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ANOTHER WAY TO SAY SUBSOLUTION: THE
MAXIMUM PRINCIPLE AND SUMS OF

GREEN FUNCTIONS

R. S. LAUGESEN and N. A. WATSON∗

Abstract
Consider an elliptic second order differential operator L with no zeroth order term (for example
the Laplacian L = −�). If Lu ≤ 0 in a domain U , then of course u satisfies the maximum
principle on every subdomain V ⊂ U .

We prove a converse, namely that Lu ≤ 0 on U if on every subdomain V , the maximum
principle is satisfied by u+v whenever v is a finite linear combination (with positive coefficients)
of Green functions with poles outside V .

This extends a result of Crandall and Zhang for the Laplacian.
We also treat the heat equation, improving Crandall and Wang’s recent result. The general

parabolic case remains open.

1. Introduction

We will extend the following “maximum principle characterization” of subhar-
monic functions, given by Crandall and Zhang in their paper Another way to
say harmonic [5], to a wide class of second order elliptic operators with no
zeroth order terms.

Write K(r) = 1/rn−2 for the radially symmetric fundamental solution of
Laplace’s equation, when n �= 2, with K(r) = log(1/r) when n = 2. Also
write K(x) = K(|x|) when x ∈ Rn.

Theorem 1.1 ([5], Theorem 2.4). Let u : U → R be upper semicontinuous
on an open set U ⊂ Rn, n ≥ 1. Suppose u+ v satisfies the maximum principle
on V whenever V is a bounded open set with V ⊂ U and v has the form

v(x) =
n∑

m=1

amK(x − ξm)

for some positive real numbers a1, . . . , an and some points ξ1, . . . , ξn ∈ Rn\V .
(In other words maxV (u + v) = max∂V (u + v) for all such v and V .)
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Then u is subharmonic.

Note that v is a positive linear combination of n fundamental solutions with
distinct singularities outside V . The number “n” of terms here is minimal, as
Crandall and Zhang observed.

The converse to Theorem 1.1 is trivial: if u is subharmonic on V then so
is u + v, because v is harmonic on V , and thus u + v does indeed satisfy the
maximum principle on V .

Our main goal is to find a similar characterization of subsolutions in the
elliptic case. This we do in Theorem 2.6 of Section 2. Our Theorem 2.6 is
worse than Crandall and Zhang’s Theorem 1.1 because our linear combina-
tions v employ arbitrarily many fundamental solutions, rather than just n of
them. Perhaps this is unavoidable, because there is no explicit formula for the
fundamental solution in the general elliptic case and hence there is much less
information to work with. Instead we proceed by a potential theoretic line of
proof that is less explicit and more flexible.

Theorem 2.6 is in other ways better than Theorem 1.1, because it uses Green
functions (of which fundamental solutions on all of space are just a special
case, when n ≥ 3).

Our second goal, in Section 3, is to strengthen Theorem 1.1 for subharmonic
functions – we consider u−v as well as u+v, and we localize the singularities.

In Section 4 we strengthen Crandall and Wang’s analogous characterization
[4] of subsolutions of the heat equation, using linear combinations of just n
Gaussian fundamental solutions in Rn+1 (whereas [4] needed n+1 Gaussians).
A natural question is whether subsolutions of more general parabolic equations
can be characterized similarly, in terms of the maximum principle and Green
functions. Technical difficulties have so far prevented us from dealing with
this parabolic case, and so the question remains open.

Incidentally, this line of research began when subsolutions of the∞-Laplace
equation were characterized by Crandall, Evans and Gariepy [3] in terms of
the maximum principle and cone functions:

if u+ v satisfies the maximum principle on V whenever V is a bounded
open set with V ⊂ U and v(x) = −a|x − ξ | for some a > 0 and
ξ ∈ Rn \ V , then u is ∞-subharmonic, meaning −Du · (D2u)Du ≤ 0.

Here Du is the gradient vector of u and D2u is the Hessian. For a strikingly
simple proof of this fact, see [5, Section 2]. It remains an open problem to
similarly characterize subsolutions of the p-Laplace equation, for p �= 2,∞.
Partial results are in [5, Section 3]. For the ∞-heat equation, see [4, Section 3].
The p-heat equation seems not to have been investigated in this regard, for
p �= 2,∞.
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2. Subsolutions of elliptic equations

Our characterization of subsolutions comes in Theorem 2.6 below. But first
we establish some notation and lemmas.

Note. We will not consider dimension n = 1 because the potential theory
there is different (for example the Green function is finite on the diagonal) and
thus would require special treatment.

2.1. Definitions

Let � be an open subset of Rn, n ≥ 2. We consider in � the elliptic operator
L with real coefficients and no zeroth order term:

Lu = −
n∑

i,j=1

aijDiDju +
n∑

i=1

biDiu,

where aij ∈ C2+δ(�), bi ∈ C1+δ(�), and aij = aji . The ellipticity condition
is n∑

i,j=1

aij (x)ξiξj ≥ θ |ξ |2

for all x ∈ � and ξ ∈ Rn. These assumptions on the coefficients are sufficient
for the potential theoretic arguments we use later on.

We shall give a maximum principle characterization of the subsolutions
associated with the operator L. The known results that we shall use appeared
in [2] and [6]. We follow the potential theoretic terminology of those references.

Definition 2.1. A function u : U → [−∞,+∞) defined on an open
subset U of � is called L-hypoharmonic if it satisfies the following conditions:

(i) u is upper semicontinuous;

(ii) for each L-regular open set D � U we have the inequality

u(x) ≤
∫

u dρD
x for every x ∈ D,

where ρD
x denotes the L-harmonic measure relative to D and x (see [2,

p. 62]).

An L-hypoharmonic function on U is called L-subharmonic if it is finite at
some point in each component of U . A function u is called L-superharmonic
if −u is L-subharmonic.

The point of L-hypoharmonicity is that on every L-regular subdomain D,
the function u is majorized by the L-harmonic function equalling u on ∂D (if
there is one).
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Remark. Littman [8] studied weakly L-subharmonic functions, which are
locally integrable functions u on U satisfying∫

u(x)L∗v(x) dx ≤ 0

whenever v ≥ 0 and v ∈ C2
c (U), where L∗ is the formal adjoint of L. Note

that every weakly L-subharmonic function is equal a.e. to an L-subharmonic
function, and conversely, as demonstrated in [12] (with the additional, but
superfluous, hypothesis that L is self-adjoint).

We shall use the local criterion for L-hypoharmonicity given in [2, p. 72].
Thus u is L-hypoharmonic if u : U → [−∞,+∞) is upper semicontinuous
and the inequality in (ii) holds for each D in some base for the Euclidean
topology on U that consists entirely of L-regular open sets.

We employ a particular type of base for the topology of U . Fix a bounded
convex domain B that contains the origin, fix ε > 0, and put

(1) B(U) = BB,ε(U) = {x + δB : x ∈ Rn, 0 < δ < ε, x + δB ⊂ U}.
Then B(U) is a base which consists entirely of L-regular sets, because every
convex domain is �-regular and regularity does not vary with the coefficients
of the operator, under our conditions on the aij and bi (see [6] or [11]).

Let V be an open set, and let u be upper semicontinuous and upper finite
on V . We say that u satisfies the maximum principle on V if

max
V

u = max
∂V

u.

Note that L-hypoharmonic functions satisfy the maximum principle on every
V � U , by [2, p. 72].

2.2. Preparatory lemmas

The first lemma below indicates the direction in which we shall go.
Given an open subset V of �, we denote by HL(V ) the class of all L-

harmonic functions on V , such a function being a classical solution of Lu = 0.
We also denote by C(V ) the class of all continuous functions on V . If V is a
regular set and f is a continuous real-valued function on ∂V , then we denote
by HV

f the function on V that belongs to C(V ) ∩ HL(V ) and coincides with
f on ∂V ; in other words the solution of the Dirichlet problem on V with
boundary data f . By definition of L-harmonic measure [2, p. 62], one has
HV

f (x) = ∫
f dρV

x for x ∈ V .

Lemma 2.2. Let u : U → [−∞,+∞) be upper semicontinuous on an
open subset U of �. Suppose either
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(a) u + v satisfies the maximum principle on V whenever V ∈ B(U) and
v ∈ C(V ) ∩ HL(V ); or else

(b) u − v satisfies the maximum principle on V whenever V ∈ B(U) and
v ∈ C(V ) ∩ HL(V ).

Then u is L-hypoharmonic on U .

Proof of Lemma 2.2. We need only prove part (a), since −v ∈ C(V ) ∩
HL(V ) if and only if v ∈ C(V ) ∩ HL(V ).

Fix V ∈ B(U). Since the restriction of u to ∂V is upper semicontinuous and
upper finite, there is a decreasing sequence of real-valued continuous functions
{fk} on ∂V such that limk→∞ fk = u. Since V is regular, for each k we can
define vk ∈ C(V ) ∩ HL(V ) by putting vk = HV

fk
. Then vk ≥ u on ∂V , and

u − vk is upper semicontinuous and upper finite on V , so that the maximum
principle hypothesis implies u ≤ vk on V . Since {fk} is decreasing, so is {vk},
and hence for all x ∈ V we have

u(x) ≤ lim
k→∞ vk(x) = lim

k→∞

∫
fk dρ

V
x =

∫
u dρV

x .

Since this holds for all V ∈ B(U), the local criterion for L-hypoharmonicity
shows u is L-hypoharmonic.

Remark. The function u by itself might satisfy the maximum principle
on every V without u being L-hypoharmonic, because subsolutions of any
operator having the same form as L will satisfy the maximum principle. For
example, the harmonic function u(x1, x2) = x2

1 − x2
2 satisfies the maximum

principle on every subdomain of R2, but is not L-hypoharmonic for L =
−(D2

1 + 2D2
2) because Lu = 2 > 0.

The main result of this section, Theorem 2.6, will confine the test functions
v required in Lemma 2.2 to a smaller class. For its proof we require two further
lemmas, both of which extend known results for the harmonic case L = −�.

The first lemma is a criterion for L-superharmonicity that extends [1, Co-
rollary 3.2.4].

Lemma 2.3. Let u be an L-superharmonic function on an open set U and
let h be an L-superharmonic function on an open subset V of U . If

(2) u(y) ≤ lim inf
x→y,x∈V h(x)

for all y ∈ U ∩ ∂V , then the function

w =
{

min(h, u) on V ,
u on U \ V ,
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is L-superharmonic on U .

Proof of Lemma 2.3. Clearly w > −∞ on U , because u > −∞ and
h > −∞. Also, w is finite at some point in each component of U , since w ≤ u.
Condition (2) implies that w is lower semicontinuous at every point of U ∩∂V ,
and therefore on U . To complete the proof, we use the local criterion for L-
superharmonicity. Clearly the criterion is satisfied at every point of U \ ∂V .
Let ξ0 ∈ U ∩∂V , and let D be a regular open set such that ξ0 ∈ D and D ⊂ U .
Then

w(ξ0) = u(ξ0) ≥
∫

u dρD
ξ0

≥
∫

w dρD
ξ0
,

so that the local criterion is satisfied at ξ0. Hence w is L-superharmonic on U .

Lemma 2.3 is used in the proof of the Extension Lemma below, which
extends the harmonic case L = −� in [1, p. 192], by following a broadly
similar proof. For this Extension Lemma we require the classical notion of a
Green function for the Dirichlet problem relative to the operator L.

Definition 2.4. A classical L-Green function on a subdomain + of � is
a continuous, extended-real-valued function G : + × + → (0,∞] with the
following properties for each ξ ∈ +:

(i) LG(·, ξ) = 0 (in the classical sense) on + \ {ξ};
(ii) G(ξ, ξ) = ∞;

(iii) G(·, ξ) can be continuously extended to 0 on ∂+ (including the point at
infinity if + is unbounded).

Traditionally, a Green function’s singularity must also be of a prescribed
type (see [9, p. 20], for example), but we don’t need that property below.

If + is a regular set and + is a compact subset of �, then it follows from [9,
p. 64] that + possesses a classical L-Green function. If L = −� and n ≥ 3,
then � = Rn itself possess a classical Green function, namely G(x, ξ) =
|x − ξ |2−n.

In the proof of the Extension Lemma, it will be convenient to use level sets
of the L-Green function G(·, ξ0) with pole at a point ξ0. For any ξ0 ∈ + and
r > 0 such that K(r) > 0, we put

B+(ξ0, r) = {x ∈ + : G(x, ξ0) > K(r)},
and call B+(ξ0, r) the L-Green ball with centre ξ0 and radius r . Note that if
L = −� and � = Rn with Green function as above, then B+(ξ0, r) is the
Euclidean open ball with centre ξ0 and radius r .

In general, B+(ξ0, r) is an open set with closure in +. It is also connected,
because if it had a component U that did not contain ξ0, we would have
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G(·, ξ0) = K(r) on ∂U and LG(·, ξ0) = 0 throughout U , which would yield
G(·, ξ0) = K(r) on U , contradicting the definition of B+(ξ0, r).

Further, B+(ξ0, r) expands to fill + as r → ∞ if n ≥ 3, or as r → 1 if
n = 2, since K(r) → 0.

Lemma 2.5 (Extension Lemma). Let + be a subdomain of � that has a
classical L-Green function G. Let C be a convex compact subset of +, and let
v be an L-superharmonic function on an open set containing C.

Then given any point ξ0 ∈ +, there is an L-superharmonic function v̄ on
+ such that v̄ = v on a neighbourhood of C, and v̄ = α + βG(·, ξ0) on
+ \ B+(ξ0, ρ) for some real constants α, β, ρ with β, ρ > 0. Furthermore,
v̄ − α > 0 on +.

Proof of Lemma 2.5. Let U be a bounded open set containing C, such
that v is L-superharmonic and lower bounded on U . By adding a constant
if necessary, we can assume that v > 0 on U . Choose R > 0 such that
U ⊂ B+(ξ0, R).

Our first aim is to show that there is an L-superharmonic function w on
B+(ξ0, R + r) such that w = v on a neighbourhood of C, where r = 1 if
n ≥ 3 and r = (1 − R)/2 if n = 2. Let D be a convex domain such that
C ⊂ D � U . Put u = R̂D

v , the regularized reduced function (or balayage) of
v relative to D in U (see [2, p. 80]). Then u is L-superharmonic on U by [2,
p. 77], and L-harmonic on U \ D, by [2, p. 84], with 0 ≤ u ≤ v on U and
u = v on D by [2, p. 81]. (In other words, u solves the obstacle problem with
v as the obstacle on D.)

The next step in the construction of w is to let E be a convex compact set
such that D ⊂ Eo and E ⊂ U . Put A = B+(ξ0, R + r) \E, so that A is a kind
of “annular” region. The convexity of E ensures every point of ∂E is a regular
point for the L-Dirichlet problem on A, because every such point is regular
for Laplace’s equation and regularity does not vary with the coefficients of
the operator, as remarked earlier. (Incidentally, here we use exterior regularity
of the convex set. Earlier we used interior regularity.) Furthermore, because
G(·, ξ0) − K(R + r) is a positive L-superharmonic function on A that tends
to zero at every point of ∂B+(ξ0, R + r), every such boundary point is also
regular for the L-Dirichlet problem on A, by the “barrier” criterion in [2,
p. 118]. Hence A is a regular set.

Next put g1 = u on ∂E and g1 = 0 on ∂B+(ξ0, R+r), and put g2 = 0 on ∂E

and g2 = 1 on ∂B+(ξ0, R+ r). Let hk = HA
g1

−kHA
g2

for each k ∈ N. Note that

u is continuous on ∂E because u is L-harmonic on U \D. Since B+(ξ0, R+r)

is connected and E is convex, A is connected. Therefore HA
g2

> 0 on A, so
that {hk} decreases to −∞ in A as k → ∞. Choose m such that hm ≤ 0 on
∂U . Since A is regular, hm(x) → u(y) as x → y, for every y ∈ ∂E. Since we
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also have hm ≤ 0 on ∂U and u ≥ 0 on U , the minimum principle ensures that
hm ≤ u on U \ E.

Now define w = u on E, w = hm on A. An application of Lemma 2.3
(with V = U \ E and h = hm) shows that w is L-superharmonic on U , and
hence on B+(ξ0, R + r). Clearly w is L-harmonic on A, with w = u = v on
D, and w tends to −m on ∂B+(ξ0, R + r).

Our second aim in the proof is to extend w from B+(ξ0, R + r) to all
of +, thereby obtaining v̄. Since w is L-harmonic on A, it is continuous on
∂B+(ξ0, R) and so it has a maximum value M(R) there. We choose β > 0
such that

β(K(R) − K(R + r)) ≥ M(R) + m,

so that
βK(R) − M(R) ≥ βK(R + r) + m.

Then we choose α ∈ R such that

βK(R) − M(R) ≥ −α ≥ βK(R + r) + m,

so that

α + βK(R) ≥ M(R) and α + βK(R + r) ≤ −m.

Thus
α + βG(·, ξ0) ≥ M(R) on ∂B+(ξ0, R),

α + βG(·, ξ0) ≤ −m on ∂B+(ξ0, R + r).

Now we define

v̄ =




w on B+(ξ0, R),

min(w, α + βG(·, ξ0)) on B+(ξ0, R + r) \ B+(ξ0, R),

α + βG(·, ξ0) on + \ B+(ξ0, R + r),

and note that v̄ = w = v on D. An application of Lemma 2.3 (with U =
B+(ξ0, R+r), V = B+(ξ0, R+r)\B+(ξ0, R), u = w and h = α+βG(·, ξ0))
shows that v̄ is L-superharmonic on B+(ξ0, R + r). Another application of
Lemma 2.3 (with U = + \ B+(ξ0, R), V = B+(ξ0, R + r) \ B+(ξ0, R),
u = α + βG(·, ξ0) and h = w) shows that v̄ is also L-superharmonic on
+ \ B+(ξ0, R), and hence v̄ is L-superharmonic on +. Finally, since v̄ − α =
βG(·, ξ0) > 0 outside a compact subset of +, we conclude v̄ − α > 0 on +.
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2.3. The characterization of subsolutions

We now come to our main result, Theorem 2.6, in which Lemma 2.2 is improved
by replacing the arbitrary v ∈ C(V )∩HL(V ) with a finite linear combination
(having positive coefficients) of L-Green functions with poles outside V .

Theorem 2.6. Let u : U → [−∞,+∞) be upper semicontinuous on an
open subset U of �. Suppose U is contained in a domain + ⊂ � which has a
classical L-Green function G. Assume either

(a) u + v satisfies the maximum principle on V whenever V ∈ B(U) and v

has the form

(3) v =
M∑

m=1

amG(·, ξm)

for some M ∈ N, some positive real numbers a1, . . . , aM , and some
distinct points ξ1, . . . , ξM ∈ U \ V ; or else

(b) u − v satisfies the maximum principle on V whenever V ∈ B(U) and v

has the form (3).

Then u is L-hypoharmonic on U .

For example if L = −� is the Laplacian then one could take the Green
function to be the fundamental solution K(x − ξ) on all of space, provided
n ≥ 3. (When n = 2, the fundamental solution fails to be a Green function
because it is negative near infinity.) Thus Theorem 2.6 implies the Crandall-
Zhang result Theorem 1.1 on subharmonic functions, when n ≥ 3, except
using linear combinations v that have arbitrarily many terms. See Section 3
for more on this subharmonic case.

Proof of Theorem 2.6. Part (a). In view of Lemma 2.2(a), it suffices to
prove that u + v satisfies the maximum principle on V whenever V ∈ B(U)

and v ∈ C(V ) ∩ HL(V ). We prove the contrapositive. Suppose that we can
find V ∈ B(U) and v ∈ C(V ) ∩ HL(V ) such that

max
V

(u + v) > max
∂V

(u + v).

We will show the same inequality holds on a slightly smaller set V1 ∈ B(U).
Definew = u+v onV . Then there is y0 ∈ V such thatw(y0) > w(y) for all

y ∈ ∂V . Since w is upper semicontinuous and ∂V is compact, w(y0) > w(y)

for all y in some neighborhood of ∂V . Hence we can find V1 ∈ B(U) such
that y0 ∈ V1 � V and w(y0) > w(y) for all y ∈ ∂V1 (for instance one could
write V = x + δB as in the definition (1) and then put V1 = x + δ1B where
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δ1 ∈ (0, δ) is sufficiently close to δ, using here that B is convex and contains
the origin). Thus

max
V1

(u + v) > max
∂V1

(u + v),

and v is defined on an open set that contains V1.
We now choose ε such that

0 < ε < (u + v)(y0) − max
∂V1

(u + v).

By the Extension Lemma (with C = V1), there is an L-superharmonic
function v̄ on + such that v̄ = v on some bounded open set W with V1 ⊂
W ⊂ V , and v̄ − α > 0 on + for some α ∈ R. We now take the regularized
reduced function (or balayage) of v̄−α relative to W in +: let s = R̂W

v̄−α so that
s = v − α = v − α on W and s is L-harmonic on + \ W (cf. the proof of the
Extension Lemma). Hence s is L-harmonic on + \ ∂W . Since W is relatively
compact, s is an L-potential on + by [2, p. 94].

The L-potentials on + with point support are proportional, by [6, p. 563],
so that there is a nonnegative Radon measure µ on + such that

s(x) =
∫
+

G(x, ξ) dµ(ξ)

for all x ∈ +, by [6, p. 481]. Since s is L-harmonic on + \ ∂W , we know µ is
supported on ∂W in view of [6, pp. 464-5]. For each fixed ξ ∈ + the function
G(·, ξ) is an L-potential with point support, and hence G is continuous off
the diagonal by [6, p. 480]. Also G is finite off the diagonal, by definition. It
follows that G is uniformly continuous on V1 × ∂W , so that we can find η > 0
such that |G(x, ζ ) − G(x, ξ)| < ε

2µ(∂W)

whenever x ∈ V1 and ξ, ζ ∈ ∂W with |ξ − ζ | < η. (Note µ(∂W) > 0 because
otherwise s ≡ 0, contradicting that s = v − α > 0 on W .) We now partition
∂W into finitely many disjoint subsets E1, . . . , EM , such that µ(Em) > 0 and
diam(Em) < η for all m = 1, . . . ,M . We choose points ξ1, . . . , ξM such that
ξm ∈ Em for all m, and put

v1(x) =
M∑

m=1

µ(Em)G(x, ξm)

for all x ∈ +. Then v1 has the form (3) relative to V1, because ξ1, . . . , ξM lie
outside V1. Clearly v1 is a Riemann sum approximation to s, and indeed for
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all x ∈ V1 we have

|s(x) − v1(x)| =
∣∣∣∣

M∑
m=1

∫
Em

(G(x, ξ) − G(x, ξm)) dµ(ξ)

∣∣∣∣
≤

M∑
m=1

∫
Em

|G(x, ξ) − G(x, ξm)| dµ(ξ)

<

M∑
m=1

ε

2µ(∂W)
µ(Em)

= ε

2
.(4)

Therefore

max
∂V1

(u + v1) ≤ max
∂V1

(u + s) + ε

2
by (4)

= max
∂V1

(u + v − α) + ε

2
since s = v − α on W

< (u + v)(y0) − α − ε

2
by choice of ε

= (u + s)(y0) − ε

2
since s = v − α on W

< (u + v1)(y0) by (4).

Thus we have found V1 ∈ B(U) and v1 of the form (3) such that u + v1 does
not satisfy the maximum principle on V1. This proves the contrapositive and
establishes the theorem.

Part (b). Simply make the obvious changes to the proof of part (a), using
u − v instead of u + v, and using Lemma 2.2(b) at the beginning instead of
Lemma 2.2(a).

3. Subharmonic functions

3.1. The characterization

The characterization of subsolutions in Theorem 2.6 takes a particularly at-
tractive form for the Laplacian L = −�, because one can fix the number of
terms in the linear combinations to be M = n provided one employs the funda-
mental solution instead of a Green function. This is the content of Theorem 1.1,
due to Crandall and Zhang.

We make two improvements to that result, in Theorem 3.1 below. First, we
handle u − v as well as u + v in the hypotheses – this does require proof.
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Second, we localize the singularities ξm to belong to U (whereas Crandall
and Zhang considered all ξm in Rn, in their hypotheses). It is natural to seek
localized singularities because subharmonicity is itself a local property. Note
that the singularities are already localized to U in our elliptic characterization
theorem, Theorem 2.6.

We also simplify Crandall and Zhang’s proof: see the remarks after the
theorem below.

Recall the fundamental solution K(x) = K(|x|) of the Laplacian from
Section 1.

Theorem 3.1. Let u : U → R where U is an open set in Rn, n ≥ 1, with
neighborhood base B(U). Suppose u ∈ C2(U). Assume either

(a) u+ v satisfies the maximum principle on V whenever V ∈ B(U) and v

has the form

(5) v =
n∑

m=1

amK(· − ξm)

for some positive real numbers a1, . . . , an, and some distinct points
ξ1, . . . , ξn ∈ U \ V ; or else

(b) u− v satisfies the maximum principle on V whenever V ∈ B(U) and v

has the form (5).

Then u is subharmonic in U .

Corollary 3.2. Theorem 3.1 still holds if the hypotheses u : U → R and
u ∈ C2(U) are weakened to u : U → [−∞,∞) being upper semicontinuous
with u �≡ −∞.

Remarks on Theorem 3.1. 1. The neighborhood base B(U) here is ar-
bitrary, unlike in Theorem 2.6 where each V ∈ B(U) must be convex.

2. In one dimension (n = 1) the fundamental solution isK(x) = −|x|. Then
v(x) = a1K(x − ξ1) is linear on the interval V , and can be either increasing
or decreasing depending on whether the singularity ξ1 is to the right or left of
V . Thus in one dimension, Theorem 3.1 says u is convex on an interval U if
for every subinterval V ⊂ U and every linear function v on V , the sum u + v

attains its maximum at an endpoint of V . This statement is easily proved by
the contrapositive.

3. To prove the theorem and corollary below, we follow Crandall and
Zhang’s method. But we introduce a new parameter λ to allow localization
of the singularities. And we perturb the standard basis {e1, . . . , en} for Rn to
the basis {q1, . . . , qn}, in estimate (9) in the proof, thereby eliminating the
tricky “non-generic” case of Crandall and Zhang.
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A further simplification is the removal of the case Du(x0) = 0, which
required separate treatment in [5, p. 251, 253]. In Theorem 3.1 we remove
this case by a simple perturbation. In Corollary 3.2 we avoid it by employing a
weaker-than-usual notion of viscosity subsolution, namely a definition that has
the restriction Dφ(x0) �= 0 imposed on the test functions [7, Definition 2.5].

4. Crandall and Zhang also proved a version of Theorem 1.1 in which the
n-th term in the linear combination v(x) is changed from anK(x − ξn) to x · ξn
and the coefficients are am = 1 for m = 1, . . . , n− 1. The proof is similar but
easier, and our proof below can be adapted to this version also.

Proof of Theorem 3.1. Part (a). To establish the contrapositive we as-
sume u is not subharmonic, meaning �u(x0) < 0 at some point x0 ∈ U . We
may suppose the gradient vector Du(x0) �= 0, just by shifting x0 slightly if
necessary; this is possible since Du ≡ 0 in a neighborhood of x0 would imply
�u(x0) = 0.

By a translation we may further suppose x0 = 0, so that we have

�u(0) < 0 and Du(0) �= 0.

We will choose am > 0 and ξm ∈ U distinct in such a way that

v(x) =
n∑

m=1

amK(x − ξm)

satisfies

D(u + v)(0) = 0,(6)

D2(u + v)(0) < 0.(7)

These two conditions imply the origin is a strict local maximum point for u+v,
and so u+v fails to satisfy the maximum principle on V whenever V ∈ B(U)

contains the origin and is sufficiently small (using that v has the desired form
(5) as soon as V is small enough to avoid the singularities at ξ1, . . . , ξn). This
failure of the maximum principle establishes the contrapositive of part (a) of
the theorem.

The next portion of the proof, in which we choose am and ξm, will appear
unmotivated and should really be read backwards from the end. But in the
interests of clear logic, we build the proof carefully from the ground up.

Write
D2u = [DjDku]nj,k=1

for the Hessian matrix of u, so that D2u is real and symmetric at each x.
In particular the Hessian D2u(0) at the origin has n real eigenvalues (counted
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with respect to multiplicity), which we denote by λ1, . . . , λn. Choose a number
λ > 0 large enough that λ > λm for all m, or 1 − λm/λ > 0 for all m. Notice
that

n∑
m=1

1 − λm/λ

n
= 1 − (λ1 + · · · + λn)/λn = 1 − Trace D2u(0)/λn

= 1 − �u(0)/λn > 1

since �u(0) < 0. Therefore it is possible to choose numbers α1, . . . , αn > 0
such that

∑n
m=1 αm = 1 and

1 − λm/λ

n
> αm, m = 1, . . . , n.

These n inequalities imply the diagonal matrix inequality

E − λI +
n∑

m=1

αmλ(neme
T
m) < 0,

where E is the diagonal matrix of eigenvalues, with entries λ1, . . . , λn, and
where em = (0, . . . , 1, . . . , 0)T is the mth unit column vector. Hence

(8) E +
n∑

m=1

αmλ(−I + nqmq
T
m) < 0

whenever q1, . . . , qn are vectors sufficiently close to e1, . . . , en, respectively,
where we have used also here that

∑n
m=1 αm = 1.

Now take p1, . . . , pn to be an orthonormal collection of eigenvectors of
D2u(0) corresponding to the eigenvaluesλ1, . . . , λn, so thatPTD2u(0)P = E

where P = [p1 · · ·pn] is the matrix with the pm as its columns. We may sup-
pose −pT

mDu(0) ≥ 0 for each m, just by replacing pm with −pm if necessary.
That is,

−PTDu(0) · em ≥ 0, m = 1, . . . , n.

Geometrically, this says the vector −PTDu(0) lies in the closed first quadrant
of Rn, and is nonzero (since Du(0) �= 0). Clearly an orthonormal system
q1, . . . , qn exists such that

(9) −PTDu(0) · qm > 0, m = 1, . . . , n,

and that the q1, . . . , qn are a small enough perturbation of e1, . . . , en for (8) to
hold.
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Write z1, . . . , zn for the columns of PQ, meaning PQ = [z1 · · · zn], and let

ξm = − (P TDu(0) · qm)

αmλ
zm,

so that the ξm are all distinct (since the zm are orthonormal) and

(10) ξm = |ξm|zm where |ξm| = − (P TDu(0) · qm)

αmλ
> 0.

We will show the singularities ξm lie in U whenever λ is chosen sufficiently
large. Clearly 1−λm/λ

n
< 2

2n−1 for all large λ, and for such λ our choice of

αm <
1−λm/λ

n
guarantees αm < 2

2n−1 for all m. Thus

αB = 1 −
∑
m�=B

αm > 1 − (n − 1)
2

2n − 1
= 1

2n − 1

for each B. Hence

|ξB| = −PTDu(0) · qB

αBλ
<

|PTDu(0)|
1

2n−1λ
→ 0

as λ → ∞, so that by choosing λ sufficiently large we ensure the singularities
ξm all lie close to x0 = 0 and inside U .

Now define

am = −(Du(0) · zm)|ξm|n−1

= −(P TDu(0) · qm)|ξm|n−1 since zm = Pqm

= αmλ|ξm|n by (10)(11)

> 0.

This completes our definitions. Now to prove (6) and (7), we compute

vxj (x) =
n∑

m=1

am(−1)
xj − (ξm)j

|x − ξm|n ,

vxj (0) =
n∑

m=1

am

(ξm)j

|ξm|n ,

vxj xk (0) =
n∑

m=1

am

1

|ξm|n
(

−δjk + n
(ξm)j (ξm)k

|ξm|2
)
,
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and hence

Dv(0) =
n∑

m=1

αmλξm =
n∑

m=1

am

|ξm|n−1
zm,(12)

D2v(0) =
n∑

m=1

am

|ξm|n
(−I + nzmz

T
m

)
,(13)

since zm = ξm/|ξm|. Using (12) and the definition of am, we find

Dv(0) = −
n∑

m=1

(Du(0) · zm)zm = −Du(0)

because the zm form an orthonormal basis (notice P and Q are orthogonal
matrices). Thus D(u + v)(0) = 0, which is (6).

Conjugating the Hessian inequality (7) with P shows that it is equivalent to

PT {D2u(0) + D2v(0)}P < 0.

Then substituting in the formula (13) for the Hessian of v, and invoking relation
(11), reduces this last inequality to (8) (recalling PT zm = qm). This proves
(7).

Part (b). It remains to prove u is subharmonic if u − v (instead of u + v)
satisfies the maximum principle on V whenever V ∈ B(U) and v has the form
(5). The goal is now to prove (6) and (7) with v replaced by −v. Modifying
the proof above, we choose λ > 0 large enough that λ > −λm for all m, or
1 + λm/λ > 0 for all m. Then

n∑
m=1

1 + λm/λ

n
= 1 + �u(0)/λn < 1

since �u(0) < 0. Therefore it is possible to choose numbers α1, . . . , αn > 0
such that

∑n
m=1 αm = 1 and

1 + λm/λ

n
< αm, m = 1, . . . , n.

Hence the analogue of (8) is

(14) E −
n∑

m=1

αmλ(−I + nqmq
T
m) < 0.

Continuing with the proof like earlier, we may suppose PTDu(0) · em ≥ 0
for each m. Thus an orthonormal system q1, . . . , qn exists such that PTDu(0) ·
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qm > 0 for each m, and that the q1, . . . , qm are a small enough perturbation of
e1, . . . , em for (14) to hold.

Letting

ξm = (P TDu(0) · qm)

αmλ
zm,

one finds

(15) ξm = |ξm|zm where |ξm| = (P TDu(0) · qm)

αmλ
> 0.

To show the singularities ξm lie in U whenever λ is chosen sufficiently large,
just observe

αmλ >
λ + λm

n
→ ∞

as λ → ∞, which implies by (15) that |ξm| → 0 as λ → ∞. (Notice this part
of the proof is easier than in part (a)).

To complete the proof, only a few more sign changes need be made: define
am = (Du(0) · zm)|ξm|n−1 = αmλ|ξm|n > 0, and use (12) and the definition
of am to show Dv(0) = Du(0), giving D(u − v)(0) = 0. Finally, after
conjugating the Hessian inequality with P and changing v to −v, the desired
inequality is PT {D2u(0) − D2v(0)}P < 0, which we prove like before.

3.2. Proof of Corollary 3.2

Let u : U → [−∞,∞) be upper semicontinuous with u �≡ −∞. We will
prove only part (a), since the proof of part (b) is the same except with v

changed to −v.
To prove the contrapositive of part (a), suppose u is not subharmonic in U .

Then u is not a viscosity subsolution of Laplace’s equation in U , by the equi-
valence of viscosity subsolutions and the usual potential theoretic subharmonic
functions (see [7, Theorem 2.7] with p = 2, and the references therein).

Hence by definition of viscosity subsolution (see [7, Definition 2.5]), there
exists a point x0 ∈ U and a function φ ∈ C2(U) such that u(x0) = φ(x0),
u(x) < φ(x) for all x ∈ U \ {x0}, and Dφ(x0) �= 0 and �φ(x0) < 0. By
applying the proof of Theorem 3.1 to the function φ, we find a function v of
the form (5) such that

D(φ + v)(x0) = 0, D2(φ + v)(x0) < 0.

Then clearly u + v = (u − φ) + (φ + v) has a strict local maximum at x0,
so that u + v fails to satisfy the maximum principle on all sufficiently small
domains V ∈ B(U) contiaining the point x0 ∈ V . That is, condition (a) in
Theorem 3.1 fails, completing the proof of the contrapositive.



144 r. s. laugesen and n. a. watson

4. Subtemperatures

4.1. The characterization

Now we characterize subtemperatures. As explained later, our results improve
on recent work of Crandall and Wang [4].

Write the fundamental solution of the heat (or diffusion) operator in Rn+1,
n ≥ 1, as

K(x, t) = 1

(4πt)n/2
e−|x|2/4t , x ∈ Rn, t > 0.

Call a set W ⊂ Rn+1 a cylinder if it has the form W = V × (t1, t2) where
V ⊂ Rn is open and t1 < t2.

Let U be an open set in Rn+1, n ≥ 1. Suppose Bp(U) (where the “p” stands
for parabolic) is a collection of cylinders contained in U such that for each
(x, t) ∈ U and ε > 0 there exists a cylinder W = V × (t1, t) in Bp(U) with
x ∈ V ⊂ B(x, ε) and 0 < t − t1 < ε.

For example, Bp(U) could consist of all cylinders in which V is a ball with
radius in

{
1, 1

2 ,
1
3 , . . .

}
and with W ⊂ U .

Write C2,1(U) for the class of functions with two spatial derivatives and
one temporal derivative in U , with all these derivatives being continuous. For
u ∈ C2,1(U) to be called a subtemperature means that �u ≥ ut , where �

denotes the Laplacian in the spatial variables. In Corollary 4.2 below one
should instead use the potential theoretic definition of a subtemperature (see
[7, Definition 4.4] with p = 2).

With these definitions, we can now state our characterization of subtemper-
atures.

Theorem 4.1. Let u : U → R where U is an open set in Rn+1, n ≥ 1, with
associated collection of cylinders Bp(U) as above. Suppose u ∈ C2,1(U).
Assume either

(a) u + w satisfies the parabolic maximum principle on W whenever W ∈
Bp(U) and w has the form

(16) w(x, t) =
n∑

m=1

bmK(x − ξm, t − τm)

for some positive real numbers b1, . . . , bn, and some distinct points
(ξm, τm) ∈ U with τm < t1; or else

(b) u − w satisfies the parabolic maximum principle on W whenever W ∈
Bp(U) and w has the form (16), and also ut ≤ 0 in every subregion of
U on which u is independent of x.

Then u is a subtemperature in U .
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Corollary 4.2. Theorem 4.1(a) still holds if the hypotheses u : U → R
and u ∈ C2,1(U) are weakened to u : U → [−∞,∞) being upper semicon-
tinuous with u finite in a dense subset of U .

The parabolic maximum principle for a function ψ means maxW ψ =
max∂pW ψ , where

∂pW = (V × {t1}) ∪ (∂V × [t1, t2])

denotes the parabolic boundary of W .

Remarks. 1. The functionw in formula (16) is a positive linear combination
of n fundamental solutions with singularities occurring before the time t1 at
which W begins. Clearly w is a temperature on W (meaning �w = wt there).
Thus the converse of Theorem 4.1 is easy: if a function u is a subtemperature
on U then u±w is a subtemperature on W , and so u±w satisfies the parabolic
maximum principle there.

2. One cannot remove the requirement in condition (b) that ut ≤ 0 in every
subregion of U on which u is independent of x. For example in dimension n =
1 suppose u(x, t) = t , which is not a subtemperature. Notice u is independent
of x with ut > 0, so that u fails the second requirement of (b). However
u does satisfy the first requirement of (b); indeed u − w = t − b1K(x −
ξ1, t − τ1) satisfies the parabolic maximum principle on every cylinder W =
V × (t1, t2), τ1 < t1, because the Gaussian x �→ e−x2

has no local minimum.
3. Corollary 4.2 covers only part (a) of Theorem 4.1. We believe part (b)

should hold also, when u : U → [−∞,∞) is upper semicontinuous and finite
in a dense subset of U , but we do not see how to prove this.

4. Crandall and Wang [4, Theorem 3] recently proved Theorem 4.1(a) and
Corollary 4.2, except that they needed n + 1 terms in the definition of w,
whereas we need only n terms. The first reason we do better here is that when
proving Theorem 4.1(a), we perturb (x0, t0) so as to get Dxu(x0, t0) �= 0: this
is possible except when u depends only on t , which we treat separately. Once
one has Dxu(x0, t0) �= 0, one needs only n terms in w to complete the proof
(as Crandall and Wang also observed). The second reason we need only n

terms is that when proving Corollary 4.2 we use a nominally weaker notion of
viscosity subsolution (a notion going back to Ohnuma and Sato, thence to Ishii
and Souganidis), which gives more control over the test function φ at points
where its spatial gradient vanishes. This additional control at points where
Dxφ(x0, t0) = 0 enables us to again use only n terms, when constructing w.

5. We learned of Crandall and Wang’s work only after writing this paper.
Our methods are very similar to theirs, due to the common starting point (the
subharmonic characterization Theorem 1.1 by Crandall and Zhang).
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6. Our proof of Theorem 4.1(a) is simpler than the proof of Crandall and
Wang in that it avoids the “non-generic” case of [4, p. 8] (the case with S̃), by
means of our perturbation of the standard basis vector em to the vector qm, in
the proof below.

7. Crandall and Wang do not localize their singularities, although presum-
ably they could modify their proof a little to enforce (ξm, τm) ∈ U , like in our
work.

8. Theorem 4.1(b), in which we treatu−w instead ofu+w, has no analogue
in Crandall and Wang’s paper.

9. Fundamental solutions are not the only choice for characterizing sub-
temperatures by means of the maximum principle. Indeed the simpler class
of functions w(x, t) = 1

2x
T Ax + p · x + t Trace A was shown to suffice by

Crandall and Wang [4, Remark 6], where A is a symmetric n × n matrix and
p ∈ Rn.

Proof of Theorem 4.1. Part (a). We establish the contrapositive. So
assumeu is not a subtemperature, meaning�u < ut at some point (x0, t0) ∈ U .
Assume Dxu(x0, t0) �= 0, and consider later the case Dxu(x0, t0) = 0. (Here
Dx denotes the spatial gradient operator, taken with respect to the x-variables
and keeping t fixed.)

By a translation we may suppose (x0, t0) = (0, 0), so that �u(0, 0) <

ut (0, 0) and Dxu(0, 0) �= 0. Define ε > 0 by

ε = ut (0, 0) − �u(0, 0).

We will choose bm > 0, ξm ∈ Rn distinct and τm < 0 in such a way that

(17) w(x, t) =
n∑

m=1

bmK(x − ξm, t − τm)

satisfies

Dx(u + w)(0, 0) = 0,(18)

D2
x(u + w)(0, 0) < 0,(19)

(u + w)t (0, 0) > 0.(20)

These imply the origin is a strict local maximum point for u + w with respect
to any sufficiently small cylinder W = V × (t1, 0) having 0 ∈ V and t1 < 0.
Thus u + w does not satisfy the parabolic maximum principle, whenever this
cylinder W belongs to Bp(U) and is sufficiently small (noting that w has
the desired form (16) provided t1 > maxm τm). This failure of the maximum
principle establishes the contrapositive of part (a) of the theorem.
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Like in the proof of Theorem 3.1, we take λ1, . . . , λn to be the eigenvalues
of the spatial Hessian D2

xu(0, 0) at the origin, and we choose λ > 0 large
enough that λ > λm for all m. Then by summing,

nλ − (λ1 + · · · + λn) > 0.

Hence we may choose a number ν > 0 satisfying

(21) n − (λ1 + · · · + λn)/λ > ν > n − (λ1 + · · · + λn + ε)/λ.

Thus ν → n as λ → ∞.
Notice that

n∑
m=1

1 − λm/λ

ν
= 1

ν

(
n − λ1 + · · · + λn

λ

)
> 1

by choice of ν. Therefore it is possible to choose numbers β1, . . . , βn > 0
such that

∑n
m=1 βm = 1 and

1 − λm/λ

ν
> βm, m = 1, . . . , n.

These n inequalities imply the diagonal matrix inequality

E − λI +
n∑

m=1

βmλ(νeme
T
m) < 0,

where E is the diagonal matrix of eigenvalues and the em are the standard basis
vectors. Hence

(22) E +
n∑

m=1

βmλ(−I + νqmq
T
m) < 0

whenever q1, . . . , qn are vectors sufficiently close to e1, . . . , en, respectively,
where we have used also here that

∑n
m=1 βm = 1. Write Q for the matrix with

the qm as its column vectors.
As before, we take P = [p1 · · ·pn] to be an orthogonal matrix whose

columns pm are eigenvectors of D2
xu(0, 0) corresponding to the eigenvalues

λ1, . . . , λn, so that PTD2
xu(0, 0)P = E. We may suppose −pT

mDxu(0, 0) ≥ 0
for each m, or

−PTDxu(0, 0) · em ≥ 0, m = 1, . . . , n.
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This means the vector −PTDxu(0, 0) lies in the closed first quadrant of Rn,
and is nonzero (since Dxu(0, 0) �= 0). Again we may choose an orthonormal
system q1, . . . , qn such that

−PTDxu(0, 0) · qm > 0, m = 1, . . . , n,

and that the q1, . . . , qn are a small enough perturbation of e1, . . . , en for (22)
to hold.

Once more write PQ = [z1 · · · zn], and let

ξm = − (P TDxu(0, 0) · qm)

βmλ
zm,

so that the ξm are all distinct and

(23) ξm = |ξm|zm where |ξm| = − (P TDxu(0, 0) · qm)

βmλ
> 0.

Put

τm = −|ξm|2
2ν

< 0

and define

bm = −(Dxu(0, 0) · zm)(−2τm)/(|ξm|K(−ξm,−τm)).

Notice

bm

2(−τm)
|ξm|K(−ξm,−τm) = −(Dxu(0, 0) · zm)(24)

= −(P TDxu(0, 0) · qm) since zm = Pqm

= βmλ|ξm|(25)

> 0.

This shows bm > 0.
We must show (ξm, τm) ∈ U whenever λ is chosen sufficiently large. For

this it is enough to show that |ξm| and |τm| approach zero as λ → ∞, since
(x0, t0) = (0, 0) lies in U .

Since ν → n as λ → ∞, we see 1−λm/λ

ν
< 2

2n−1 for all large λ. Then our

choice of βm <
1−λm/λ

ν
guarantees that |ξB| → 0 as λ → ∞ by arguing like

in the proof of Theorem 3.1. Hence τm = −|ξm|2/2ν → 0 as λ → ∞ as we
wanted.
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Now to prove (18)–(20), we first compute

wxj (x, t) =
n∑

m=1

bm(−1)
xj − (ξm)j

2(t − τm)
K(x − ξm, t − τm),

wxj (0, 0) =
n∑

m=1

bm

(ξm)j

2(−τm)
K(−ξm,−τm),(26)

wxj xk (0, 0) =
n∑

m=1

bm

1

2(−τm)

(
−δjk + (ξm)j (ξm)k

2(−τm)

)
K(−ξm,−τm).(27)

Then (26) implies

(28) Dxw(0, 0) = −
n∑

m=1

(Dxu(0, 0) · zm)zm

by using (24) and ξm = |ξm|zm, while (27) implies

(29) D2
xw(0, 0) =

n∑
m=1

βmλ
(−I + νzmz

T
m

)

by using (25) and ξm = |ξm|zm and ν = |ξm|2/2(−τm).
Now (28) shows Dxw(0, 0) = −Dxu(0, 0) because the zm form an or-

thonormal basis. Thus Dx(u + w)(0, 0) = 0, which is (18).
Conjugating the Hessian inequality (19) with P shows it is equivalent to

PT {D2
xu(0, 0) + D2

xw(0, 0)}P < 0.

Then substituting in the formula (29) for the Hessian of w reduces this inequal-
ity to (22) (since PT zm = qm), thus completing the proof of (19).

Lastly, to prove (20) we observe

(u + w)t (0, 0)

= ε + �(u + w)(0, 0) by choice of ε

= ε + Trace D2
x(u + w)(0, 0)

= ε + Trace[PTD2
xu(0, 0)P ] + Trace[(PQ)T D2

xw(0, 0)(PQ)]

= ε + Trace E +
n∑

m=1

βmλTrace[−I + νeme
T
m]

= ε + (λ1 + · · · + λn) + λ(−n + ν)

> 0
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by definition of ν in (21). This completes the proof in the case whereDxu(x0,t0)

�= 0.
Now return to the beginning of the proof and consider the case where

�u < ut and Dxu = 0 at some point (x0, t0) ∈ U . In fact, we can suppose
Dxu ≡ 0 on a neighborhood of (x0, t0), because otherwise we could instead
take (x0, t0) to be some nearby point at which Dxu �= 0 and �u < ut , and
then apply the previous case. But if Dxu ≡ 0 near (x0, t0), then the Hessian
vanishes too: D2

xu ≡ 0 near (x0, t0).
By a translation we can suppose (x0, t0) = (0, 0), so that ut (0, 0) >

�u(0, 0) = 0. Choose ξm = 0 and τm < 0 for all m, in the definition (17) of
w, with the τm chosen to be distinct and so small that (ξm, τm) ∈ U . And then
choose bm > 0 to be so small that (u + w)t (0, 0) > 0, meaning (20) holds.
Notice Dxw(0, 0) = 0 by (26) (since the Gaussians in w are all centered at
the spatial origin ξm = 0), so that Dx(u + w)(0, 0) = 0, which gives (18).

Further,

D2
x(u + w)(0, 0) = D2

xw(0, 0) = −
n∑

m=1

bm

2(−τm)
K(0,−τm)I by (27)

< 0,

which gives (19). Now (18)–(20) suffice to show that the parabolic maximum
principle fails for some W , just like before.

Part (b). Again we establish the contrapositive. Assume u is not a subtem-
perature, meaning �u < ut at some point (x0, t0) ∈ U .

If Dxu ≡ 0 on a neighborhood of (x0, t0) then 0 ≡ �u < ut near (x0, t0),
and so condition (b) fails as desired. Thus we can assume Dxu �≡ 0 on every
neighborhood of (x0, t0). Hence by perturbing the point (x0, t0) slightly, we
can suppose Dxu(x0, t0) �= 0.

Now proceed like in the proof of part (a), except with the following changes.
Choose λ > 0 large enough that λ > −λm for all m. Choose ν > 0 to satisfy

n + (λ1 + · · · + λn)/λ < ν < n + (λ1 + · · · + λn + ε)/λ,

so that
n∑

m=1

1 + λm/λ

ν
= 1

ν

(
n + λ1 + · · · + λn

λ

)
< 1.

Then it is possible to choose the βm > 0 to satisfy
∑n

m=1 βm = 1 and

1 + λm/λ

ν
< βm, m = 1, . . . , n,
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which leads to the matrix inequality

E −
n∑

m=1

βmλ(−I + νqmq
T
m) < 0

whenever the qm are sufficiently close to the em.
We may suppose PTDxu(0, 0) · em ≥ 0 for each m, and then choose the

qm to be an orthonormal system with PTDxu(0, 0) · qm > 0 for each m (using
here that Dxu(0, 0) �= 0) and with the qm sufficiently close to the em for the
previous paragraph to apply.

Letting

ξm = (P TDxu(0, 0) · qm)

βmλ
zm,

one finds the ξm are all distinct and ξm = |ξm|zm where |ξm| = (P TDxu(0, 0) ·
qm)/(βmλ) > 0.

Put τm = −|ξm|2
2ν < 0 andbm = (Dxu(0, 0)·zm)(−2τm)/(|ξm|K(−ξm,−τm)),

so that bm > 0 like before.
To show |ξm| → 0 as λ → ∞ it suffices to observe

βmλ >
λ + λm

ν
→ ∞ as λ → ∞.

(This part of the proof is easier than in part (a).)
With these preliminaries, one can verify that w satisfies

Dx(u − w)(0, 0) = 0,

D2
x(u − w)(0, 0) < 0.

Furthermore

(u − w)t (0, 0) = ε + �(u − w)(0, 0) by choice of ε

= ε + (λ1 + · · · + λn) − λ(−n + ν)

> 0

by definition of ν. From these last three inequalities, we deduce condition (b)
fails for some small cylinder W .
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4.2. Proof of Corollary 4.2

Let u : U → [−∞,∞) be upper semicontinuous with u finite in a dense
subset of U .

To prove the contrapositive of part (a), suppose u is not a subtemperature in
U . Then u is not a relaxed viscosity subsolution of the heat equation in U , by
the equivalence between the relaxed viscosity subsolutions and the potential
theoretic subtemperatures (see [7, Theorem 4.6] and [7, p. 716], with p = 2;
and note the references to earlier work, especially that of Ohnuma and Sato
[10]).

Hence by definition of relaxed viscosity subsolution (see [7, Definition
4.17]), there exists a function φ ∈ C2(U) and a local maximum point (x0, t0) ∈
U of u−φ such that �φ(x0, t0) < φt(x0, t0) and such that if Dxφ(x0, t0) = 0
then D2

xφ(x0, t0) = 0. (We have used here the definition of “admissibility”
for φ, from [7, Definition 4.16], which ensures that if Dxφ(x0, t0) = 0 then
φ(x, t0) − φ(x0, t0) = o(|x − x0|2) and hence that the Hessian of φ vanishes
at (x0, t0).)

If Dxφ(x0, t0) �= 0 then we can apply the first part of the proof of The-
orem 4.1(a) to the function φ, while if Dxφ(x0, t0) = 0 then D2

xφ(x0, t0) = 0
by assumption and so we can apply the second part of the proof of The-
orem 4.1(a) to φ. Either way we obtain a function w of the form (16) such
that

Dx(φ + w)(x0, t0) = 0, D2
x(φ + w)(x0, t0) < 0, (φ + w)t (x0, t0) > 0.

Then u+w = (u−φ)+(φ+w) has a strict local maximum at (x0, t0), relative
to times t < t0. Hence u+w fails to satisfy the parabolic maximum principle,
on each sufficiently small cylinder W = V × (t1, t0) ∈ Bp(U) having x0 ∈ V

and t1 < t0. That is, condition (a) in Theorem 4.1 fails.
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