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ROUCHÉ TYPE THEOREMS AND A THEOREM OF
ADAMYAN, AROV AND KREIN

TAKAHIKO NAKAZI∗

Abstract

We show Rouché type theorems using a theorem of Adamyan, Arov and Krein. As applications,
we obtain a certain characterization of self-maps of the unit disc in terms of the location of the
Denjoy-Wolf point and we study a function in the Smirnov class whose real part is positive.

1. Introduction

Let D be the open unit disc in the complex plane C and let ∂D be the
boundary of D. An analytic function in D is said to be of class N if the
integrals

∫ π
−π log+ |f (reiθ )| dθ are bounded for r < 1. If f is in N , then

f (eiθ ) = limr→1 f (re
iθ ) exists almost everywhere on ∂D. If

lim
r→1

∫ π

−π
log+ |f (reiθ )| dθ =

∫ π

−π
log+ |f (eiθ )| dθ,

then f is said to be in the Smirnov classN+. The set of all boundary functions
in N or N+ is also denoted by N or N+, respectively. For 0 < p ≤ ∞, the
Hardy space Hp, is denoted by N+ ∩ Lp.

Through out this paper, we use the following notations. We call q in N+
an inner function if |q| = 1 a.e. on ∂D. A function h in N+ is called outer
if it is not divisible in N+ by a nonconstant inner function. For two inner
functions q1, q2 we will write q1 
 q2 when there exists an outer function h
in H 1 such that q̄1q2 = |h|/h. If q1 
 q2 and q1 ≺ q2 then we will write that
q1 ∼ q2. For a nonzero function f in N+, f has an inner outer factorization:
f = qh where q is inner and h is outer. The inner part of f will be written as
q[f ]. If q̄1q2 = |f |/f and f is a nonzero function in H 1, put f = qh where
q = q[f ] and h is outer. Then |f |/f = q̄|h|/h = |(1 + q)2h|/(1 + q)2h

because q̄(1 + q)2 = |1 + q|2. For a function F in H 1, we will write the
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Herglotz integral f of |F | in the form :

f (z) = 1 +QF(z)

1 −QF(z)
= 1

2π

∫ π

−π
eit + z

eit − z
|F(eit )| dt (z ∈ D)

where QF is a contractive function in H∞.
The following two theorems are very well known and they are written in

the title of this paper. The first one is called Rouché Theorem and the proof is
elementary (see [7, p. 225]). The second one is calledAdamyan,Arov and Krein
Theorem [1]. The present form is a corollary of [4, Lemma 5.5 in Chapter IV]
which was proved by the author [5, Lemma 6].

Rouché Theorem. Let U be a bounded domain in C whose boundary ∂U
consists of finite disjoint closed Jordan curves. Suppose f and g are nonzero
functions which are holomorphic on U ∪ ∂U . If |f (z)| > |g(z)| (z ∈ ∂U)

then �Z(f ) = �Z(f − g). Here for any analytic function F on U ∪ ∂U ,
�Z(F ) denotes the number of zeros of F in U , counted according to their
multiplicities.

Adamyan, Arov and Krein Theorem. Let φ = F/|F | for some nonzero
function F in H 1. Then

{g ∈ H∞ ; ‖φ − g‖∞ ≤ 1}
=

{
f (1 −Qf )(1 − w)

1 −Qfw
; w ∈ H∞, ‖w‖∞ ≤ 1 and f ∈ H 1, f/F ≥ 0

}

In this paper we generalize Rouché theorem in case U = D to when f
and g are not necessary holomorphic on ∂D. Moreover we give a Rouché type
theorem. In fact, we describe f −g where f and g are functions in the Smirnov
class with |f | ≥ |g| a.e. on ∂D, using Adamyan, Arov and Krein Theorem.
As an application, we describe a function whose Denjoy-Wolff point is in ∂D
and study a function in N+ whose real part is nonnegative on ∂D.

2. A generalization of Rouché theorem

Theorem 1 is a generalization of Rouché theorem in the Introduction for the
open unit disc. In fact, if f and g are holomorphic onD∪∂D and |f | > |g| on
∂D then f and g belong toN+ and there exists ε > 0 such that |f | ≥ ε+|g| on
∂D. Hence Theorem 1 follows from Rouché Theorem. We prove Theorem 1
using a Toeplitz operator. For a function φ inL∞, Tφ denotes the usual Toeplitz
operator on H 2 with symbol φ (see [3, Chapter 7]).

Theorem 1. Supposef andg are nonzero functions inN+ and |f | ≥ ε+|g|
a.e. on ∂D for some ε > 0. Then q[f ] ∼ q[f − g].
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Proof. Put q1 = q[f ] and q2 = q[f − g]. If f = q1h, h is outer and
k = g/h, thenf−g = h(q1−k), k ∈ H∞ andq2 = q[q1−k]. Then‖k‖∞ < 1.
For by hypothesis |h| ≥ ε + |g| ≥ ε and so 1 ≥ ε|h|−1 + |k| ≥ |k|. If $ is the
outer part of q1 −k, then q1 −k = (1− q̄1k)q1 = q2$, q̄1q2 = (1− q̄1k)$

−1 and
$ is an invertible function in H∞ because (q1 − k)−1 ∈ L∞. Since ‖q̄1k‖∞ <

1, ‖I − T1−q̄1k‖ = ‖Tq̄1k‖ = ‖q̄1k‖∞ < 1 and so T1−q̄1k is invertible by
a theorem of Widom and Devinatz (see [3, Theorem 7.10 in Chapter 7]).
Hence Tq̄1q2 = T(1−q̄1k)T$−1 is invertible because $ is invertible in H∞. Hence
there exist F1, F2 ∈ H 2 and G1,G2 ∈ H 2

0 such that q̄1q2F1 = 1 + Ḡ1 and
q1q̄2F2 = 1 + Ḡ2. Then q̄1q2F1(1 + G1) = |1 + G1|2 = |F1(1 + G1)| and
q1q̄2F2(1+G2) = |1+G2|2 = |F2(1+G1)|. SinceF1(1+G1) andF2(1+G2)

belong to H 1, q1 ∼ q2.

Corollary 1. In Theorem 1, if q[f ] is a finite Blaschke product then
q[f − g] is also a finite Blaschke product and �Z(f ) = �Z(f − g).

Proof. Put Q1 = q[f ] and Q2 = q[f − g] then

Q̄1Q2 = |F |
F

= G

|G| , F ∈ H 1 and G ∈ H 1

because Q1 ∼ Q2 by Theorem 1. Hence Q̄1Q2F = |F | ≥ 0 and so q[Q2F ]
is a finite Blaschke product with degQ1 ≥ deg q[Q2F ] ≥ degQ2. This is a
result of 8.4 of Chapter 8 in [2]. Similary we can prove that degQ1 ≤ degQ2.

3. Rouché type theorems

In Theorem 1, if ε = 0 then the conclusion is not valid. In fact, if f = z

and g = 1 then q[f ] = z and q[f − g] = constant. Hence q[f ] �∼ q[f − g]
but q[f ] 
 q[f − g]. Corollary 2 shows that q[f ] 
 q[f − g] is valid in
general. Corollary 3 is a result of D. Sarason [8, Proposition 3]. Recall that
(1 +QF)/(1 −QF) denotes the Herglotz integral of |F |.

Theorem 2. Suppose f and g are nonzero functions in N+, |f | ≥ |g| a.e.
on ∂D and f − g �≡ 0. Then

f − g = hF(1 −Q)(1 − w)

1 − wQ

where h is the outer part of f , F is a nonzero function in H 1 with hF/f ≥ 0
a.e. on ∂D, Q = QF and w is a contractive function in H∞ with w �≡ 1.

Proof. Let f = q1h where q1 = q[f ] and h is outer. If k = g/h then
k ∈ H∞, ‖k‖∞ ≤ 1 and f − g = h(q1 − k). Since q1 = (1 + q1)

2/|1 + q1|2
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and (1+q1)
2 ∈ H 1, by Adamyan, Arov and Krein Theorem in the Introduction

{$ ; $ ∈ H∞, ‖q1 − $‖∞ ≤ 1}

=
{
F(1 −Q)(1 − w)

1 −Qw
; w ∈ H∞, ‖w‖∞ ≤ 1, F is a nonzero

function in H 1 with q̄1F ≥ 0 a.e. on ∂D and Q = QF

}
.

Since ‖q1 − (q1 − k)‖∞ ≤ 1, by the equality above q1 − k has the form:
F(1 −Q)(1 − w)/(1 −Qw). Then w �≡ 1 because f �≡ g. This implies the
theorem.

Corollary 2. If f and g are nonzero functions inN+, |f | ≥ |g| a.e. on ∂D
and f−g �≡ 0, then q[f ] 
 q[f−g]. It may not happen that q[f ] ∼ q[f−g].

Proof. By Theorem 2, f −g = hF(1−Q)(1−w)/(1−wQ). Then q[f −
g] = q[F ] because h(1 −Q)(1 −w)/(1 −wQ) is outer. Since q[f ]q[F ]$ =
hF/f ≥ 0 a.e. on ∂D, q[f ]q[F ] = |$|/$ where $ is the outer part of F . This
implies that q[f ] 
 q[f −g]. The second part was proved in the remark above
Theorem 2.

Corollary 3. If f is a finite Blaschke procuct and g is a contractive
function in H∞ then deg(f ) ≥ deg q[f − g].

4. Denjoy Wolff point

A point λ ofD is called a Denjoy-Wolff point of the holomorphic self-map φ of
D if λ is inD and φ(λ) = λ, or if λ is in ∂D, and φ has λ as its nontangential
limit at λ, and φ has an angular derivative at λ satisfying |φ′(λ)| ≤ 1. By
Denjoy-Wolff Theorem (cf. [8]), any holomorphic self-map φ ofD, other than
the identity map, has a unique Denjoy-Wolff point.

The following lemma was proved by Sarason [8, Proposition 2 and Corol-
lary 1].

Lemma 1. Let φ be a holomorphic self-map of D, not the function z, and
let λ be its Denjoy-Wolff point. λ is in ∂D if and only if z − αφ is an outer
function for some constant α with |α| = 1.

Theorem 3. Letφ be a holomorphic self-map ofD which is not the function
z and let λ be its Denjoy-Wolff point. Put

)(a,w) = ((2 + |a|2)z+ 2a)w − (|a|2z+ 2a)

(2 + |a|2 + 2āz)− (|a|2 + 2āz)w

where a ∈ C with |a| ≤ 1, and w ∈ H∞ with ‖w‖∞ ≤ 1 and w �≡ 1.
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(1) λ is in ∂D if and only if φ can be written as b)(a,w) for some | a |=|
b |= 1 and some function w as above.

(2) λ is in D if and only if φ = )(a,w) for some |a| < 1.

Proof. Apply Theorem 2 to f = z and g = φ, then

z− φ = F(1 −Q)(1 − w)

1 −Qw

where F is a nonzero function in H 1 with z̄F ≥ 0 a.e. on ∂D, Q = QF and
w is a contractive function in H∞ with w �≡ 1. Since z̄F ≥ 0 a.e. on ∂D,
F = γ (z+a)(1+ āz)where a ∈ C and |a| ≤ 1. By the proof of [5, Lemma 6],
we may assume γ = 1. The Herglotz integral of |z+ a|2 is 1 + |a|2 + 2āz and
so Q = (|a|2 + 2āz)/(2 + |a|2 + 2āz). By simple calculations (see [6]),

φ = z− F(1 −Q)(1 − w)

1 −Qw
= z

1 −Q

1 − Q̄

w − Q̄

1 −Qw
.

Hence
φ = z

1 −Q

1 −Q

w −Q

1 −Qw

= z
1 − |a|2+2āz

2+|a|2+2āz

1 − |a|2+2az̄
2+|a|2+2az̄

w − |a|2+2az̄
2+|a|2+2az̄

1 − |a|2+2āz
2+|a|2+2āzw

= ((2 + |a|2)z+ 2a)w − (|a|2z+ 2a)

2 + |a|2 + 2āz− (|a|2 + 2āz)w

Moreover λ ∈ ∂D if and only if F is outer if and only if |a| = 1. Now
Theorem 3 follows from Lemma 1.

Suppose thatφ = )(a,w) in Theorem 3 andλ is inD∪∂D. Thenφ(λ) = λ

if and only if w(λ) = 1 or λ = −a. For if φ(λ) = λ then )(a,w)(λ) = λ

and so ((2 + |a|2)λ+ 2a)w(λ)− (|a|2λ+ 2a) = {(2 + |a|2 + 2āλ)− (|a|2 +
2āλ)w(λ)}λ. Hence (āλ2 + (1 + |a|2)λ+ a)w(λ) = āλ2 + (1 + |a|2)λ+ a.
Therefore w(λ) = 1 or (āλ+ 1)(λ+ a) = 0. Thus w(λ) = 1 or λ = −a. The
converse is clear.

5. Functions f in N+ with Re f ≥ 0 on ∂D

If f is a function in H 1 with Ref ≥ 0 on ∂D then Re f ≥ 0 on D̄. This
is well known and it is easy to see. In fact, we can use the Poisson integral
representation of f . Unfortunately we can not do it when f is not in H 1. In
the previous paper [6], we started to study functions in N+ whose real parts
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are nonnegative on ∂D. In this section, applying Theorems 1 and 2 we prove
Theorem 4 which is a generalization of [6, Theorem 14].

Theorem 4. If f is a function in N+ with Re f ≥ 0 on ∂D, then f =
(g+ k)/(g− k) where g is inner, k is a contractive function inH∞ and g− k
is outer. Moreover q[f ] ≺ g and q[f + λ] ∼ g for any λ in C with λ > 0.

Proof. The first part is just Proposition 10 in [6]. By Corollary 2, q[g+k] ≺
g and so q[f ] ≺ g. For any λ > 0

g + k

g − k
+ λ = (1 + λ)

g + 1−λ
1+λk

g − k

Since
|g| = 1 ≥ 2λ

1 + λ
+

∣∣∣∣−1 − λ

1 + λ
k

∣∣∣∣ ,
by Theorem 1

q

[
g + 1 − λ

1 + λ
k

]
∼ g and so q

[
g + k

g − k
+ λ

]
∼ g

for any λ > 0.

Corollary 4. In Theorem 4, if q[f + λ] is a finite Blaschke product for
some λ > 0 then g is also a finite Blaschke procuct with deg g = deg q[f +λ]
and deg q[f + λ] = deg q[f + γ ] for any γ > 0.

By Corollary 4, if f is a nonzero function in N+ with Ref ≥ 0 on ∂D and
f + λ is outer for λ > 0 then f = (1 + k)/(1 − k) and f is also outer. It will
be interesting to study the following special function: f = (z+ k)/(z− k).
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