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THE FIRST SZEGŐ LIMIT THEOREM FOR
NON-SELFADJOINT OPERATORS IN THE

FØLNER ALGEBRA

ALBRECHT BÖTTCHER and PETER OTTE

Abstract
We determine the first order asymptotics of the trace of f (PnUPn) and the determinant det PnUPn
for operators U belonging to the Følner algebra associated with the sequence {Pn} and satisfying
an “index zero” condition. We present three different proofs of the main result in the case where
U is a normal operator.

1. Introduction

Let H be a separable Hilbert space. We denote by ‖ ·‖, ‖ ·‖1, ‖ ·‖2 the operator
norm, the trace norm, and the Hilbert-Schmidt norm, respectively. We fix a
sequence {Pn} of orthogonal projections on H such that Rn := dim ranPn <

∞ for all n and we put Qn = I − Pn. For B ∈ B(H),

‖PnBQn‖2
2 = tr(QnB

∗PnBQn) = tr(PnBQnB
∗Pn),

‖QnBPn‖2
2 = tr(PnB

∗QnBPn).

The Følner algebra F ({Pn}) associated with {Pn} is the set of all operators B
in B(H) for which

lim
n→∞

‖PnBQn‖2
2

Rn

= 0, lim
n→∞

‖QnBPn‖2
2

Rn

= 0.

The set F ({Pn}) is a unital C∗-subalgebra of B(H). For B ∈ B(H), we
consider the sequence {PnBPn}. We are interested in a first order asymptotics
of the trace trf (PnBPn) for appropriate functionsf and in particular in the case
f (λ) = log λ, which amounts to considering the determinant det(PnBPn).

Two standard situations are H = �2(Z) and

Pn : {xj }∞j=−∞ �→ {. . . , 0, x−n, . . . , x0, . . . , xn, 0, . . .} (Rn = 2n + 1),(1)

Pn : {xj }∞j=−∞ �→ {. . . , 0, x0, . . . , xn−1, 0, . . .} (Rn = n).(2)
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In these two cases, F ({Pn}) contains all banded operators and all Laurent
operators. A banded operator is an operator that is induced by a banded matrix.
A Laurent operator L(ϕ) is given by a matrix of the form (ϕj−k)

∞
j,k=−∞ where

the ϕk’s are the Fourier coefficients of a bounded function ϕ, that is,

ϕk = 1

2π

∫ 2π

0
ϕ(eiθ )e−ikθ dθ (k ∈ Z)

with ϕ in L∞ on the complex unit circle T. Notice that L(ϕ) is unitarily
equivalent in an obvious way to the operator of multiplication by ϕ on L2(T).
If Pn is as in (2), then the operators PnL(ϕ)Pn| ranPn may be identified with
n × n Toeplitz matrices Tn(ϕ) := (ϕj−k)

n−1
j,k=0. The classical first Szegő limit

theorem [18] states that if ϕ is real-valued and essinf ϕ > 0 on T, then

(3) log det Tn(ϕ) = n(logϕ)0 + o(n) as n → ∞,

where (logϕ)0 is the 0th Fourier coefficient of logϕ. (Notice that det Tn(ϕ) is
positive for ϕ > 0, so that the logarithm is well-defined.) Extensions of (3) to
more general situations, mainly concerning either Toeplitz-like or selfadjoint
operators B in place of L(ϕ) have been studied by many authors. References
[1], [2], [4]–[17], and [19]–[21] are a few exemplary works of the business.

We here prove an analogue of (3) for operators in F ({Pn}) that are a power
of an operator whose numerical range is separated away from zero and that
are subject to an additional stability requirement. Suppose, for example, the
operator under consideration is the Laurent operator L(ϕ) with a continuous
function ϕ : T → C. The operator L(ϕ) is the power of an operator L(ψ) with
a continuous function ψ for which the convex hull of ψ(T) does not contain
the origin if and only if the winding number (= index) of ϕ about the origin is
zero. Consequently, the assumption of our main theorem (Theorem 3.2) may
be interpreted as an “index zero” condition. Notice also that the operator L(ϕ)
is selfadjoint if and only if ϕ is real-valued. But this operator is always normal.
Thus, when dealing with the problem considered here, passage from selfadjoint
to normal operators is in fact quite a nontrivial step, because it includes passing
from Hermitian Toeplitz matrices to arbitrary Toeplitz matrices as a special
case.

2. A general trace formula

LetB be an operator in B(H). The sequence {PnBPn} is said to be stable if the
operators PnBPn| ranPn are invertible for all sufficiently large n, say n ≥ n0,
and supn≥n0

‖(PnBPn)
−1Pn‖ < ∞.

The spectrum of an operator B ∈ B(H) will be denoted by σ(B). We write
λ − B and λ − PnBPn for λI − B and (λI − PnBPn)| ranPn, respectively.
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Theorem 2.1. Let K be a compact subset of C and let " ⊂ C be a bounded
open set with a smooth boundary ∂" that contains K . Let f be analytic in
" and continuous on the closure of ". Let finally U ∈ F ({Pn}) and suppose
σ(U) ⊂ K and {Pn(λ − U)Pn} is stable for all λ ∈ ∂". Then

tr f (PnUPn) = tr Pnf (U)Pn + o(Rn) as n → ∞.

The proof is based on three lemmas. The first lemma is the basic trick of
our approach. The other two lemmas are needed to make some estimates in
the proof of Theorem 2.1 uniform.

Lemma2.2. LetB ∈ B(H)be invertible and letP andQbe complementary
projections on H . Then PBP | ranP is invertible if and only if QB−1Q| ranQ
is invertible. In that case

(PBP )−1P = PB−1P − PB−1Q(QB−1Q)−1QB−1P,(4)

(QB−1Q)−1Q = QBQ − QBP(PBP)−1PBQ.(5)

Proof. See [5, Proposition 7.15] or [6, Lemma 2.9], for example.

Lemma 2.3. Let B ∈ B(H), λ ∈ C, and suppose {Pn(λ− B)Pn} is stable.
Then there exist n0 ∈ N, M < ∞, ε > 0 such that

‖(Pn(µ − B)Pn)
−1Pn‖ ≤ M

for n ≥ n0 and |µ − λ| < ε.

Proof. PutBn = PnBPn| ranPn. Suppose that λ−Bn is invertible and that
‖(λ − Bn)

−1Pn‖ ≤ N < ∞ for all n ≥ n0. With µ = λ + δ,

µ − Bn = λ + δ − Bn = (λ − Bn)(I + δ(λ − Bn)
−1),

and hence µ−Bn is invertible for all n ≥ n0 whenever |δ|N < 1. For these δ
we get

‖(µ − Bn)
−1Pn‖ ≤

∞∑
k=0

|δ|k‖(λ − Bn)
−1‖k+1 ≤ N

1 − |δ|N ,

which yields the assertion with ε = 1/(2N) and M = 2N .

Lemma 2.4. Let B ∈ B(H), λ ∈ C \ σ(B), and suppose

lim
n→∞

‖Pn(λ − B)−1Qn‖2
2

Rn

= 0.
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Then there exists an ε > 0 such that

lim
n→∞

‖Pn(µ − B)−1Qn‖2
2

Rn

= 0

uniformly for |µ − λ| < ε.

Proof. Let again µ = λ + δ and suppose |δ| ‖(λ − B)−1‖ < 1. Then

‖Pn(µ − B)−1Qn‖2 = ‖Pn(λ + δ − B)−1Qn‖2

=
∥∥∥∥Pn

∞∑
k=0

(−1)kδk[(λ − B)−1]k+1Qn

∥∥∥∥
2

≤
∞∑
k=0

|δ|k ∥∥Pn[(λ − B)−1]k+1Qn

∥∥
2

≤
∞∑
k=0

|δ|k(k + 1) ‖(λ − B)−1‖k‖Pn(λ − B)−1Qn‖2

= ‖Pn(λ − B)−1Qn‖2

(1 − |δ| ‖(λ − B)−1‖)2
,

which gives the assertion with ε = 1/(2 ‖(λ − B)−1‖).
Proof of Theorem 2.1. We have

(6) tr f (PnUPn) − tr Pnf (U)Pn

= 1

2πi

∫
∂"

f (λ) tr
[
(Pn(λ − U)Pn)

−1Pn − Pn(λ − U)−1Pn

]
dλ.

By (4), the absolute value of (6) does not exceed

1

2π

∫
∂"

|f (λ)| ∣∣ tr
[
Pn(λ−U)−1(Qn(λ−U)−1Qn)

−1Qn(λ−U)−1Pn

]∣∣ |dλ|,
and since | tr(ABC)| ≤ ‖A‖2‖B‖ ‖C‖2, this is at most

1

2π

∫
∂"

|f (λ)| ‖(Qn(λ − U)−1Qn)
−1Qn‖

× ‖Pn(λ − U)−1Qn‖2‖Qn(λ − U)−1Pn‖2 |dλ|.
The sequence {Pn(λ−U)Pn} is stable for each λ ∈ ∂". Since ∂" is compact,
Lemma 2.3 implies that there are n0 ∈ N and M < ∞ such that

‖(Pn(λ − U)Pn)
−1Pn‖ ≤ M



the first szegő limit theorem for non-selfadjoint . . . 119

for all n ≥ n0 and all λ ∈ ∂". Identity (5) therefore implies that

‖(Qn(λ − U)−1Qn)
−1Qn‖ ≤ ‖λ − U‖ + ‖λ − U‖2M ≤ N < ∞

for all n ≥ n0 and all λ ∈ ∂". Since U ∈ F ({Pn}) and λ − U is invertible,
the inverse (λ − U)−1 belongs to the C∗-algebra F ({Pn}) for each λ ∈ ∂".
Lemma 2.4 and the compactness of ∂" therefore yield that

max
λ∈∂"

‖Pn(λ − U)−1Qn‖2√
Rn

‖Qn(λ − U)−1Pn‖2√
Rn

→ 0

as n → ∞. This gives the assertion.

3. Operators with good numerical range

Here is a first consequence of Theorem 2.1.

Corollary 3.1. Let U ∈ F ({Pn}) and suppose the closure of the numer-
ical range H (U) := {(Ux, x) : ‖x‖ = 1} does not contain the origin. Then
U = eA for some A ∈ F ({Pn}) and

(7) log det PnUPn = tr PnAPn + o(Rn) as n → ∞,

where log is any branch of the logarithm that is analytic on clos H (U).

Proof. We employ Theorem 2.1 with K = clos H (U). We may without
loss of generality assume that K is a subset of the right open half-plane. The
spectrum of U is contained in K . Let " ⊃ K be a bounded open subset of the
right open half-plane with a smooth boundary ∂". The function f (λ) = log λ
is analytic in " and continuous on the closure of ". Thus, U = eA with

A = 1

2πi

∫
∂"

(log λ) (λ − U)−1 dλ.

If λ ∈ ∂", then 0 /∈ λ − clos H (U) = clos H (λ − U). This implies that
λ − U = α(I + S) with α ∈ C \ {0} and ‖S‖ < 1 and hence

‖(Pn(λ − U)Pn)
−1Pn‖ ≤ 1

|α|
∞∑
k=0

‖PnSPn‖k ≤ 1

|α|(1 − ‖S‖) ,

which shows that {Pn(λ − U)Pn} is stable for every λ ∈ ∂" (this argument
is from [10, Section II.5]). The corollary is now immediate from Theorem 2.1
and the identity log det PnUPn = tr logPnUPn.

The following result concerns powers of operators with good numerical
range. The stability requirement in that result is nasty at the first glance, but in
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the next section we will see that the result is not true without this additional
condition.

Theorem 3.2. Let U ∈ F ({Pn}) and suppose the origin does not belong
to the closure of H (U). If k ∈ N and {PnU

kPn} is stable, then

(8) log | det PnU
kPn| = k log | det PnUPn| + o(Rn) as n → ∞.

Proof. It is easy to show that

(9) ‖PnB
kPn − (PnBPn)

k‖1 ≤ k ‖B‖k‖PnBQn‖1

for every B ∈ B(H). Put Ln := PnU
kPn − (PnUPn)

k . Using (9) and taking
into account that ‖PnB‖1 ≤ ‖Pn‖2‖PnB‖2 = √

Rn ‖PnB‖2, we get

‖Ln‖1

Rn

≤ k ‖U‖k ‖Pn‖2‖PnUQn‖2

Rn

= k ‖U‖k ‖PnUQn‖2√
Rn

= o(1).

Furthermore,

det PnU
kPn = (det PnUPn)

k det(I + (PnUPn)
−kLn),

and since the closure of H (U) does not contain the origin, we may conclude as
in the proof of Corollary 3.1 that the sequence {PnUPn} is stable. Consequently,

| det(I + (PnUPn)
−kLn)| ≤ e‖(PnUPn)

−kLn‖1 ≤ eM ‖Ln‖1

with some constant M < ∞. It follows that

(10) lim sup
n→∞

1

Rn

(log | det PnU
kPn| − k log | det PnUPn|) ≤ 0.

On the other hand,

(det PnUPn)
k = (det PnU

kPn) det(I − (PnU
kPn)

−1Ln).

Since {PnU
kPn} is stable by assumption, the same argument as above yields

that

(11) lim sup
n→∞

1

Rn

(k log | det PnUPn| − log | det PnU
kPn|) ≤ 0.

Combining (10) and (11) we arrive at the assertion.
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The following corollary is well known (see, e.g., [5], [10], [12]). We cite it
in order to illustrate Theorem 3.2 by a concrete realization.

Corollary 3.3. Let ϕ ∈ L∞(T) and suppose {Tn(ϕ)} is stable. Then

log | det Tn(ϕ)| = n(log |ϕ|)0 + o(n) as n → ∞.

Proof. The stability of {Tn(ϕ)} implies that essinf |ϕ| > 0 on T. Write ϕ =
|ϕ|eib with a real-valued function b : T → (−π, π ] and put ψ = |ϕ|1/3eib/3.
The operator U = L(ψ) is normal. The closure of H (U) is therefore the
convex hull of the spectrum. As the spectrum of L(ψ) is the essential range of
ψ , we conclude that clos H (U) is a subset of the right open half-plane. From
Corollary 3.1 we deduce that

log | det PnL(ψ)Pn| = 1

3
tr PnL(log |ϕ|)Pn + o(n)

and Theorem 3.2 shows that

log | det PnL(ϕ)Pn| = 3 log | det PnL(ψ)Pn| + o(n).

The last two relations clearly imply the assertion.

Note that if ϕ is real-valued and essinf ϕ > 0 on T, then {Tn(ϕ)} is stable
and det Tn(ϕ) > 0. Hence Corollary 3.3 contains the first Szegő limit theorem
as a special case.

For a piecewise continuous function ϕ ∈ L∞(T), let ϕ#(T) be the naturally
oriented curve that consists of the components of ϕ(T) connected by straight
segments at jumps. The sequence {Tn(ϕ)} is known to be stable if and only
if ϕ#(T) does not contain the origin and has winding number zero about the
origin. In this case the third order asymptotics is

log | det Tn(ϕ)| = n(log |ϕ|)0 + A log n + B + o(1) as n → ∞,

where A and B are completely identified constants [3].

4. Normal operators

In [15] it is shown that ifA ∈ F ({Pn}) is selfadjoint, then (7) is true forU = eA.
Since in this case U ∈ F ({Pn} and H (U) is some line segment [m,M] ⊂
(0,∞), the result of [15] is a straightforward consequence of Corollary 3.1.
Here is what Corollary 3.1 tells about normal operators.
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Theorem 4.1. Let A ∈ F ({Pn}) be normal and put U = eA. If the spec-
trum of A is contained in some open horizontal strip of width π , that is, if
there exists an y0 ∈ R such that | Im λ− y0| < π/2 for all λ ∈ σ(A), then the
closure of H (U) does not contain the origin and

(12) log det PnUPn = tr PnAPn + o(Rn) as n → ∞,

where log is any branch of the logarithm that is analytic on clos H (U).

Proof. The operatorU is normal together withA, and σ(U) is contained in
some open half-plane whose boundary passes through the origin. The closure
of the numerical range of the normal operator U is the convex hull of σ(U).
Thus, 0 is not in clos H (U) and Corollary 3.1 gives (12).

Example 4.2. This example shows that Theorem 4.1 is sharp. Let A =
L(ψ) where ψ(t) = iπ/2 for t on the upper half of the unit circle T and
ψ(t) = −iπ/2 for t on the lower half. Then σ(A) = {−iπ/2, iπ/2}. We
have U = eA = L(eψ). Clearly, ψ0 = 0. If (12) would be true, it would
follow that log | det Tn(eψ)| = o(n) or, equivalently, | det Tn(eψ)|1/n → 1 as
n → ∞. However, Tn(eψ) is skew-symmetric (see, e.g., [6, p. 143]) and hence
det Tn(eψ) = 0 whenever n is odd.

Example 4.3. This example reveals that Theorem 3.2 is in general no
longer valid without the requirement that {PnU

kPn} be stable. Let U = L(ϕ)

where ϕ(t) = eiπ/4 for t on the upper half of the unit circle T and ϕ(t) = e−iπ/4

for t on the lower half. Then H (U) is the line segment between e−iπ/4 and
eiπ/4. We have U 2 = L(ϕ2) and ϕ2 takes the values i and −i on the upper
and lower halves of T, respectively. This implies that Tn(ϕ2) is not stable.
From Example 4.2 we know that Tn(ϕ2) is skew-symmetric and that therefore
det Tn(ϕ2) = 0 for odd n. Relation (8) amounts to

log | det Tn(ϕ
2)| = 2 log | det Tn(ϕ)| + o(n),

and this is clearly not true because log | det Tn(ϕ)| = n(log |ϕ|)0 + o(n) due
to Corollary 3.3.

5. Two more proofs for normal operators

Here are two more proofs of Theorem 4.1.

Second proof. We proceed directly, without invoking Theorem 2.1. We
know that the origin does not lie in the closure of H (U) and we may therefore
without loss of generality assume that clos H (U) is contained in the right open
half-plane. Let 1 be a smooth curve in the right open half-plane that encircles
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clos H (U) exactly once counter-clockwise. Obviously, H (PnUPn) is a subset
of H (U). Consequently,

1

Rn

(log det PnUPn − tr PnAPn)

= 1

Rn

(tr logPnUPn − tr PnAPn)

= 1

Rn

(tr logPne
APn − tr log ePnAPn)

= 1

2πiRn

∫
1

(log λ) tr
[
(λ − Pne

APn)
−1 − (λ − ePnAPn)−1

]
dλ

= 1

2πiRn

∫
1

(log λ) tr
[
(λ − Pne

APn)
−1(ePnAPn − Pne

APn)

× (λ − ePnAPn)−1
]
dλ.

Taking into account that ‖(λ − B)−1‖ ≤ 1/ dist(λ, clos H (B)) for every op-
erator B ∈ B(H), we get

1

Rn

| log det PnUPn − tr PnAPn|

≤ 1

2πRn

∥∥ePnAPn − Pne
APn

∥∥
1

∫
1

| log λ| |dλ|
dist(λ, clos H (U))2

.

Finally, from (9) we obtain

1

Rn

∥∥ePnAPn − Pne
APn

∥∥
1 ≤ ‖A‖ e‖A‖ ‖PnAQn‖1

Rn

≤ ‖A‖ e‖A‖ ‖Pn‖2‖PnAQn‖2

Rn

= ‖A‖ e‖A‖
√
Rn ‖PnAQn‖2

Rn

,

which goes to zero because A ∈ F ({Pn}).
Third proof. We start with formula (19) of [15]. This formula is a gen-

eralization of Liouville’s formula from ordinary differential equations and it
says that

det PnUPn = etr PnAPn exp

(∫ 1

0

∫ t

0
E(t, τ ) dτ dt

)
,
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where

E(t, τ ) = tr
(
PnAQne

(t−τ)QnAQnQnAPn Pne
τAPn(Pne

tAPn)
−1Pn

)
.

It follows that

|E(t, τ )| ≤ e(t−τ)‖A‖ eτ‖A‖ ‖(Pne
tAPn)

−1Pn‖ ‖PnAQn‖2 ‖QnAPn‖2

= et‖A‖ ‖(Pne
tAPn)

−1Pn‖ ‖PnAQn‖2 ‖QnAPn‖2.

Since A ∈ F ({Pn}), we obtain

1

Rn

| log det PnUPn − tr PnAPn|(13)

≤
(∫ 1

0
tet‖A‖ ‖(Pne

tAPn)
−1Pn‖ dt

)‖PnAQn‖2√
Rn

‖QnAPn‖2√
Rn

=
(∫ 1

0
tet‖A‖ ‖(Pne

tAPn)
−1Pn‖ dt

)
o(1).

We write A = B+ iC with self-adjoint operators B and C. Since A is normal,
the operators B and C commute, that is BC = CB. By assumption, σ(A) ⊂
[m,M] × [y0 −h, y0 +h] for certain −∞ < m < M < ∞ and 0 < h < π/2.
This implies that σ(B) ⊂ [m,M] and σ(C) ⊂ [y0 − h, y0 + h]. Therefore

|(Pnx, e
tAPnx)| = ∣∣(e t

2BPnx, e
itCe

t
2BPnx)

∣∣(14)

≥ cos(th)|(Pnx, e
tBPnx)|

≥ cos(th)etm‖Pnx‖2

for all n and thus,

(15) ‖(Pne
tAPn)

−1Pn‖ ≤ 1

etm cos th
.

But if 0 ≤ t ≤ 1, then

(16)
1

etm cos th
≤ 1

e−|m| cosh
.

Inserting (15), (16) in (13) we arrive at the assertion.

If in the foregoing proof we just wanted (Pne
tAPn)

−1 to exist we could
allow m = −∞. To see this, assume there is some nonzero x ∈ ranPn such
that Pne

tAPnx = 0. Estimating as in (14) we get

0 = (Pnx, e
tBPnx) = ‖e t

2BPnx‖2,
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which shows that e
t
2BPnx = 0. Repeating this argument we arrive at

0 = (Pnx, e
t
2BPnx) = ‖e t

4BPnx‖2

and hence e
t
4BPnx = 0. Proceeding further in this way and using the strong

continuity of etB we eventually obtain that x = 0. Although in this case of
semi-boundedB the invertibility ofPne

tAPn is still ensured, the uniform bound,
which is needed for stability, is not necessarily valid.

With a view to Example 4.2 it is not surprising that the assumption on C

cannot be weakened in general. For instance, in the special case B = 0, where
A = iC and hence etA is unitary, a gap condition has to be imposed on σ(A):
when sup σ(PnCPn) < inf σ(QnCQn) or sup σ(QnCQn) < inf σ(PnCPn),
then (Pne

tAPn)
−1 exists for all t ∈ R whereas one can construct counter-

examples in the case where such a gap is missing (see [16, Theorem 3.4,
Corollary 3.6, and Section 5]).
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Math. 9 (1983), 23–41 [Russian].
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