}_{p} become three ζ_{s} of type $(2,2,2)$ for the particular Klein quartic. Notice that in such a case, the scheme ζ_{s} has a length decomposition $2 \cdot\left(p+p^{\prime}+p^{\prime \prime}\right)$ and there exists a point $q \in \mathscr{K}_{4}^{\prime}$ so that $\mathrm{h}^{0}(\vartheta+q-x)=1$ whenever $x \in\left\{p, p^{\prime}, p^{\prime \prime}\right\}$. Let us denote by q_{x} the intersection of \mathscr{C}_{x} with the line $\overline{x q}$, then

$$
p^{3} \cdot q_{p}+p^{\prime 3} \cdot q_{p^{\prime}}+p^{\prime \prime 3} \cdot q_{p^{\prime \prime}}=0
$$

is an equation of \mathscr{K}_{4}.
(ii) Suppose now the point p is one of 24 points of intersection of the quartic \mathscr{K}_{4}^{\prime} and its Hessian \mathscr{H}_{6}. Such points come 3 by 3 and the group μ_{3} acts on each triplet (so there is an order p_{1}, p_{2}, p_{3} on such triplet). Put $p=p_{1}$. The conic $\mathscr{C}_{p_{1}}$ is no longer smooth and decomposes in two lines, say $\ell=p_{1} p_{2}$ and $\ell^{\prime}=p_{2} p_{3}$. Each generic point q of the line ℓ gives us a point $2 p_{1}+q+q^{\prime}+2 p_{3}=\mathscr{C}_{p_{1}} \cap \mathscr{C}_{q}+p_{1}+q$ of Δ (hence of type $(2,2,1,1))$ with $q^{\prime} \in \ell$ defined such that the degree 4 divisor $p_{2}+p_{1}+q+q^{\prime}$ on the line ℓ is harmonic. One can even provide the corresponding equation of the quartic \mathscr{K}_{4} :

$$
\begin{aligned}
\epsilon(\beta x+\alpha z)^{4}-\epsilon(\beta x-\alpha z)^{4}-2 \alpha \beta\{(x+ & \left.\left.\epsilon\left(\beta^{2} z-\alpha^{2} y\right)\right)^{4}-x^{4}\right\} \\
& +2 \alpha^{3} \beta\left((y+\epsilon z)^{4}-y^{4}\right)=0
\end{aligned}
$$

with coefficients in $\mathrm{C}[\epsilon] / \epsilon^{2}$. We can forget points of Δ arising from a point of ℓ^{\prime}, for such points can be constructed as the preceding ones by starting with the point p_{2} instead of the point p_{1}. The possible degeneracies follow easily: when $(\alpha: \beta)$ tends to $(1: 0)$ we get back to the well known $(2,2,2)_{c}$ case, the last equation becomes

$$
(z+\epsilon x)^{4}-z^{4}+(x+\epsilon y)^{4}-x^{4}+(y+\epsilon z)^{4}-y^{4}=4 \epsilon\left(z^{3} x+x^{3} y+y^{3} z\right)=0 .
$$

The last possible degeneration arises when $(\alpha: \beta)$ tends to $(1: 0)$ in which case we get $(4,2)$ as partition of 6 .

4. Degenerated abelian surfaces

Now that we have seen the boundary Δ of V_{22} in $\operatorname{Hilb}\left(6, \mathrm{P}_{2}^{+}\right)$we will show that points on Δ naturally correspond to generalized G_{7}-embedded abelian surfaces that are singular. We shall call them 'degenerated abelian surfaces'. The method we are going to employ is very naïve: given $s \in \Delta$, find a surface A_{s} in P^{6} which intersects P_{2}^{+}along s and check that this surface is sent to a projective plane by the map κ, i.e. that $\mathrm{h}^{0}\left(\mathscr{I}_{A_{s}}(7)\right)^{G_{7}}=5$. The so-called translation scrolls are natural candidates for 'degenerated abelian surfaces'. Given a G_{7}-invariant elliptic normal curve E of degree 7 with an origin in P_{2}^{+}and a point $\sigma \in E$, let $l_{x, \sigma}$ be the bisecant line through the points x and $x+\sigma$ on E. Then the union of bisecant lines $(E, \sigma)=\cup_{x \in E} l_{x, \sigma}$ form a surface that is called a translation scroll. We will show that the general point on Δ corresponds to a translation scroll, while further degenerations are formed by reducible surfaces. Finally we prove Theorem 1.1 by showing that any point outside the boundary Δ corresponds to a smooth abelian surface. In this section, we work up to the action of $\operatorname{PSL}\left(2, F_{7}\right)$.

4.1. Translation scrolls

We will need the
Proposition 4.1. Every translation scroll of an elliptic normal curve of degree 7 by a 2-torsion point is a smooth elliptic scroll of degree 7 and contains 3 elliptic normal curves of degree 7.

Proof. Cf. [4, Proposition 1.1] or [15].
Let us start with $s \in \Delta$ with $\lambda \in\{(2,1,1,1,1),(3,1,1,1)\}$. Only one point of s has a multiple structure, say $p \in \mathscr{K}_{4}^{\prime}$ and the support of s consists in four distinct points on the conic \mathscr{C}_{p}. The stabilizer of $(s)_{\text {red }}$ under $\operatorname{PSL}(2, \mathrm{C}) \simeq$ $\operatorname{Aut}\left(\mathscr{C}_{p}\right)$ is in general isomorphic to \mathbf{Z}_{2}^{2} (if it is bigger consider the subgroup

$$
\{\operatorname{Id},(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)\}
$$

in $\left.\operatorname{Stab}_{\mathrm{PSL}(2, \mathrm{C})}\left((s)_{\text {red }}\right) \subset \widetilde{\Im}_{4}\right)$. Consider the double cover E_{s} of \mathscr{C}_{p} ramified at the four points $\mathbf{Z}_{2}^{2} \cdot p$. It is a smooth elliptic curve and we choose p as origin on E_{s}. Note that, by Proposition $3.11, E_{s}$ depends only on p so it will be denoted by E_{p}. Now the linear system $|7 \cdot p|$ is a H_{7}-module and we can embed E_{p} in P^{6} in 168 distinct ways, one of them sends $p \in E_{p}$ to $p \in \mathrm{P}_{2}^{+}$. Next $p \in s$ is double along a line that will intersect \mathscr{C}_{p} in a further point, say p_{s} (of course $p=p_{s}$ if $\left.\lambda=(3,1,1,1)\right)$. Denote by σ_{s} one of the inverse images of p_{s} by the 2: 1 map $E_{p} \longrightarrow \mathscr{C}_{p}$.

Proposition 4.2. The translation scroll $\left(E_{p}, \sigma_{s}\right)$ intersects P_{2}^{+}along s and is mapped by к to a plane.

Proof. First the bisecant variety of E_{p} intersects P_{2}^{+}along \mathscr{C}_{p} : Indeed such variety intersects P_{2}^{+}along a conic (E_{p} being of degree 7 and invariant under a symmetry which preserves P_{2}^{+}). Next by the previous proposition such a conic must contain the three pairs of points of $\mathscr{K}_{4}^{\prime 2}$ such as $\left(q_{1}, q_{2}\right)$ where $\left\{p, q_{1}, q_{2}\right\}$ are associated to the same point of \mathscr{K}_{4}^{\prime} under the $\operatorname{PSL}\left(2, \mathrm{~F}_{7}\right)$-invariant $(3,3)$ correspondence on \mathscr{K}_{4}^{\prime}. By Proposition 3.11, this conic is nothing but \mathscr{C}_{p}.

Next as $\pm \sigma$ moves along \mathscr{C}_{p}, the set $\left(E_{p}, \pm \sigma\right) \cap \mathscr{C}_{p}-2 p$ describes a pencil of degree 4 divisors on \mathscr{C}_{p}, we need to identify this pencil with our pencil of degree 4 divisors on \mathscr{C}_{p} (proof of Proposition 3.13, item (i). But both pencils contain the three divisors of type $(2,2)$ such as $2 q_{1}+2 q_{2}$ so they are equal.

The point now is to prove that $\left(E_{p}, \sigma_{s}\right)$ is mapped to a plane under κ, i.e. that $\mathrm{h}^{0}\left(\mathcal{O}_{\left(E_{p}, \sigma_{s}\right)}(7)\right)^{G_{7}}=3$ or rather $\mathrm{h}^{0}\left(\mathcal{O}_{\left(E_{p}, \sigma_{s}\right)}(7)\right)^{G_{7}} \leqslant 3$ by the previous paragraphs. The scroll $\left(E_{p}, \sigma_{s}\right)$ is a P^{1}-bundle over E_{p} (in two ways, these correspond to the choices σ_{s} and $-\sigma_{s}$ to define the scroll) so we have a map

$$
\left(E_{p}, \sigma_{s}\right) \longrightarrow E_{p}
$$

and if R denotes a generic fiber we get a sequence

$$
\mathrm{H}^{0}\left(\mathcal{O}_{\left(E_{p}, \sigma_{s}\right)}(7)\right)^{G_{7}} \longrightarrow \mathrm{H}^{0}\left(\mathcal{O}_{R}(7)\right)^{G_{7}} \longrightarrow 0
$$

which turns out to be exact: if a G_{7}-invariant septimic S contains the line R, then its intersection with $\left(E_{p}, \sigma_{s}\right)$ contains $E_{p} \cup G_{7} \cdot R$ which is of degree $7+49 \times 2 \times 1$. Now our scroll is of degree 14 and by Bezout's theorem we conclude $\left(E_{p}, \sigma_{s}\right) \subset S$. Using a semi-continuity argument we just need to find one fiber R such that ${ }^{0}\left(\mathcal{O}_{R}(7)\right)^{G_{7}} \leq 3$. Choose one of the forty-nine P_{2}^{+}and pick up one of the four lines of $\left(E_{p}, \sigma_{s}\right)$ which intersects it. Then the restriction

$$
\mathrm{H}^{0}\left(\mathcal{O}_{\mathrm{P}_{0}}(7)\right)^{G_{7}} \longrightarrow \mathrm{H}^{0}\left(\mathcal{O}_{R}(7)\right)^{G_{7}}
$$

is of rank 3 at most which is precisely what we needed.

Of course to get the $(2,2,2)$ cases it is natural to make σ_{s} tend to a 2-torsion point. Then the translation scroll $\left(E_{p}, \sigma_{s}\right)$ tends to a smooth scroll of degree 7 and everything is lost in virtue of the following remark.

Remark 4.3. Any translation $\operatorname{scroll}\left(E_{p}, \sigma_{s}\right)$ where σ_{s} is a non-trivial 2torsion point of E_{p} is contained in all our G_{7}-invariant septimic hypersurfaces. Indeed such a scroll intersects any of the forty-nine P_{3}^{-}'s along a line and contains the curve E_{p} itself, once again Bezout's theorem together with the inequality $49 \times 1+7>7 \times 7$ allow us to conclude.

However we have
Proposition 4.4. If $\lambda_{s}=(2,2,2)$, then there exist an elliptic curve E_{p}, a two torsion point σ_{s} on E_{p} and a double structure on the translation scroll $\left(E_{p}, \sigma_{s}\right)$ intersecting P_{2}^{+}along s and mapped to a plane by κ.

Proof. Let $\lambda_{s}=(2,2,2)$. By Proposition 4.1 one and only one smooth translation scroll X intersects P_{2}^{+}along $(s)_{\text {red }}$ so we just need to find a double structure \tilde{X} on X such that $\mathrm{h}^{0}\left(\mathscr{I}_{\tilde{X}}(7)\right)^{G_{7}}=5$. Now X contains two (in fact three by 4.1) elliptic curves E_{p} and $E_{p^{\prime}}$ and by definition is contained in the two corresponding bisecant varieties $S_{E_{p}}$ and $S_{E_{p^{\prime}}}$. But these two varieties are the proper transforms by κ^{-1} of the two quadric cones Γ_{p} and $\Gamma_{p^{\prime}}$ (cf. Corollary 3.8). These two cones intersect along the six-secant plane to $\kappa\left(\mathrm{P}_{2}^{+}\right)$ corresponding to s so we are done! The double structure is then easy to understand: one considers the double structures on $X \backslash E_{p}$ (resp. $X \backslash E_{p^{\prime}}$) defined by the embedding $X \longrightarrow S_{E_{p}}$ (resp. $X \longrightarrow S_{E_{p^{\prime}}}$) and such structures coincide on $X \backslash\left(E_{p} \cup E_{p^{\prime}}\right)$.

4.2. Union of seven quadrics

We still have to consider the missing cases, namely schemes s such that $\lambda_{s} \in$ $\left\{(2,2,1,1),(2,2,2)_{c},(4,2)\right\}$. These are degenerations of the preceding ones. A degenerated elliptic curve is nothing but a heptagon, and such curves come in triplets $\left(E_{0}, E_{1}, E_{2}\right)$ (cf. Figure 3 of the appendix) with $E_{i}=\bigcup_{k=0}^{6} \overline{e_{k} e_{k+1+i}}$ and $\left\{e_{x}\right\}_{x \in \mathrm{Z}_{7}}$ is an orbit of minimal cardinality under the action of G_{7}.

The Heisenberg action on each curve E_{i} reduces to an action of \mathbf{Z}_{7}. Let us denote by P_{I} the projective space spanned by the points $\left\{e_{i}\right\}_{i \in I}$.

For $i \in\{0,1,2\}$ put $B_{i}=\bigcup_{k=0}^{6} \mathrm{P}_{I_{i}^{k}}$ with $I_{i}^{k}=\{k+i+1, k-i-$ $1, k+3 i+3, k-3 i-3\}$. Then the bisecant variety of E_{i} is $B_{j}+B_{k}$ with $\{i, j, k\}=\{0,1,2\}$.

Finally let us choose one of the forty nine P_{2}^{+}and suppose E_{i} intersects it in p_{i+1}. We are then ready to check the remaining cases:

Let $s \in \Delta$ such that $\lambda_{s}=(2,2,1,1)$ and $s=2 \cdot p_{1}+2 \cdot p_{3}+q+q^{\prime}$ with q and q^{\prime} on the line $\overline{p_{1} p_{2}}$ (cf. Figure 1 of the appendix). So we have $s \in \mathcal{C}_{p_{1}} \cap \mathcal{C}_{p_{3}}$.

The corresponding degenerated abelian surface A_{s} needs to be on the bisecant varieties of E_{0} and E_{2} so we have $A_{s} \subset B_{1}$. As B_{1} is the union of seven P^{3} 's the surface A_{s} is the union of seven quadrics.

When s moves along $\mathcal{C}_{p_{1}} \cap \mathcal{C}_{p_{3}}$ we get the two other kinds of degenerations:

- if $\lambda_{s}=(2,2,2)_{c}$, then the surface A_{s} degenerates in the union of the fourteen planes $B_{0} \cap B_{1} \cup B_{1} \cap B_{2} \cup B_{2} \cap B_{0}$;
- if $\lambda_{s}=(4,2)$, then the surface A_{s} degenerates in the union of the seven planes $\bigcup_{k=0}^{6} \mathbf{P}_{\{k, k+3, k-3\}}$ double along B_{1}.

4.3. The smooth case

In order to complete the proof of Theorem 1.1, we need to show that a generalized G_{7}-embedded abelian surface A is smooth and abelian provided the type of ζ_{A} is $(1,1,1,1,1,1)$. Now, by the Enriques-Kodaira classification of surfaces (see [3, chapter VI]) complex tori are entirely characterized by their numerical invariants. So any generalized G_{7}-embedded abelian surface is an abelian surface provided it is smooth. Our strategy is to consider A as a divisor on a Calabi Yau threefold as in remark 3.9.

First we treat the case of surfaces A singular along a curve:
Lemma 4.5. A generalized G_{7}-embedded abelian surface A, singular along a curve, intersects 'the' plane P_{2}^{+}in a non reduced scheme.

Proof. Let A be a singular generalized G_{7}-embedded abelian surface. The proposition is obviously true if A is singular in codimension 0 that is to say if A carries a double structure. For such surface, the intersection of its reduced structure (of degree 7) with any P_{2}^{+}cannot be six distinct points so $\zeta_{A}=A \cap \mathrm{P}_{2}^{+}$, which is of length six, cannot be reduced.

By assumption the singular locus of A contains a curve C. We can also assume C is G_{7}-invariant (if not we replace C by its orbit under G_{7}).

If C has degree 7, it is necessarily elliptic and, being G_{7} invariant, intersects P_{2}^{+}in a point of the Klein curve \mathscr{K}_{4}^{\prime} so we are done. Indeed the rationality of C (if irreducible) is totally excluded (such a curve admits either a unique foursecant plane, a unique trisecant line or a (unique) double point, this would be a contradiction with the irreducibility of V_{0} as H_{7}-module), but C can still split in the union of seven lines. We want to prove that C in this case is a heptagon (that is to say elliptic). The stabilizer of one of the lines under the action of H_{7} is isomorphic to Z_{7} so we get, on each line $\ell \subset C$, two fixed points under the action of $\operatorname{Stab}_{H_{7}}(\ell) \simeq \mathrm{Z}_{7}$ and then an orbit of fourteen points on C. Noticing all the components have the same stabilizer (the only group morphism from Z_{7} to the symmetric group \widetilde{S}_{6} is constant) and considering the symmetries of
G_{7} it is easy to prove that these fourteen points coincide two by two, implying C is a heptagon.

If the singular locus C has degree 14 , then the reduced structure of it has degree 7 or 14 . Only the latter is a problem. The normalization of the surface would have sectional genus (-6) so it would consist of at least seven components. They have the same degree i.e. 1 or 2 , so their number must be 7 and their degree must be 2 . In particular, either the surface A is contained in one orbit of seven p_{3} 's under G_{7} or the reduced structure of A consists of seven planes. In both cases, it is a simple matter to conclude for the only orbits of seven P_{3} 's under G_{7} are listed in the subsection 4.2 (consider for instance their possible intersections with the forty-nine P_{3}^{+}) so the surface A appears already in the subsection 4.2 and the proposition is true for such surfaces.

The last possible case is when C has degree 21, but then the surface A has 14 components (its normalization would have sectional genus (-13)). Therefore C splits and, as $\operatorname{gcd}(49,21)=7$, contains three G_{7}-invariant curves of degree 7 so we are back to the first case.

End of the proof of Theorem 1.1.

Let A be a generalized G_{7}-embedded abelian surface, preimage of a six-secant plane of $\kappa\left(\mathrm{P}_{2}^{+}\right)$by κ, i.e. $\zeta_{A}=(1,1,1,1,1,1)$. Since $A \cap \mathscr{K}_{4}^{\prime}=\emptyset$ we may divide in two cases; A intersects \mathscr{H}_{6} but not \mathscr{K}_{4}^{\prime} in P_{2}^{+}, and A intersects neither \mathscr{H}_{6} nor $\mathscr{K}_{4}^{\prime \prime}$.

If A intersects \mathscr{H}_{6} in P_{2}^{+}, then A is a smooth plane curve fibration and has a trisecant line in P_{2}^{+}: see construction in [11].

So we are left with the case that $A \cap \mathscr{H}_{6}=A \cap \mathscr{K}_{4}^{\prime}=\emptyset$. Thus, A is neither a translation scroll nor a plane curve fibration.

By the previous lemma, A is irreducible with isolated singularities. First we compute some invariants of A.

Lemma 4.6. $\omega_{A}=\mathcal{O}_{A}$ and $\chi\left(\mathcal{O}_{A}\right)=0$.
Proof. Let us choose $a \in \mathrm{P}_{2}^{+} \cap A$ and consider (identifying P_{2}^{+}with $\mathrm{P} W_{3}$) the Calabi Yau threefold Y_{a} preimage of the cone Γ_{a} by κ. We know that $Y_{a}=\bigcup_{t \in \mathcal{C}_{a}} A_{t} . Y_{a}$ has a quadratic singularity at a, and the general surface A_{t} is smooth at a, so after a small resolution of Y_{a} at a, the surface A_{t} will be Cartier there.

We want to prove that the surface A is Cartier as a divisor on Y_{a} except in the preimage $\kappa^{-1}(\kappa(a))$. Since A is the pullback of a plane on Γ_{a} by κ, it could fail to be Cartier only in $\kappa^{-1}(\kappa(a))$ and in the restriction of the base locus of κ to A. In fact, it could fail to be Cartier only on the intersection $B_{a}=\bigcap_{t \in \mathcal{C}_{a}} A_{t} \subset Y_{a}$.

Consider the restriction of κ to a smooth abelian surface A_{t} in Y_{a}. The restriction of the base locus of κ contains already the intersection of A_{t} with the $49 \mathrm{P}_{3}^{-}$'s, i.e. 49×10 points so the degree of κ restricted to A_{t} is at most $7 \times 7 \times 14-49 \times 10=196$. On the other hand, the G_{7}-orbits of degree 98 form a Kummer surface (cf. Proposition 2.6). Since $\kappa\left(A_{t}\right)$ is a plane, the degree is at least 196. Therefore B_{a} contains no points outside $\left.\kappa^{-1}(\kappa(a))\right)$, and A is Cartier on Y_{a} outside $\left.\kappa^{-1}(\kappa(a))\right)$.

After a small resolution Y_{a}^{\prime} of Y_{a} along $\left.\kappa^{-1}(\kappa(a))\right)$, the strict transform of A is Cartier everywhere on Y_{a}^{\prime}. We may even assume that the small resolution restricted to A is an isomorphism.

Now, Y_{a}^{\prime} is still Calabi-Yau and the surfaces A_{t} form a pencil without base points on Y_{a}^{\prime}, so we have that $\omega_{A}=\mathcal{O}_{A}$. Indeed, the general A_{t} is smooth (in particular A_{t} is a smooth elliptic fibration for $t \in \mathscr{H}_{6}$) with normal bundle $\mathcal{O}_{A}(A)=\mathcal{O}_{A}$ so $\omega_{A}=\mathcal{O}_{A}\left(K_{Y_{a}}\right)=\mathcal{O}_{A}$. Furthermore $\chi\left(\mathcal{O}_{A}\right)=\chi\left(\mathcal{O}_{A_{t}}\right)=0$ as claimed.

Finally, we show that A is smooth. By assumption, A has only isolated singularities. The length of any G_{7}-orbit is a multiple of 7 , so A has at least 7 singular points. Furthermore, A has trivial canonical sheaf and $\chi\left(\mathcal{O}_{A}\right)=0$. Let $\tilde{A} \rightarrow A$ be a minimal desingularization of A. Then there are no $(-1)-$ curves in the exceptional locus. On the other hand the canonical divisor K on \tilde{A} is supported on the exceptional locus. Let H be the pullback of the hyperplane divisor on A. Then $H \cdot K=0$, so $K^{2} \leq 0$, with equality only if K is trivial. Furthermore any effective pluricanonical divisor is supported on the exceptional locus. In fact we get that $h^{0}(m K)=h^{0}(K)=p_{g}$, for $m>0$. If $p_{g}=1$, and $K^{2}<0$, then \tilde{A} is necessarily a nonminimal surface, i.e. it contains (-1)-curves. But any such curve is contained in K, so by assumption it is contained in the exceptional locus of the desingularization map. This contradicts the minimality of the desingularization. If K is trivial, then the singularities are rational double points, while \tilde{A} is an abelian surface. This is again a absurd. If $p_{g}=0$, then A has no effective pluricanonical divisors, and $K^{2}<0$. So \tilde{A} is birational to a ruled surface. Let F be a general member of its ruling. Then $K \cdot F=-2$. On the other hand the image in A of the support of K is invariant under G_{7}, so $K \cdot F$ must be divisible by 7 . This is a contradiction that completes the proof.

We add a characterization of the intersection of $A \cap \mathrm{P}_{3}^{-}$:
Remark 4.7. Choose coordinates $\left(y_{i}\right)_{i \in\{0, \ldots, 6\}}$ in V_{0} together with one of the forty-nine \mathbf{P}_{3}^{-}'s of equations $y_{4}=y_{3}, y_{5}=y_{2}, y_{6}=y_{1}$. Using the N_{7}-invariant isomorphism $\Lambda^{2} V_{4}=W_{3}^{\vee} \otimes V_{0}$ let us introduce for $x=\left(x_{1}: x_{2}: x_{3}\right) \in \mathrm{P} W_{3}$
and $y=\left(y_{0}:-: y_{4}\right) \in \mathrm{P}_{3}^{-} \subset \mathrm{P} V_{0}$ the matrix

$$
M_{y}(x)=\left(\begin{array}{cccc}
x_{2} y_{2} & -x_{3} y_{1}-x_{1} y_{3} & x_{3} y_{0} & -x_{2} y_{1}-x_{1} y_{2} \\
-x_{3} y_{3} & -x_{3} y_{2}+x_{2} y_{3} & -x_{2} y_{1}+x_{1} y_{2} & x_{1} y_{0} \\
-x_{1} y_{1} & x_{2} y_{0} & x_{3} y_{1} & x_{3} y_{2}+x_{2} y_{3}
\end{array}\right)
$$

It is the restriction to P_{3}^{-}of a skew-symmetric Moore matrix $M(x, y)$ (see remarks 2.5, 3.9 and [10]). This matrix $M(x, y)$ defines the Calabi Yau threefold which is the strict transform of the cone Γ_{x} by κ^{-1}. For general $y \in \mathrm{P}_{3}^{-}, M_{y}(x)$ defines six points in $\mathrm{P} W_{3}$, meaning there is one abelian surface containing y and six Calabi Yau threefolds of the preceding type which contain this surface. But $M_{y}(x)$ may degenerate for special points $y \in \mathrm{P}_{3}^{-}$(for such cases we get more than six points in $\mathrm{P} W_{3}$):

rank of $\Lambda^{3} M_{y}(x)$	y in	x in	abelian varieties passing through y
3	\mathscr{K}_{6}	\mathscr{H}_{6}	have a trisecant line
2	C_{18}	\mathscr{K}_{4}^{\prime}	translation scrolls
1	Z	$\mathscr{K}_{4}^{\prime} \cap \mathscr{H}_{6}$	reducible

where \mathscr{K}_{6} is the unique $\operatorname{PSL}\left(2, \mathrm{~F}_{7}\right)$-invariant curve of degree 6 and genus 3 in $\mathrm{P}_{3}^{-}, C_{18}$ is a $\mathrm{P} \operatorname{SL}\left(2, \mathrm{~F}_{7}\right)$-invariant curve of degree 18 and genus 35 in P_{3}^{-} (analogue of the Bring curve in the $(1,5)$ case) and Z is the minimal orbit (of cardinality eight) under the action of $\operatorname{PSL}\left(2, \mathrm{~F}_{7}\right)$ on P_{3}^{-}.

4.4. Some questions

Let A be a smooth abelian surface embedded in $\mathrm{P} V_{0}$. As already noticed in Proposition 2.6 there is a factorization

$$
A^{b} \xrightarrow{49: 1} A^{\vee b} \xrightarrow{2: 1} K_{A^{\vee}}^{b} \xrightarrow{2: 1} \kappa(A) .
$$

What is the ramification locus of the last map? Of course, the map to the right needs to define a $K 3$ surface so it is certainly a sextic curve (of genus 4), but it doesn't explain how to recover it (using representation theory for instance). A good understanding of this point should enable one to get a reconstruction method, as in the $(1,5)$ case, of the abelian surface A^{\vee}. Note that this ramification locus admits the six points $\kappa(A) \cap \kappa\left(\mathrm{P}_{2}^{+}\right)$as double points. Next the surface A intersects P_{3}^{-}in ten points, so projecting A from P_{3}^{-}we get maps

$$
A^{b} \xrightarrow{2: 1} K_{A}^{b} \xrightarrow{2: 1} \mathrm{P}_{2}^{+} .
$$

The last map is ramified along a sextic curve with the six points $A \cap \mathrm{P}_{2}^{+}$as double points. Hence there are two maps $K_{A}^{\mathrm{b}} \xrightarrow{2: 1} \mathrm{P}_{2}^{+}$and $K_{A}^{\mathrm{b}} \xrightarrow{2: 1} \kappa\left(A^{\vee}\right)$.

Is it possible to find an (in fact 168) identification(s) between P_{2}^{+}and $\kappa\left(A^{\vee}\right)$ such that the two maps coincide? The answer is positive in the $(1,5)$ case and allows one to identify the moduli space of $(1,5)$ polarized abelian surfaces (without level structure) up to duality. Note that one can easily show that the two sets of six points $A \cap \mathrm{P}_{2}^{+}$and $\kappa(A) \cap \kappa\left(\mathrm{P}_{2}^{+}\right)$are associated in Coble's sense. This phenomenon is in fact true for any Fano threefold V_{22} : given a six-secant plane to $\mathscr{V}_{2,9}^{\prime}$ (Veronese surface isomorphic to $\mathrm{P} W$), it intersects it along six points associated to the corresponding set in PW .

It is possible to show that the Fano threefold $\operatorname{VSP}\left(\mathscr{K}_{4}, 6\right)$ is 'stable' by association of points i.e. that there exists a (dual) Klein curve C in the plane $\kappa(A)$ such that $\kappa(A) \cap \kappa\left(\mathrm{P}_{2}^{+}\right)$is a point of the corresponding variety $\operatorname{VSP}(C, 6)$, isomorphic, up to $\operatorname{PSL}\left(2, \mathrm{~F}_{7}\right)$, to $\operatorname{VSP}\left(\mathscr{K}_{4}, 6\right)$. It is therefore natural to ask whether one can find a quotient of $\operatorname{VSP}\left(\mathscr{K}_{4}, 6\right)$ by $\mathrm{P} \mathrm{SL}\left(2, \mathrm{~F}_{7}\right)$ and an involution defined by association that forms the moduli space of $(1,7)$ polarized abelian surfaces (without level structure) up to duality?

5. Appendix

$$
\lambda_{s}=(2,2,2)
$$

$\lambda_{s}=(4,2)$

$$
\lambda_{s}=(2,2,1,1)
$$

$$
\lambda_{s}=(2,2,2)_{c}
$$

Figure 1. Possible configurations of ζ_{s} when $s \in \Delta$, where each arrow gives the (first) direction along which the point is doubled (oriented in a purely decorative way).

Figure 2. Stratification of the surface Δ.

Figure 3. A triplet of degenerate elliptic curves.

REFERENCES

1. Barth, W., Moduli of vector bundles on the projective plane, Invent. Math. 42 (1977), 63-91.
2. Barth, W., Hulek, K., and Moore, R., Degenerations of the Horrocks-Mumford surfaces, Math. Ann. 277 (1987), 735-755.
3. Barth, W., Peters, C., and Van de Ven, A., Compact Complex Surfaces, Ergeb. Math. Grenzgeb. 4 (1984).
4. Ciliberto, C., and Hulek, K., A remark on the geometry of elliptic scrolls and bielliptic surfaces, Manuscripta Math. (1998), 231-224.
5. Dolgachev, I., Invariant stable bundles over modular curves $X(p)$, in Recent progress in algebra (Taejon/Seoul, 1997), Contemp. Math. 224 (1999), 65-99.
6. Dolgachev, I., and Kanev, V., Polar covariants of cubics and quartics, Adv. Math. 98 (1993), 216-301.
7. Elliot, E. B., An introduction to the Algebra of Quantics, Chelsea reprint, 1964.
8. Fricke, R., Lehrbuch der Algebra II, Braunschweig, 1926.
9. Fulton, W., and Harris, J., Representation Theory, Grad. Texts in Math. 129 (1991).
10. Gross, M., and Popescu, S., Calabi-Yau threefolds and moduli of abelian surfaces I, Compositio Math. 127 (2001), 169-228.
11. Hulek, K., and Ranestad, K., Abelian surfaces with two plane cubic fibrations and calabi-yau threefolds, In Th. Peternell and F.-O. Schreyer, editors, Complex Analysis and Algebraic Geometry, 275-316, de Gruyter, 2000.
12. Lange, H., and Birkenhake, C., Complex Abelian Varieties, Springer-Verlag, 1992.
13. Manolache, N., and Schreyer, F.-O., Moduli of (1, 7)-polarized abelian surfaces via syzygies, Math. Nachr. 226 (2001), 177-203.
14. Marini, A., On a family of (1, 7)-polarize abelian surfaces, Math. Scand. 95 (2004), 181-225.
15. Miele, M., Klassifikation der Durchschnitte Heisenberg-Invariante Systeme von Quadriken in $\mathrm{P}^{6}, \mathrm{PhD}$ thesis, Erlangen, 1993.
16. Mukai, S., Fano 3-folds, In Vectors Bundles and Special Proj. Embeddings (Bergen 1989), London Math. Soc. Lecture Note Ser. 179 (1992), 255-263.
17. Schreyer, F.-O., Geometry and algebra of prime Fano 3-folds of genus 12, Compositio Math. 127 (2001), 297-319.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF LILLE 1
F-59655 VILLENEUVE DIASCQ CEDEX
FRANCE
E-mail: Franck.Melliez@math.univ-lille1.fr

MATEMATISK INSTITUTT
UNIVERSITETET I OSLO
P.O.BOX 1053 BLINDERN

N-0316 OSLO
NORWAY
E-mail: ranestad@math.uio.no

[^0]: * The first author was partially supported by the European Commision through HPRN-CT-2000-00099.

 Received May 4, 2004; in revised form December 3, 2004.

